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Abstract. For exact symplectic twist maps of the annulus, we etablish a

choice of weak K.A.M. solutions uc = u(·, c) that depend in a Lipschitz-
continuous way on the cohomology class c. This allows us to make a bridge

between weak K.A.M. theory of Fathi, Aubry-Mather theory for semi-orbits as

developped by Bangert and existence of backward invariant pseudo-foliations
as seen by Katnelson & Ornstein. We deduce a very precise description of the

pseudographs of the weak K.A.M. solutions and many interesting results as

• the Aubry-Mather sets are contained in pseudographs that are vertically
ordered by their rotation numbers;

• on every image of a vertical of the annulus, there is at most two points

whose negative orbit is minimizing with a given rotation number;
• all the corresponding pseudographs are filled by minimizing semi-orbits

and we provide a description of a smaller selection of full pseudographs
whose union contains all the minimizing orbits;

• there exists an exact symplectic twist map that has a minimizing negative

semi-orbit that is not contained in the pseudograph of a weak K.A.M.
solution.

1. Introduction and Main Results.

In the 80s, Aubry and Mather elaborated a deep theory describing the dynamics
of an exact symplectic twist diffeomorphism (ESTwD) of the 2-dimensional annulus
restricted to the union of its minimizing orbits [1, 40]. Twenty five years later,
Katznelson and Ornstein introduced a notion of pseudograph that allowed them to
reprove in a geometric way some part of Aubry-Mather theory as well as a theorem
of Birkhoff, [35] .

Meanwhile, Fathi made a striking connection between Aubry-Mather theory for
Hamiltonian dynamical systems and the PDE approach of Hamilton-Jacobi equa-
tion. His weak K.A.M. solutions also define pseudographs. But it seems that an
in depth study of weak K.A.M. solutions in the context of exact symplectic twist
diffeomorphism has little been done.

Here, we fill that gap and give a precise description of weak K.A.M. solutions
for an ESTwD. Also, we revisit a theory for minimizing semi-orbits, developed by
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Bangert [10], in the spirit of Aubry-Mather results on minimizing full orbits. Our
approach is based on a method of Lipschitz selection of weak K.A.M. solutions that
we elaborate. Among other results, we prove that

• our selection of full pseudographs of weak K.A.M. solutions is a vertically
ordered filling of the whole annulus; all the corresponding pseudographs are
filled by minimizing semi-orbits and we provide a description of a smaller
selection of full pseudographs whose union contains all the minimizing or-
bits;
• every minimizing semi-orbit has a rotation number1. These semi-orbits are

vertically arranged by their rotation numbers;
• for a fixed rotation number, every twisted vertical2 contains at most two

minimizing semi-orbit having this rotation number and every vertical con-
tains at least one minimizing semi-orbit having this rotation number;
• ultimately, we provide a detailed description of the pseudographs of the

weak K.A.M. solutions, especially in case of a rational rotation number, see
Proposition 4.7.

1.1. Main results. In this article we study weak K.A.M. solutions and infinite
minimizing orbits of Exact Symplectic Twist Diffeomorphisms (ESTwDs in short).
Along the way, we recover classical results of Aubry, Mather and Bangert with a
more weak K.A.M. approach. The aim of this paper is to be as much self-contained
as can be, only the most basic results of Aubry-Mather theory for twist maps are
used.

We recall briefly that3

• there is natural variational setting for the ESTwDs: a generating function
can be associated to a ESTwD as well as an action and minimizing orbits
are minimizers of this action.
• a 1-parameter family (T c)c∈R of variational operators is defined on the set
C0(T,R) of continuous functions on T whose fixed points are called weak
K.A.M. solutions;
• then, if u is a fixed point of T c, the associated pseudograph, which is the

partial graph G(c+ u′) of c+ u′, is backward invariant by the ESTwD; the
corresponding parameter is called the cohomology class; the corresponding
full pseudograph PG(c + u′) is an essential curve4 that is the union of
G(c+ u′) and some vertical segments.

The following result is reminiscent of Aubry-Mather theory for two-sided mini-
mizing orbits (see [9, 10]): on every twisted vertical, there are at most two points
with a fixed rotation number and whose negative orbit is minimizing. If θ ∈ T, we
set Vθ = {θ}×R. In all the article, Z− will refer to the set of nonpositive integers.
The beginning of the following already appears in Bangert [10]:

Theorem 1.1. Let f be a C1 ESTwD of T× R. Then every negative minimizing
orbit has a rotation number. Let θ ∈ T and ρ0 ∈ R, then

• if ρ0 /∈ Q, there exists at most one (x, p) ∈ f(Vθ) such that
(
π1◦f i(x, p)

)
i∈Z−

is minimizing with rotation number ρ0;

1This is already proved in [10].
2 This refer tho the forward image of a vertical.
3 Precise definitions will be given later.
4 This refers to a simple loop that is not isotopic to a point.
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• if ρ0 ∈ Q, there exists at most two (x, p) ∈ f(Vθ) such that
(
π1◦f i(x, p)

)
i∈Z−

is minimizing with rotation number ρ0.

Now we state the existence of a Lipschitz continuous choice of fixed point uc of
T c, that generates a continuous and ordered choice of the associated pseudograph.

Theorem 1.2. Let f be a C1 ESTwD of T × R. Then there exists a continuous
map u : T× R→ R such that

(1) u(0, c) = 0;
(2) the map (θ, c) 7→ ∂uc

∂θ (θ) is continuous on its set of definition;
(3) each uc = u(·, c) is a weak K.A.M. solution for the cohomology class c, this

implies that:
• each uc = u(·, c) is semi-concave (hence derivable almost everywhere)5;
• each partial graph G(c+ u′c) of c+ ∂uc

∂θ is backward invariant by f ;
• the negative orbit (f−n(θ, r))n≥0 of every point (θ, r) ∈ G(c + u′c) is

minimizing;
(4) for all c 6 c′, we have c + u′c(θ) 6 c′ + u′c′(θ) at all θ ∈ T where both

derivatives exist;
(5) the function u is locally Lipschitz continuous (and even 1–Lipschitz with

respect to c).

From Theorems 1.2 and 1.1, we deduce that the negative orbits of the points of
G(c+ u′c) have a unique rotation number that we denote by ρ(c).

Next Theorem explains that the associated full pseudographs make a vertically
ordered continuous filling of the whole annulus.

Theorem 1.3. With the notations of Theorem 1.2, we have

(1) the map c 7→ PG(c+ u′c) is continuous for the Hausdorff topology;

(2)
⋃
c∈R
PG(c+ u′c) = A;

(3) if ρ(c) < ρ(c′), then for all (q, p) ∈ PG(c + u′c) and (q, p′) ∈ PG(c + u′c′),
we have p < p′.

As a result of the proof, we will deduce (see Proposition 2.3) that the Aubry-
Mather6 sets are contained in pseudographs that are vertically ordered by their
rotation numbers.

The next statement explains that the weak K.A.M. solutions reflect all the rich-
ness of negative minimizing semi-orbits.

Theorem 1.4. With the notations of Theorem 1.2, let (θi, ri)i∈Z− ∈ AZ− be a
minimizing negative orbit of f , then there exist c ∈ R and a weak K.A.M. solution
uc : T→ R at cohomology c such that

(θi, ri)i∈Z− ⊂ PG(c+ u′c),

(θi, ri)i<0 ⊂ G(c+ u′c).

Jean-Pierre Marco raised the following question.
Question. If (θi, ri)i∈Z− ∈ AZ− is a minimizing negative semi-orbit of f , is it

necessarily contained in G(c+ u′c)?

5The definition of a semi-concave function is given in subsection 2.3.
6The definition of Aubry-Mather set is given in subsection 2.2.
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In part A.3, we answer negatively to this question and provide an example where
a minimizing negative semi-orbit is not contained in such a set.

Finally, we prove that we can use only a particular subset of {G(c+ u′c); c ∈ R}
to recover the union of all the pseudographs of weak K.A.M. solutions.

Theorem 1.5. For every ρ0 ∈ R, ρ−1({ρ0}) is a segment [a, b]. With the notations
of Theorem 1.2, if c ∈ [a, b] and u is a weak K.A.M. solution at cohomology c, then

G(c+ u′) ⊂ G(a+ u′a) ∪ G(b+ u′b),

and by taking closures:

G(c+ u′) ⊂ G(a+ u′a) ∪ G(b+ u′b).

More precisely,

• when ρ0 is irrational, ρ−1({ρ0}) is a single point;
• when ρ0 is rational, the union of two pseudographs contain all pseudo-

graphs with this rotation number. Moreover, those two pseudographs inter-
sect along minimizing periodic orbits.

Moreover, every minimizing semi-orbit (θi, ri)i∈Z− with rotation number ρ0 is con-
tained in

PG(a+ u′a) ∪ PG(b+ u′b).

In fact, we will provide a more precise description of how the full pseudographs
PG(a + u′a) and PG(b + u′b) are positioned and of the way PG(c + u′) is built by
taking pieces of PG(a+u′a) and PG(b+u′b) and gluing them with vertical segments.

Once we have proved that there always exists a continuous choice u(θ, c) of
weak K.A.M. solutions, we wonder when u can be more regular. We recall that
an ESTwD is said to be C0-integrable if the annulus T × R is C0-foliated by C0

invariant graphs.

Theorem 1.6. With the notations of Theorem 1.2, we have equivalence of

(1) f is C0-integrable;
(2) the map u is C1.

Moreover, in this case, u is unique and we have7

• the graph of c+ u′c is a leaf of the invariant foliation;
• hc : θ 7→ θ+ ∂u

∂c (θ, c) is a semi-conjugation between the projected Dynamics

gc : θ 7→ π1 ◦ f
(
θ, c+ ∂u

∂θ (θ, c)
)

and a rotation R of T, i.e. hc ◦ gc = R ◦ hc.

We will prove here the implication (2) ⇒ (1). The reverse implication is ad-
dressed in the companion paper [8].

1.2. A double pendulum. Let us illustrate some of our results on a simple ex-
ample. Let H : T×R be the Hamiltonian defined by (θ, p) 7→ 1

2 |p|
2 + cos(4πθ) and

f = φt0H : A → A be the Hamiltonian flow of H for a small time t0. Then it is
known that for small enough t0, f is an ESTwD. Moreover, weak K.A.M. solutions
for H and f can be proven to be the same.

With that in mind, we obtain that for ρ0 = 0, then ρ−1({0}) = [−a, a], where

a =
∫ 1

0

√
2− 2 cos(4πθ)dθ. The integrated function θ 7→

√
2− 2 cos(4πθ), denoted

f+, corresponds to the upper part of the level set H−1({1}). The lower part is the
graph of −f+.

7See the notation π1 at the beginning of subsection 2.1.
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The unique (up to constants) weak K.A.M. solution ua, at cohomology a is C1

and such that a+ u′a is the graph on f+, in blue in figure 6. Similarly, the unique
(up to constants) weak K.A.M. solution u−a, at cohomology −a is C1 and such
that −a+ u′−a is the graph on −f+, in red in figure 6. Note that those two graphs
intersect at the only minimizing fixed points of f that are of coordinates (0, 0) and
( 1

2 , 0). This fact will be generalized in Proposition 4.7.

0 1

Figure 1. The level set H−1({1}) is the union of the graphs of
a+ u′a in blue and −a+ u′−a in red.

Let us now focus at weak K.A.M. solutions at cohomology 0. Their derivative lie
in H−1({1}). As weak K.A.M. solutions are semi–concave the derivative can only
jump downwards and must have vanishing integral. So it looks like the red part in
figure 2.
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0 1

Figure 2. The full pseudograph of a weak K.A.M. solution at
cohomology 0 in red.

The construction that we propose to prove Theorem 1.2 respects the 1
2 periodicity

of H, hence the weak K.A.M. solution obtained is itself 1
2 -periodic as shown in the

next figure 3.

0 1

Figure 3. The full pseudograph of the weak K.A.M. solution at
cohomology 0 selected by the construction in Theorem 1.2 in red.

1.3. Further comments and related results.
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• The beginning of Theorem 1.1 is already present in Bangert’s [10]. Ac-
tually, Bangert proves it for a more general setting that contains finite
compositions of ESTwDs. However, restricting to an ESTwD allows us to
obtain the two final items of Theorem 1.1 that would not hold in Bangert’s
setting. The same happens for other geometrical results as Proposition 4.8
that holds for ESTwDs but not in Bangert’s more general setting.

From a methodology point of view, Bangert uses Buseman functions,
that are functions defined on R. We rather focus on weak K.A.M. so-
lutions that are defined on the circle T and have been widely studied in
recent years. This allows for proofs that we hope more accessible to people
familiar with weak K.A.M. theory. Moreover as already explained in the In-
troduction, this draws a parallel with a variational approach to Katznelson
and Orstein’s results on backward invariant pseudographs.
• Theorem 1.2 selects in a continuous way a unique weak K.A.M. solution
uc for every cohomology class c ∈ R. Let us mention two related results.

– The recent works in [21] for the autonomous case and in [22] and
[46] for the discrete case select a unique solution, called discounted
solution, for every cohomology class. We give in Appendix A.2 an
example of a C∞ integrable ESTwD (coming from an autonomous
Tonelli Hamiltonian) for which the discounted method doesn’t select
a transversally continuous weak K.A.M. solution. Hence our method
is different from the discounted one.

– If we have not a unique choice of a weak K.A.M. solution for every
cohomology class c ∈ H1(M,R), we cannot speak of C1 regularity
with respect to c for the map c 7→ {uc} that sends c to the whole set
of weak K.A.M. solutions of cohomology class c. Observe nevertheless
that a kind of local Lipschitz regularity was studied in [37] (for weak
K.A.M. solutions for Tonelli Hamiltonians) with no uniqueness.

– Around the same time this research was done, similar results were
established in [49]. However our results are more precise with some
respect (for instance the Lipschitz selection of weak K.A.M. solutions).
Moreover, our study and description of weak K.A.M. solutions has not
been obtained elsewhere.

• Theorem 1.3 compares the cohomology classes of pseudographs that cor-
respond to distinct rotation numbers. In the setting of Hamiltonian flows
with two degrees of freedom, an analogous statement is proved in [19] con-
cerning the cyclic order of rotation and cohomology vectors.
• Similarly to Theorem 1.3, Katznelson & Ornstein provide in [35] a contin-

uous covering of the annulus by full pseudographs.

1.4. Content of the different sections. We chose to present our results in an
order other than the order of the proofs.

To prove all these results, we will use together Aubry-Mather theory, weak
K.A.M. theory in the discrete case. Let us detail what will be in the different
sections

• Section 2 contains some reminders on ESTwDs, Aubry-Mather theory, on
discrete weak K.A.M. theory, some new results on the weak K.A.M. solu-
tions and the proof of Theorems 1.2 and 1.3;
• the second implication of Theorem 1.6 is proved in section 3;
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• results on minimizing sequences and weak K.A.M. solutions are stated and
proved in section 4, where we prove Theorems 1.1, 1.4 and 1.5;
• Appendices A contains some examples, Appendix B deals with full pseu-

dographs, Appendix C explains a point that is useful to prove Theorem
1.2.

Acknowledgements. The authors are grateful to Frédéric Le Roux for insightful
discussions that helped clarify and simplify some proofs of this work and to Jean-
Pierre Marco for asking them intriguing questions.

2. Aubry-Mather and weak K.A.M. theories for ESTwDs and proof
of Theorems 1.2 and 1.3

2.1. The setting. The definitions and results that we give here are very classical
now. Good references are [29, 31, 42, 43, 12, 39].

Let us introduce some notations

Notations.

• T = R/Z is the circle and A = T×R is the annulus ; π : R→ T is the usual
projection;
• the universal covering of the annulus is denoted by p : R2 → A;
• the corresponding projections are π1 : (θ, r) ∈ A 7→ θ ∈ T and π2 : (θ, r) ∈
A 7→ r ∈ R; we denote also the corresponding projections of the universal
covering by π1, π2 : R2 → R;
• the Liouville 1-form is defined on A as being λ = π2dπ1 = rdθ; then A is

endowed with the symplectic form ω = −dλ.

Let us give the definition of an exact symplectic twist diffeomorphism.

Definition. An exact symplectic twist diffeomorphism (in short ESTwD) f :
A→ A is a C1 diffeomorphism such that

• f is isotopic to identity;
• f is exact symplectic, i.e. if f(θ, r) = (Θ, R), then the 1-form RdΘ− rdθ is

exact;
• f has the twist property i.e. if F = (F1, F2) : R2 → R2 is any lift of

f , for any θ̃ ∈ R, the map r ∈ R 7→ F1(θ̃, r) ∈ R is an increasing C1

diffeomorphism from R onto R.

A C2 generating function S : R × R → R that satisfies the following definition
can be associated to any lift F of such an ESTwD f .

Definition. The C2 function S : R2 → R is a generating function of the lift
F : R2 → R2 of an ESTwD if

• S(θ̃ + 1, Θ̃ + 1) = S(θ̃, Θ̃);

• lim
|Θ̃−θ̃|→∞

S(θ̃, Θ̃)

|Θ̃− θ̃|
= +∞; we say that S is superlinear;

• for every θ̃0, Θ̃0 ∈ R, the maps θ̃ 7→ ∂S

∂Θ̃
(θ̃, Θ̃0) and Θ̃ 7→ ∂S

∂θ̃
(θ̃0, Θ̃) are

decreasing diffeomorphisms of R;
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• for (θ̃, r), (Θ̃, R) ∈ R2, we have the following equivalence

(1) F (θ̃, r) = (Θ̃, R)⇔ r = −∂S
∂θ̃

(θ̃, Θ̃) and R =
∂S

∂Θ̃
(θ̃, Θ̃).

Remark. J. Moser proved in [43] that such an ESTwD is the time 1 map of a C2

1-periodic in time Hamiltonian H : T × R × R → R that is C2 convex in the fiber
direction8, i.e. such that

∂2H

∂r2
(θ, r, t) > 0.

Then there exists a relation between the Hamiltonian that was built by J. Moser
and the generating function. Indeed, if we denote by (Φt) the time t map of the
Hamiltonian H that is defined on R2 and by L the associated Lagrangian that is
defined by

L(θ̃, v, t) = max
r∈R

(
rv −H(θ̃, r, t)

)
,

then we have

• for every t ∈ (0, 1], Φt is an ESTwD and Φ1 = F ;
• there exists a C1 time-dependent family of C2 generating functions St of

Φt such S1 = S and for all (θ̃, r), (Θ̃, R) ∈ R2,

Φt(θ̃, r) = (Θ̃, R)⇒ St(θ̃, Θ̃) =

∫ t

0

L
(
π1 ◦ Φs(θ̃, r),

∂

∂s

(
π1 ◦ Φs(θ̃, r)

)
, s
)
ds.

In other words, the generating function is also the Lagrangian action.

2.2. Aubry-Mather theory. Good references for what is in this section are [9],
[31] and [5]. Let us recall the definition of some particular invariant sets.

Definition. Let F : R2 → R2 be a lift of an ESTwD f .

• a subset E of R2 is well-ordered if it is invariant under the translation

(θ̃, r) 7→ (θ̃ + 1, r) and F and if for every x1, x2 ∈ E, we have[
π1(x1) < π1(x2)

]
⇒
[
π1 ◦ F (x1) < π1 ◦ F (x2)

]
;

this notion is independent from the lift of f we use;
• a subset E of A is well-ordered if p−1(E) is well-ordered;
• an Aubry-Mather set for f is a compact well-ordered set or the lift of such

a set;
• a piece of orbit (θ̃k, rk)k∈[a,b] for F is minimizing if for every sequence

(θ̃′k)k∈[a,b] with θ̃a = θ̃′a and θ̃b = θ̃′b, it holds

b−1∑
j=a

S(θ̃j , θ̃j+1) 6
b−1∑
j=a

S(θ̃′j , θ̃
′
j+1);

then we say that (θ̃j)j∈[a,b] is a minimizing sequence or segment;
• an infinite piece of orbit, or a full orbit for F is minimizing if all its finite

subsegments are minimizing;
• an invariant set is said to be minimizing if all the orbits it contains are

minimizing.

8In fact J. Moser assumed that f is smooth.
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The following properties of the well-ordered sets are well-known

(1) a minimizing orbit and its translated orbits by (θ̃, r) 7→ (θ̃ + 1, r) define a
well-ordered set;

(2) the closure of a well-ordered set is a well-ordered set;
(3) any well-ordered set E is contained in the (non-invariant) graph of a Lips-

chitz map η : T→ R; it follows that the map N =
(
·, η(·)

)
: T→ Graph(η)

is Lipschitz and so are the maps π1 ◦ f ◦ N|π1(E) and π1 ◦ f−1 ◦ N|π1(E) .

This implies that the projected restricted Dynamics π1 ◦ f
(
·, η(·)

)
|π1(E)

to

an Aubry-Mather set is the restriction of a biLipschitz orientation preserv-
ing circle homeomorphism;

(4) any well-ordered set E in R2 has a unique rotation number ρ(E)
(
the one

of the circle homeomorphism we mentioned in Point (3)
)
, i.e.

∀x ∈ E, lim
k→±∞

1

k

(
π1 ◦ F k(x)− π1(x)

)
= ρ(E);

(5) for every α ∈ R, there exists a minimizing Aubry-Mather set E such that
ρ(E) = α;

(6) if α is irrational, there is a unique minimizing Aubry-Mather that is minimal
(resp. maximal) for the inclusion; the minimal one is then a Cantor set or
a complete graph and the maximal one M(α) is the union of the minimal
one and orbits that are homoclinic to the minimal one;

(7) if α is rational, any Aubry-Mather set that is minimal for the inclusion is
a periodic orbit;

(8) any essential invariant curve by an ESTwD is in fact a Lipschitz graph
(Birkhoff theorem, see [16], [25] and [32]) and a well-ordered minimizing
set.

We will need more precise properties for minimizing orbits.

Definition. Let a = (ak)k∈I and b = (bk)k∈I be two finite or infinite sequences of
real numbers. Then

• if k ∈ I, we say that a and b cross at k if ak = bk;
• if k, k + 1 ∈ I, we say that a and b cross between k and k + 1 if

(ak − bk)(ak+1 − bk+1) < 0.

Note that concerning the first item, the traditional terminology also imposes
that (ak−1 − bk−1)(ak+1 − bk+1) < 0 when k is in the interior of I. However, due
to the twist condition, this is automatic for projections of orbits of F as soon as
ak = bk if the two orbits are distinct.

Proposition 2.1. (Aubry fundamental lemma) If (a, b, a′, b′) ∈ R4 verify (a−
b)(a′ − b′) < 0 then

S(a, a′) + S(b, b′) > S(a, b′) + S(a′, b).

As a consequence, two distinct minimizing sequences cross at most once except
possibly at the two endpoints when the sequence is finite.

2.3. Classical results on weak K.A.M. solutions. Good references are [11],
[12] or [30]. We assume that S is a generating function of a lift F of an ESTwD f .

We define on C0(T,R) the so-called negative Lax-Oleinik maps T c for c ∈ R as
follows:



T-WEAK K.A.M. 11

if u ∈ C0(T,R), we denote by ũ : R→ R its lift and

(2) ∀θ̃ ∈ R, T̃ cũ(θ̃) = inf
θ̃′∈R

(
ũ(θ̃′) + S(θ̃′, θ̃) + c(θ̃′ − θ̃)

)
.

The function T̃ cũ is then 1-periodic and the negative Lax-Oleinik operator is defined
as the induced map T cu : T→ R.

An alternative but equivalent definition is as follows (see also [47] for similar
constructions): define the function

(3) ∀(θ, θ′) ∈ T× T, Sc(θ, θ′) = inf
π(θ̃)=θ

π(θ̃′)=θ′

S(θ̃, θ̃′) + c(θ̃ − θ̃′).

Then

∀θ ∈ T, T cu(θ) = inf
θ′∈T

u(θ′) + Sc(θ′, θ).

Then it can be proved that there exists a unique function α : R → R such that

the map T̂ c = T c + α(c) that is defined by

T̂ c(u) = T c(u) + α(c)

has at least one fixed point in C0(T,R), i.e. if u ∈ C0(T,R) is such a fixed point,
its lift verifies

(4) ∀θ̃ ∈ R, ũ(θ̃) = inf
θ̃′∈R

(
ũ(θ̃′) + S(θ̃′, θ̃) + c(θ̃′ − θ̃) + α(c)

)
.

Such a fixed point is called a weak K.A.M. solution. It is not necessarily unique.
For example, if u is a weak K.A.M. solution, so is u + k for every k ∈ R, but
there can also be other solutions. We denote by Sc the set of these weak K.A.M.
solutions. There is no link in general for solutions corresponding to distinct c’s. We
recall

Definition. Let u : R → R be a function and let K > 0 be a constant. Then u
is K-semi-concave if for every x in R, there exists some p ∈ R so that:

∀y ∈ R, u(y)− u(x)− p(y − x) 6
K

2
(y − x)2.

A function v : T→ R is K-semi-concave if its lift ṽ : R→ R is.

A good reference for semi-concave functions is the appendix A of [12] or [17].

Notation. If u ∈ C0(T,R) and c ∈ R, we will denote by G(c + u′) the partial
graph of c+ u′. This is a graph above the set of derivability of u.
When u is semi-concave, we sometimes say that G(c+ u′) is a pseudograph.

Let us end with definitions:

Definition. Let g : T → R be a Lipschitz function (hence derivable almost
everywhere). We define

∀x ∈ T, ∂g(x) = co
{

(x, p) ∈ T× R, (x, p) ∈ G(g′)
}
.
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The notation co stands for the convex hull in the fiber direction. The sets ∂g(x)
are non empty, (obviously) convex and compact. They are particular instances of
the Clarke subdifferential. This set is a good candidate for a generalized derivative
because if g is derivable at x then

(
x, g′(x)

)
∈ ∂g(x). Moreover, if ∂g(x) is a

singleton, then g is derivable at x. The converse is in general not true, but it is
however true for semi-concave functions.

Definition. If g : T → R is Lipschitz and c ∈ R, we define PG(c + g′) =
{(0, c) + ∂g(t), t ∈ T}. If g is semi-concave, we call it the full pseudograph of
c+ g′.

A proof of the following proposition is given in Appendix B.

Proposition 2.2. Let (fn)n∈N be a sequence of equi-semi-concave functions from
T to R that converges (uniformly) to a function f (that is hence also semi-concave).

Then PG(f ′n) converges to PG(f ′) for the Hausdorff distance.

The following results can be found in the papers that we quoted

(a) the function α is convex and superlinear;

(b) if u ∈ C0(T,R), then T̂ cu is semi-concave and then differentiable Lebesgue
almost everywhere;

(c) the function T̂cu is differentiable at x if and only if there is only one y where
the minimum is attained in Equality (4); in this case, if u is semi-concave,
then it is differentiable at y and we have

f
(
y, c+ u′(y)

)
=
(
x, c+ (T̂ cu)′(x)

)
;

if u is a weak K.A.M. solution for T̂ c that is differentiable at x then(
fk
(
x, c + u′(x)

))
k∈Z−

is a minimizing piece of orbit that is contained

in G(c+ u′);
(d) moreover, for any compact subset K of R, the weak K.A.M. solutions for

T c with c ∈ K are uniformly semi-concave (i.e. for a fixed constant of
semi-concavity) and then uniformly Lipschitz;

(e) if u ∈ C0(T,R) is semi-concave, then

f−1
(
G(c+ (T̂ cu)′)

)
⊂ G(c+ u′);

if (x, p) ∈ G(c+ (T̃ cũ)′) and
(
y, c+ ũ′(y)

)
= F−1(x, p) then

T̃ cũ(x) = ũ(y) + S(y, x) + c(y − x);

if u is a weak K.A.M. solution for T̂ c, then G(c+ u′) satisfies

f−1
(
G(c+ u′)

)
⊂ G(c+ u′)

and for every (θ̃0, r) ∈ G(c+ ũ′), then
(
π1 ◦ F k(θ̃0, r)

)
k∈Z−

= (θ̃k)k∈Z− is

minimizing and satisfies

(5) ∀k < 0, ũ(θ̃0)− ũ(θ̃k) =

−1∑
i=k

S(θ̃i, θ̃i+1) + c(θ̃k − θ̃0) + |k|α(c);

we will give in Appendix A.1 an example of a backward invariant pseudo-
graph that doesn’t correspond to any weak K.A.M. solution;
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(f) moreover, if u is a weak K.A.M. solution for T̂ c, then the set⋂
n∈N

f−n
(
G(c+ u′)

)
is a f -invariant minimizing compact well-ordered set to which we can
associate a unique rotation number. It results from Mather’s theory that
this rotation number only depends on c and is equal to ρ(c) = α′(c); because
of the convexity of α, observe in particular that α is C1 and ρ is continuous
and non-decreasing;

(g) it then follows from the first (a) and the previous (d) and (f) points that,
as in (d), for any compact subset K of R, the weak K.A.M. solutions for
T c with ρ(c) ∈ K are uniformly semi-concave (i.e. for a fixed constant of
semi-concavity) and then uniformly Lipschitz;

(h) reciprocally, if u is a weak K.A.M. solution for T̂ c and (θ̃k)k∈Z− verifies (5)

(we say that (θ̃k)k∈Z− calibrates ũc), then the sequence (θ̃k)k∈Z− is mini-

mizing. Setting for k ∈ Z−, rk = ∂S

∂Θ̃
(θ̃k−1, θ̃k), the sequence (θ̃k, rk)k∈Z−

is a piece of orbit of F such that (θ̃0, r0) ∈ PG(c + ũ′) and for all k < 0,

(θ̃k, rk) ∈ G(c+ ũ′);

(i) in the setting of point (f), then for every weak K.A.M. solution for T̂ c, the
graph G(c + ũ′) contains any minimizing Aubry-Mather set with rotation
number ρ(c) that is minimal for the inclusion; we denote the union of
these minimal Aubry sets by M∗

(
ρ(c)

)
(it is the Mather set). We denote

M
(
ρ(c)

)
= π1

(
M∗

(
ρ(c)

))
. If ρ(c) is irrational, then two possibilities may

occur:
• either M∗

(
ρ(c)

)
is an invariant Cantor set and G(c+ ũ′) is contained

in the unstable set of the Cantor set M∗
(
ρ(c)

)
;

• or M∗
(
ρ(c)

)
= G(c+ ũ′) and u is C1.

If ρ(c) is rational, then M∗
(
ρ(c)

)
is the union of some periodic orbits and

G(c + ũ′) is contained in the union of the unstable sets of these periodic
orbits.

We noticed that to any c ∈ R there corresponds a unique rotation number ρ(c).
But it can happen that distinct numbers c correspond to a same rotation number
R. In this case, because ρ(c) = α′(c) is non decreasing (because of point (f)),
ρ−1(R) = [c1, c2] is an interval. It can be proved that this may happen only for
rational R’s. This is a result of John Mather [41] (where he also attributes it to
Aubry) and Victor Bangert [10]. A simple proof can be found in [13, Proposition
6.5]. We will recover this fact as a byproduct of our study.

Finally, when c corresponds to an irrational rotation number ρ(c), then there
exists only one weak K.A.M. solution up to constants. The argument comes from
[13] and we will also provide a proof.

2.4. More results on weak K.A.M. solutions. We start by establishing that
minimizing sequences that calibrate a weak K.A.M. solution admit a rotation num-
ber9.

9Actually, we will see in section 4 that all minimizing sequences calibrate a weak K.A.M.
solution and have a rotation number.
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Lemma 2.1. Let v : T→ R be a continuous function, c ∈ R and θ̃1 < θ̃2 two real
numbers. Assume that θ̃′1 and θ̃′2 verify for i ∈ {1, 2},

T̃ cṽ(θ̃i) = min
θ̃′∈R

(
ṽ(θ̃′) + S(θ̃′, θ̃i) + c(θ̃′ − θ̃)

)
= ṽ(θ̃′i) + S(θ̃′i, θ̃i) + c(θ̃′i − θ̃i),

then θ′1 6 θ
′
2.

Assume moreover that v is semi-concave, then the previous inequality is strict.

Proof. Let us argue by contradiction, then by Proposition 2.1 the following holds:

ṽ(θ̃′1) + S(θ̃′1, θ̃1) + c(θ̃′1 − θ̃1) + ṽ(θ̃′2) + S(θ̃′2, θ̃2) + c(θ̃′2 − θ̃2) >

> ṽ(θ̃′2) + S(θ̃′2, θ̃1) + c(θ̃′2 − θ̃1) + ṽ(θ̃′1) + S(θ̃′1, θ̃2) + c(θ̃′1 − θ̃2).

We infer that one of the two inequalities

ṽ(θ̃′1) + S(θ̃′1, θ̃1) + c(θ̃′1 − θ̃1) > ṽ(θ̃′2) + S(θ̃′2, θ̃1) + c(θ̃′2 − θ̃1),

ṽ(θ̃′2) + S(θ̃′2, θ̃2) + c(θ̃′2 − θ̃2) > ṽ(θ̃′1) + S(θ̃′1, θ̃2) + c(θ̃′1 − θ̃2),

is valid that is a contradiction.
Let us establish the last point. If v is semi-concave, by properties of the Lax-

Oleinik semigroup (c), ṽ is derivable at θ̃′1 and θ̃′2 and θ̃i = π1 ◦F
(
θ̃′i, c+ ṽ′(θ̃′i)

)
for

i ∈ {1, 2} therefore θ̃′1 6= θ̃′2 as θ̃1 6= θ̃2.
�

Lemma 2.2. Let u be a weak K.A.M. solution for T̂ c. Let (θ0, r) ∈ G(c+ u′), and

let θ̃0 ∈ R be a lift of θ0. Let (θ̃k, rk)k∈Z− =
(
F k(θ̃0, r)

)
k∈Z−

. Then

lim
k→−∞

θ̃k
k

= ρ(c).

Proof. Let x0 ∈ M
(
ρ(c)

)
such that x0 6 θ̃0 6 x0 + 1 and (xk)k∈Z the associated

minimizing sequence. By successive applications of the previous lemma, it follows
that xk 6 θ̃k 6 xk + 1 for all k 6 0. The result follows as

lim
k→−∞

xk
k

= ρ(c).

�

Proposition 2.3. Let u1, u2 be two weak K.A.M. solutions corresponding to T c1 ,
T c2 , such that ρ(c1) < ρ(c2). Then we have

• c1 < c2;
• for any t ∈ T, if (t, p1) ∈ ∂u1(t) and (t, p2) ∈ ∂u2(t) then c1 + p1 < c2 + p2;
• in particular, at every point of differentiability t of u1 and u2: c1 +u′1(t) <
c2 + u′2(t).

Proof. Let ũ1 and ũ2 be the lifts of u1 and u2. We introduce the notation v(t) =
ũ2(t)− ũ1(t) + (c2− c1)t. Then v is Lipschitz and thus Lebesgue everywhere differ-
entiable and equal to a primitive of its derivative. Let us assume by contradiction
that there exist (x, c1 + p1) ∈ G(c1 + u′1) and (x, c2 + p2) ∈ G(c2 + u′2)

(6) c2 + p2 6 c1 + p1.

As ρ(c1) 6= ρ(c2), the two graphs correspond to distinct rotation numbers. Thanks
to (e) their closures have no intersections. The inequality (6) is then strict.
We introduce the notation (x1, y1) = (x, c1 + p1) and (x2, y2) = (x, c2 + p2). Then



T-WEAK K.A.M. 15

the orbit of (xi, yi) is denoted by (xik, y
i
k)k∈Z. We know that the negative or-

bits (xik, y
i
k)k∈Z− , that are contained in the corresponding graphs, are minimizing.

Hence the sequences (xik)k∈Z− are minimizing. By Aubry’s fundamental lemma, we
know that they can cross at most once (hence only at x). But we have

• because of the twist condition, as x1
0 = x2

0 and y1
0 > y2

0 , then x1
−1 < x2

−1;
• as ρ(c1) < ρ(c2), and thus for k close enough to −∞, we have: x1

k > x2
k.

Finally we find two crossings for two minimizing sequences, a contradiction.
We have in particular for any point t of derivability of u1 and u2

c1 + u′1(t) < c2 + u′2(t).

Integrating this inequality, we deduce that c1 < c2.
Finally, for any t ∈ T, as for all (t, p1) ∈ G(c1 + u′1) and (t, p2) ∈ G(c2 + u′2)

(7) c2 + p2 > c1 + p1,

taking convex hulls, we get the result.
�

In particular, we obtain the following consequence.

Corollary 2.1. With the same notation as in Proposition 2.3, assume that c1 < c2
are such that at least one of ρ−1({ρ(c1)}) and ρ−1({ρ(c2)}) is a singleton. Then
the function t ∈ R 7→ ũc2(t)− ũc1(t) + t(c2 − c1) is strictly increasing.

Remark. A consequence of Proposition 2.3 is that the pseudographs correspond-
ing to the weak K.A.M. solutions having distinct rotation numbers are vertically
ordered with the same order as the one between the rotation numbers.

Now we recall some results that are contained in [30] (see especially Theorem
9.3).

Notation. If c ∈ R and n > 1, we denote by Scn : R× R→ R the function that is
defined by

Scn(θ̃, Θ̃) = inf
θ̃0=θ̃

θ̃n−Θ̃∈Z

{
n∑
i=1

(
S(θ̃i−1, θ̃i) + c(θ̃i−1 − θ̃i)

)}
.

Observe that Scn is Z2-periodic.

(1) If R is any rotation number, for any c ∈ ρ−1(R) and any weak K.A.M. solu-

tion u for T̂ c, the set of invariant Borel probability measures with support
in G(c + u′) is independent from c ∈ ρ−1(R) and u. Those measures are
called Mather measures and the union of the supports of these measures is
called the Mather set for R and corresponds to M∗(R); its projection on

T is denoted M(R) whose lift to R is M̃(R);
(2) We say that a function u defined on a part A of T is c-dominated if, denoting

by Ã the lift of A to R, and ũ a lift of u, we have

∀θ̃, θ̃′ ∈ Ã,∀n > 1, ũ(θ̃)− ũ(θ̃′) 6 Scn(θ̃′, θ̃) + nα(c);
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a weak K.A.M. solution for T̂ c is always c-dominated; if A = T a function
u : T→ R is c-dominated if and only if

∀θ̃, θ̃′ ∈ R, ũ(θ̃)− ũ(θ̃′) 6 S(θ̃′, θ̃) + c(θ̃′ − θ̃) + α(c);

(3) If u : M
(
ρ(c)

)
→ R is dominated, then there exists only one extension U

of u to T that is a weak K.A.M. solution for T̂ c. This function is given by

∀x ∈ T, U(x) = inf
π(θ̃)∈M

(
ρ(c)

)
π(θ̃′)=x

ũ(θ̃) + Sc(θ̃, θ̃′),

where

Sc(θ̃, Θ̃) = inf
n∈N

(
Scn(θ̃, Θ̃) + nα(c)

)
.

As we have not found it exactly stated in this way in the literature, we
provide a sketch of proof for the reader’s convenience in appendix C.

2.5. Proof of Theorem 1.2. When there is no ambiguity in the notations, we
will put ∼ signs to signify that we consider lifts of functions defined on T. We will
need the following lemma.

Lemma 2.3. Let (cn) be a sequence of real numbers convergent to c and let (ucn)
be a sequence of functions uniformly convergent to v such that ucn is a weak K.A.M.

solution for T̂ cn . Then v is a weak K.A.M. solution for T̂ c.

Proof. We know from Equation (4) that

ũcn(θ̃) = inf
θ̃′∈R

(
ũcn(θ̃′) + S(θ̃′, θ̃) + cn(θ̃′ − θ̃) + α(cn)

)
.

Because of the superlinearity of S and the fact that the ucn and cn are uniformly
bounded, there exists a fixed compact set I in R such that for every n, we have

ũcn(θ̃) = inf
θ̃′∈I

(
ũcn(θ̃′) + S(θ̃′, θ̃) + cn(θ̃′ − θ̃) + α(cn)

)
.

We deduce from the uniform convergence of (ucn) to v that

ṽ(θ̃) = inf
θ̃′∈I

(
ṽ(θ̃′) + S(θ̃′, θ̃) + c(θ̃′ − θ̃) + α(c)

)
.

As we could do the same proof for I as large as wanted, we have in fact

(8) ṽ(θ̃) = inf
θ̃′∈R

(
ṽ(θ̃′) + S(θ̃′, θ̃) + c(θ̃′ − θ̃) + α(c)

)
.

�

Let us now prove Theorem 1.2. We will start with a fundamental uniqueness
property of weak K.A.M. solutions for a wide class of cohomology classes.

Proposition 2.4. Let R ⊂ R be a real number and set [a1, a2] = ρ−1({R}). Then,

up to constants, there exists a unique weak K.A.M. solution for T̂ a1 (resp. T̂ a2).

Proof. Let us prove the result for a2, the proof being similar for a1. Let (cn)n∈N
be a decreasing sequence of real numbers converging to a2, such that

(
ρ(cn)

)
n∈N is

decreasing (and converges to R). For all n ∈ N, let un : T→ R be a weak K.A.M.
solution at cohomology cn such that un(0) = 0.
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Then by Proposition 2.3, (cn+u′n)n∈N is a decreasing sequence and then
(
ṽn : θ̃ ∈

[0, 1] 7→ cnθ̃+ũn(θ̃)
)
n∈N is also a decreasing sequence, thus convergent and even uni-

formly convergent by the Ascoli Theorem. By Lemma 2.3, ũa2(θ̃) = lim
n→∞

ṽn(θ̃)− cnθ̃
defines a weak K.A.M. solution for T a2 such that ua2(0) = 0 and u′a2 = lim

n→∞
u′n

almost everywhere.

Let us assume that v is another weak K.A.M. solution for T̂ a2 that vanishes at
0. Because of Proposition 2.3, we have for all n ∈ N,

cn + u′n > a2 + v′.

Taking the limit in these inequalities and using the definition of ua2 , we deduce
that v′ 6 u′a2 . As 0 =

∫
T v
′ =

∫
T u
′
a2 , we deduce that u′a2 = v′ Lebesgue almost

everywhere and then v = ua2 .
�

Notation. We use the notation I ⊂ R is the set of c ∈ R such that ρ−1({ρ(c)}) =
{c}. This is the set of cohomology classes where ρ is strictly increasing10.

It is easily verified that the closure I consists in the union of all the extremities
{a1, a2} of intervals [a1, a2] = ρ−1({R}) for R ∈ R. This justifies the next:

Notation. When c ∈ I, we will denote by uc the (unique) solution such that
uc(0) = 0.

Let us prove that any extension c 7→ uc that maps c on a weak K.A.M. solution

for T̂ c that vanishes at 0 is continuous at every c ∈ I. Let us consider a sequence
(cn)n∈N that converges to c ∈ I. Then the sequence (ucn)n∈N is made of equi semi-
concave and then equiLipschitz functions. As all functions vanish at 0, the sequence
is also equi-bounded. Because of the Ascoli Theorem it is relatively compact for the
uniform convergence. Because of Lemma 2.3, all its accumulation points are weak

K.A.M. solutions for T̂ c that vanish at 0. It follows that the sequence uniformly
converges to the unique such function uc.
This gives the wanted continuity at every point of I.

Building a function u, the only problem of continuity we have now to consider
is at the points of the set R \ I.
Observe that if we find a continuous extension to T × R such that every uc is a

weak K.A.M. solution for T̂ c, replacing uc by uc−uc(0), we obtain an extension as
wanted.

Let us now assume that R is a real number such that ρ−1({R}) = [a1, a2], with
a1 < a2

11. Because ua1 and ua2 are weak K.A.M. solutions, they are dominated
and we have

∀x, y ∈ R,∀n > 1, ũai(x)− ũai(y) 6 Sain (x, y) + nα(ai).

Let c = λa1 + (1 − λ)a2 ∈ [a1, a2]. We use the notation vc = λua1 + (1 − λ)ua2 .
Observe that α(c) = λα(a1) + (1− λ)α(a2) because α′ = R is constant on [a1, a2].
Then we have

∀x, y ∈ M̃
(
R
)
, ṽc(y)− ṽc(x) 6 Scn(x, y) + nα(c);

10Let us remind the reader that I contains R \ Q. But we will not use this fact.
11Again, R is necessarily rational but we do not need this fact.
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i.e. vc is c-dominated on M
(
R
)
. We deduce from Point (3) of subsection 2.4 that

there exists only one extension uc of vc restricted to M
(
R
)

that is a weak K.A.M.

solution for T̂ c.

Let us prove that c ∈ [a1, a2] 7→ uc is continuous. By definition of uc, the map
c 7→ uc|M(R) is continuous. Let us now consider a sequence (cn) in [a1, a2] that
converges to some c ∈ [a1, a2]. By the Ascoli Theorem the set {ucn , n ∈ N} is
relatively compact for the uniform convergence distance. Let U be a limit point of
the sequence (ucn). By Lemma 2.3, we know that U is a weak K.A.M. solution for

T̂ c. Moreover, we have U|M(R) = uc|M(R). Using Point (3) of subsection 2.4, we
deduce that U = uc and the wanted continuity.

In appendix A of [12], it is proved that the uniform convergence of a sequence
of equi-semi-concave functions implies their convergence C1 in some sense. This
implies for the function u given in Theorem that if cn → c, if θn → θ and if ucn is
derivable at θn and uc at θ, we have

lim
n→∞

∂u

∂θ
(θn, cn) =

∂u

∂θ
(θ, c),

i.e. that the map (θ, c) 7→ ∂uc

∂θ (θ) is continuous.

We end this section with the proof of points (4) and (5) of Theorem 1.2. Let us
state a lemma:

Lemma 2.4. Let c1 < c2 be two real numbers. Let v1, v2 : T → R be continuous
functions.

If the function θ 7→ (ṽ2 − ṽ1)(θ̃) + (c2 − c1)θ̃ is non-decreasing, then so is the

function θ̃ 7→ (T̃ c2 ṽ2 − T̃ c1 ṽ1)(θ̃) + (c2 − c1)θ̃.

Proof. Let θ̃ < θ̃′ be two real numbers. By definition of the operators T̃ci there

exist θ̃′2 and θ̃1 such that

T̃ c2 ṽ2(θ̃′) = ṽ2(θ̃′2) + S(θ̃′2, θ̃
′) + c2(θ̃′2 − θ̃′),

T̃ c1 ṽ1(θ̃) = ṽ1(θ̃1) + S(θ̃1, θ̃) + c1(θ̃1 − θ̃).
There are two cases to consider:

• if θ̃′2 < θ̃1 we use Aubry’s fundamental lemma to obtain

T̃ c2 ṽ2(θ̃′) + T̃ c1 ṽ1(θ̃) = ṽ2(θ̃′2) + S(θ̃′2, θ̃
′) + c2(θ̃′2 − θ̃′) + ṽ1(θ̃1) + S(θ̃1, θ̃) + c1(θ̃1 − θ̃)

> ṽ2(θ̃′2) + S(θ̃′2, θ̃) + c2(θ̃′2 − θ̃′) + ṽ1(θ̃1) + S(θ̃1, θ̃
′) + c1(θ̃1 − θ̃)

> T̃ c2 ṽ2(θ̃) + T̃ c1 ṽ1(θ̃′) + (c2 − c1)(θ̃ − θ̃′).
After rearranging the terms, this reads

T̃ c2 ṽ2(θ̃′)− T̃ c1 ṽ1(θ̃′) + (c2 − c1)θ̃′ > T̃ c2 ṽ2(θ̃)− T̃ c1 ṽ1(θ̃) + (c2 − c1)θ̃.

• if θ̃′2 > θ̃1 we use the hypothesis on θ̃ 7→ (ṽ2 − ṽ1)(θ̃) + (c2 − c1)θ̃ to show

that ṽ2(θ̃′2) + ṽ1(θ̃1) > ṽ2(θ̃1) + ṽ1(θ̃′2) + (c2 − c1)(θ̃1 − θ̃′2) and then

T̃ c2 ṽ2(θ̃′) + T̃ c1 ṽ1(θ̃) = ṽ2(θ̃′2) + S(θ̃′2, θ̃
′) + c2(θ̃′2 − θ̃′) + ṽ1(θ̃1) + S(θ̃1, θ̃) + c1(θ̃1 − θ̃)

> ṽ2(θ̃1) + S(θ̃′2, θ̃
′) + c2(θ̃1 − θ̃′) + ṽ1(θ̃′2) + S(θ̃1, θ̃) + c1(θ̃′2 − θ̃)

> T̃ c2 ṽ2(θ̃) + T̃ c1 ṽ1(θ̃′) + (c2 − c1)(θ̃ − θ̃′).
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As before, this gives the result after rearranging terms.

�

Let us now conclude that the function u constructed verifies the requirements
of (4) and (5). Let R be a real number and let us, as previously, introduce the
notations ρ−1(R) = [a1, a2]. As seen before, we denote by ua1 and ua2 the unique
weak K.A.M. solutions for T a1 and T a2 vanishing at 0. We have proven that
θ̃ 7→ (ũa2 − ũa1)(θ̃) + (a2 − a1)θ̃ is non-decreasing.

Let c = λa1+(1−λ)a2 ∈ [a1, a2]. We use again the notation vc = λua1+(1−λ)ua2
and recall that α(c) = λα(a1) + (1−λ)α(a2) because α′ = R is constant on [a1, a2].
It follows that ṽc is c dominated and that if a1 6 c < c′ 6 a2, the function
θ̃ 7→ (ṽc′ − ṽc)(θ̃) + (c′ − c)θ̃ is non decreasing.

Finally, as vc is c-dominated, it can be proved that the function uc constructed
verifies

∀θ̃ ∈ R, ũc(θ̃) = lim
n→+∞

(T̃ c)nṽc(θ̃) + nα(c),

the limit being that of an increasing sequence. Hence the fact that θ̃ 7→ (ũc′ −
ũc)(θ̃)+(c′−c)θ̃ is non decreasing follows from successive applications of the previous
lemma.

To prove (5), if c′ 6 c and θ̃ ∈ [0, 1] then

0 = (ũc′ − ũc)(0) 6 (ũc′ − ũc)(θ̃) + (c′ − c)θ̃ 6 (ũc′ − ũc)(1) + (c′ − c) = c′ − c.

It follows that

(c− c′)θ̃ 6 (ũc′ − ũc)(θ̃) 6 (c′ − c)(1− θ̃).
Hence ũ is uniformly 1-Lipschitz in c and the result follows.

2.6. More on the constructed function: proof of Theorem 1.3. In this
paragraph, u : A→ R is any function given by Theorem 1.2 meaning that

• u is continuous;
• u(0, c) = 0;
• each uc = u(·, c) is a weak K.A.M. solution for the cohomology class c.

We aim to give the range of the map (θ, c) 7→
(
θ, c + ∂u

∂θ (θ, c)
)
. The following

proposition asserts that any ESTwD is weakly integrable in the sense that A is
covered by Lipschitz circles arising from weak K.A.M. solutions.

Recall that PG(c + u′c) = {(0, c) + ∂uc(t), t ∈ T} is the full pseudograph of
c+ u′c.

Proposition 2.5. The following holds:

(9)
⋃
c∈R
PG(c+ u′c) =

⋃
t∈T
c∈R

(0, c) + ∂uc(t) = A.

Let us define two auxiliary functions with values in R ∪ {+∞,−∞}:

∀θ ∈ T, η+(θ) = sup
{
p ∈ R; ∃c ∈ R; (θ, p) ∈ G(c+ u′c)

}
,

and

∀θ ∈ T, η−(θ) = inf
{
p ∈ R; ∃c ∈ R; (θ, p) ∈ G(c+ u′c)

}
.

Finally define A0 =
{

(θ, c) ∈ A, η−(θ) < c < η+(θ)
}

.
The following lemma is proved in Appendix B.2.
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Lemma 2.5. For all c ∈ R, PG(c + u′c) is a Lipschitz one dimensional compact
manifold, hence it is an essential circle.

It follows that the set A0 is open and connected (we will see at the end that
it is in fact A). Indeed, by Jordan’s theorem and Proposition 2.3, for c < c′ such
that ρ(c) < ρ(c′), the set

{
(t, p) ∈ A, c + ∂uc(t) < p < c′ + ∂uc′(t)

}
is open and

connected. Now A0 is an increasing union of such sets.

Proposition 2.6. The following equality holds:

A0 =
⋃
c∈R
PG(c+ u′c).

Proof. We denote by B =
⋃
c∈R PG(c+ u′c). Observe that B ⊂ A0.

First we prove that B is closed in A0. Let (tn, pn) ∈ PG(cn +u′cn) be a sequence
converging to (t, p) ∈ A0. By definition of A0, there are C0 < C1 and (t, P0) ∈
PG(C0 + u′C0

), (t, P1) ∈ PG(C1 + u′C1
) such that such that P0 < p < P1. Now let

c− < C0 < C1 < c+ be such that ρ(c−), ρ(c+) are irrational and

ρ(c−) < ρ(C0) < ρ(C1) < ρ(c+).

As the pseudographs are vertically ordered (Proposition 2.3), (t, p) is trapped in the
open sub-annulus between PG(c− + u′c−) and PG(c+ + u′c+). It follows that for n

large enough, so is (tn, pn). Hence PG(cn+u′cn) is a full pseudograph that contains
a point strictly between PG(c− + u′c−)and PG(c+ + u′c+). Proposition 2.3 implies

that ρ(c−) 6 ρ(cn) 6 ρ(c+). As ρ(c−), ρ(c+) are irrational, there is a unique weak
K.A.M. solution for these rotation numbers and then ρ(cn) /∈ {ρ(c−), ρ(c+)}. We
deduce that ρ(c−) < ρ(cn) < ρ(c+) and then that c− < cn < c+.

Up to extracting, we may assume that cn → c∞ and by continuity of the pseudo-
graphs with respect to c (for the Hausdorff distance, see Proposition 2.2), it follows
that (t, p) ∈ PG(c∞ + u′c∞) ⊂ A0.

Next we prove that B = A0. We argue by contradiction, by the first part, if this
is not the case, there is an open ball B = (θ0, θ1)× (r0, r1) such that B ⊂ A0 \ B.

We say that a topological essential circle C is above B if B is included in the
lower connected component of A\C12 and C is under B if B is included in the upper
connected component of A \ C. Therefore, if we set ECB the set of essential circles
C ⊂ A \B, ECB is the union of circles above B: EC+

B and those under B: EC−B .
We will prove that

Lemma 2.6. Both EC+
B and EC−B are open subsets of ECB for the Hausdorff

distance.

Proof. We prove it for EC+
B . Let C+ be a circle above B. As the lower connected

component of A \ C+ is path connected, there is a continuous path γ : [0,+∞) →
A\C+ such that γ(0) ∈ B and γ(t) = (0,−t) for all the t large enough. Let ε > 0
be such that C+ is at distance greater than ε from γ. If C− is any circle under B,
then it must intersect γ. Hence dH(C−, C+) > ε where dH stands for the Hausdorff
distance. This proves the lemma. �

12Recall that by Jordan’s theorem, A \ C has two open connected components, one we call
upper that contains T × (k,+∞) and one we call lower, that contains T × (−∞,−k) for k large

enough.
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We will obtain a contradiction as R is connected and the map c 7→ PG(c+u′c) is
continuous for the Hausdorff distance, provided we prove that for c large, PG(c+u′c)
is above B while for c small PG(c+ u′c) is under B.

Lemma 2.7. For c large, PG(c + u′c) is above B while for c small PG(c + u′c) is
under B.

Proof. We establish only the first fact. Let θ∗ ∈ (θ0, θ1). By definition of η+, there
exists C such that

∀c > C, ∀(θ∗, p) ∈ PG(c+ u′c), p > r1.

It follows that for t > 0 small enough, we have

∀(θ∗, p) ∈ ϕ−t
(
PG(c+ u′c)

)
, p > r1

where ϕ denotes here the flow of the pendulum and

ϕ−t
(
PG(c+ u′c)

)
∩B = ∅.

But it is proved in [4] that ϕ−t
(
PG(c+ u′c)

)
is the Lipschitz graph of a function

αt : T → R for small t > 0. Hence it follows from the intermediate value theorem
that α(θ) > r1 for θ ∈ (θ0, θ1) and it becomes obvious that B = (θ0, θ1) × (r0, r1)
is under ϕ−t

(
PG(c + u′c)

)
. Letting t → 0 and passing to the limit, we obtain that

B is under PG(c+ u′c). �

�

In order to conclude, we have to prove that A = A0 which is equivalent to proving
that η+ is identically +∞ and η− is identically −∞. We will establish the result
for u+.

Lemma 2.8. Let [a, b] be a segment, there exists C > 0 depending on [a, b] such
that if |c| > C then

∀θ ∈ [0, 1], θ′ ∈ [a, b], S(θ, θ′) + c(θ − θ′) > min
n∈Z

S(θ, θ′ + n) + c(θ − θ′ − n).

Proof. Let us set ∆ = max
{∣∣∣ ∂S∂θ′ (θ, θ′)∣∣∣, θ ∈ [0, 1], θ′ ∈ [a− 1, b+ 1]

}
and C =

∆ + 1.
If |c| > C two cases may occur:

• either c > ∆+1. In this case, if (θ, θ′) ∈ [0, 1]× [a, b], by Taylor’s inequality
we find

S(θ, θ′) + c(θ − θ′) > S(θ, θ′) + c
(
θ − (θ′ + 1)

)
+ ∆ > S(θ, θ′ + 1) + c

(
θ − (θ′ + 1)

)
;

• or c < −∆− 1, in which case

S(θ, θ′) + c(θ − θ′) > S(θ, θ′) + c
(
θ − (θ′ − 1)

)
+ ∆ > S(θ, θ′ − 1) + c

(
θ − (θ′ − 1)

)
.

�

Corollary 2.2. The function η+ is identically +∞.

Proof. Let us fix A > 0. We assume that for all (θ, p) ∈ PG(u′0), then |p| 6 A (or
in other words, u0 is A-Lipschitz). As every map θ 7→ ∂S

∂Θ (θ,Θ0) is a decreasing
diffeomorphism of R, there exists a constant B > 0 such that for every Θ0 ∈ [0, 1],
we have

θ > B ⇒ ∂S

∂Θ
(θ,Θ0) < −(A+ 1) and θ < −B ⇒ ∂S

∂Θ
(θ,Θ0) > A+ 1.
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Let C be the constant given by Lemma 2.8 for the segment [−B,B] and let us

choose c > sup{B,C}. Let θ̃0 ∈ [0, 1] be any derivability point of uc. Because of

Lemma 2.8, if ũc is a lift of uc and if θ̃−1 verifies

ũc(θ̃0) = inf
θ̃∈R

ũc(θ̃) + S(θ̃, θ̃0) + c(θ̃ − θ̃0) = ũc(θ̃−1) + S(θ̃−1, θ̃0) + c(θ̃ − θ̃0),

then θ̃−1 /∈ [−B,B] and then
∣∣∣ ∂S∂Θ (θ̃−1, θ̃0)

∣∣∣ > A+ 1.

We deduce from point (c) of section 2.3 that F
(
θ̃−1, c+ũ

′
c(θ̃−1)

)
=
(
θ̃0, c+ũ

′
c(θ̃0)

)
and then

c+ ũ′c(θ̃0) =
∂S

∂Θ
(θ̃−1, θ̃0),

and then |c+ ũ′c(θ0)| > A+ 1.

As
∫ 1

0

(
c + ũ′c(s)

)
ds = c > 0, we can choose θ0 such that c + ũ′c(θ0) > 0 and so

c+ ũ′c(θ0) > A+ 1.
As the pseudographs are vertically ordered (Proposition 2.3), PG(c+u′c) is above

PG(u′0). We conclude that for all derivability point θ of uc then c+ ũ′c(θ̃) > A+ 1.
Finally, the whole full pseudograph PG(c+u′c) lies above the circle {(t, A), t ∈ T}.

We have just established that if c > B, then PG(c + u′c) lies above the circle
{(t, A), t ∈ T}, that concludes the proof.

�

Using technics given in [2], we will prove in Proposition B.2 of Appendix B.3 that
the map that maps c on the full pseudograph13 PG(c+u′c) = {(0, c) + ∂uc(t), t ∈
T} of c+ u′c is continuous for the Hausdorff distance.

Point (3) of Theorem 1.3 is a result of Proposition 2.3.

3. Proof of the implication (2) ⇒ (1) in Theorem 1.6

We use the same notations as in Theorem 1.2. We assume that the map u is C1.
Then the graph of every ηc = c+ ∂uc

∂θ is a continuous graph that is backward invari-
ant, hence invariant. If for c1 6= c2 the two graphs of ηc1 and ηc2 have a non-empty
intersection, then their common rotation number is rational because an ESTwD
has at most one invariant curve with a fixed irrational rotation number (see [32] or
Theorem 4.2 below). Moreover, for every c ∈ [c1, c2], we have ρ(c) = ρ(c1).
Using results of [9] (see section 5), we know that above any θ ∈ T, there are at
most two r1, r2 ∈ R such that the orbit of (θ, ri) is minimizing with rotation number
ρ(c1). As c1 6= c2, there exists then θ ∈ T such that r1 = ηc1(θ) 6= ηc2(θ) = r2.
But for c ∈ [c1, c2], the orbit of

(
θ, ηc(θ)

)
is minimizing with rotation number equal

to ρ(c1) and then ηc(θ) ∈ {r1, r2}. As c 7→ ηc(θ) is continuous with values in
{ηc1(θ), ηc2(θ)} and satisfies ηc1(θ) 6= ηc2(θ), we obtain a contradiction.

So finally the graphs of the ηc define a lamination of A and then f is C0-
integrable.

13see the definition in subsection 2.3
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4. Properties of infinite minimizing sequences and weak K.A.M.
solutions

In this section we study properties of sequences (θ̃i)i∈Z− ∈ RZ− that are minimiz-

ing. By symmetry, similar statements hold for sequences (θ̃i)i∈Z+
. We start with

the following improvement of Lemma 2.2 that proves the beginning of Theorem 1.1.

Proposition 4.1. Let (θ̃i)i∈Z− ∈ RZ− be a minimizing sequence, then the limit

lim
k→−∞

θ̃k
k exists.

Proof. Let us set for i ∈ Z−, ri = ∂S

∂Θ̃
(θ̃i−1, θ̃i) so that (θ̃i, ri)i∈Z− is a piece of

orbit of F . By Theorem 1.3, there exists c ∈ R and a weak K.A.M. solution

ũc, for T̃ c, such that (θ̃0, r0) ∈ PG(c + ũ′c). Let {θ̃0} × [p0, p
′
0] = ∂ũc(θ̃0) and

for k ∈ Z−, let us define xk = π1 ◦ F k(θ̃0, c + p0) and x′k = π1 ◦ F k(θ̃0, c + p′0).

As (θ̃0, c + p0), (θ̃0, c + p′0) ∈ G(c+ ũ′c), the sequences (xk)k∈Z− and (x′k)k∈Z− are
minimizing and

lim
k→−∞

xk
k

= lim
k→−∞

x′k
k

= ρ(c)

thanks to Lemma 2.2. Note that if c+ p0 = r0 or if c+ p′0 = r0 the result holds.
In the other cases, as c + p0 < r0 < c + p′0, it follows from the twist condition

that x−1 > θ̃−1 > x′−1. By Aubry’s fundamental lemma (Proposition 2.1), we infer

that for all k < 0, xk > θ̃k > x′k and the result follows. �

Before continuing our study, we need to introduce some notations. In the rest
of this section, (θ̃i)i∈Z− ∈ RZ− will be a minimizing sequence and associated to it,

ri = ∂S

∂Θ̃
(θ̃i−1, θ̃i) so that (θ̃i, ri)i∈Z− is a piece of orbit of F . We will set ρ0 the

limit given by Proposition 4.1.
We anticipate on a Theorem (that implies Theorem 1.4) that will be proved later

in two steps by distinguishing wether ρ0 is rational or not:

Theorem 4.1. Let (θ̃i)i∈Z− ∈ RZ− be a minimizing sequence. There exists a

cohomology class c ∈ R and a weak K.A.M. solution ũc for T̃ c such that (θ̃i)i∈Z− ∈
RZ− calibrates ũc.

We can already deduce some properties of minimizing sequences reminiscent of
orbits of circle homeomorphisms.

Corollary 4.1. Let (θ̃i)i∈Z− ∈ RZ− be a minimizing sequence and ρ0 ∈ R its
rotation number given by Proposition 4.1. If there exist p and q integers with
q < 0 and θ̃q = θ̃0 + p then (θ̃i + p)i∈Z− = (θ̃i+q)i∈Z− ∈ RZ− . In this case,

(θ̃i)i∈Z− ⊂ M̃(p/q).

Proof. Let c ∈ R and ũc be a weak K.A.M. solution given by Theorem 4.1 such
that (θ̃i)i∈Z− ∈ RZ− calibrates ũc. We know from (h), recalling properties of weak

K.A.M. solutions, that (θ̃0, r0) ∈ PG(c+ũ′c) and (θ̃k, rk) ∈ G(c+ũ′c) for all k < 0. In

particular, by periodicity, ũc is derivable at θ̃0 and r0 = c+ũ′c(θ̃0) = c+ũ′c(θ̃q) = rq.
Then we obtain that

θ̃k+q = π1 ◦ F k(θ̃q, rq) = π1 ◦ F k(θ̃0, r0) + p = θ̃k + p,

for all k 6 0. The last assertion follows from Aubry-Mather theory [9, Theorem
5.1]. �
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The following result though not stated this way is present in [10]:

Corollary 4.2. Let (θ̃i)i∈Z− ∈ RZ− be a minimizing sequence and ρ0 ∈ R its
rotation number given by Proposition 4.1. Let p and q be integers with q < 0.

• if p/q < ρ0, then θ̃q − θ̃0 < p;

• if p/q > ρ0, then θ̃q − θ̃0 > p.

In particular |θ̃k − θ̃0 − kρ0| < 1 for all k 6 0.

Proof. Let us prove the first item, the second being similar. Equality θ̃q − θ̃0 = p
is excluded by the previous result. Let c ∈ R and ũc be a weak K.A.M. solution
given by Theorem 4.1 such that (θ̃i)i∈Z− ∈ RZ− calibrates ũc. And let p and q be
integers with q < 0 such that p/q < ρ0.

Let us now assume that θ̃q − θ̃0 > p > qρ0. As the sequence (θ̃k+q − p)k60 also

calibrates ũc, it follows from Lemma 2.1 and an induction that θ̃k+q − p > θ̃k for

all k 6 0. Another induction then yields that the sequences (θ̃k+nq − np)n>0 are
increasing. Applying for k = 0 and dividing by nq, we deduce that (recall q < 0)

θ̃nq
nq
− p

q
<
θ̃0

nq
.

Letting n→ +∞ the inequality ρ0 6
p
q follows that is a contradiction.

To establish the last assertion, notice that if for some q 6 0, |θ̃q − θ̃0 − qρ0| > 1
then one of the following holds

∃p ∈ Z, θ̃q − θ̃0 6 p < qρ0,

∃p ∈ Z, θ̃q − θ̃0 > p > qρ0.

This is not possible by the beginning of the Corollary that was just proved. �

Notation. If ρ0 ∈ R and x ∈ R, we define two numbers:

• r+
ρ0(x) is the largest r ∈ R such that (x, r) ∈ PG(c + ũ′c) for some weak

K.A.M. solution ũc, associated some c ∈ ρ−1({ρ0}).
• r−ρ0(x) is the smallest r ∈ R such that (x, r) ∈ PG(c + ũ′c) for some weak

K.A.M. solution ũc, associated some c ∈ ρ−1({ρ0}).

If ρ0 ∈ R then if ρ−1({ρ0}) = [a, b], we established that ua and ub are unique up
to constants. Then r+

ρ0(x)− b is the left derivative of ũb at x and r−ρ0(x)− a is the
right derivative of ũa at x.

Notation. If ρ0 ∈ R and x ∈ R, we define two numbers y+
ρ0(x) and y−ρ0(x) such that

y+
ρ0(x) = min{y ∈ M̃(ρ0), y > x} and y−ρ0(x) = max{y ∈ M̃(ρ0), y 6 x} where

M̃(ρ0) is the lift of the projected Mather set of rotation number ρ0. Obviously,
x ∈ [y−ρ0(x), y+

ρ0(x)].

We denote by M̃∗
(
ρ0

)
the lift to R2 of the Mather set M∗

(
ρ0

)
. Then for every

c ∈ ρ−1({ρ0}) and uc weak K.A.M. solution for T c,

(y±ρ0(x), p±ρ0(x)) = (y±ρ0(x), c+ ũ′c
(
y±ρ0(x)))

is the unique point of M̃(ρ0) that is above y±ρ0(x). Moreover, the sequences(
y±nρ0 (x)

)
n∈Z where

y±nρ0 (x) = π1 ◦ Fn
(
y±ρ0(x), p±ρ0(x)

)
= π1 ◦ Fn

(
y±ρ0(x), c+ ũ′c

(
y±nρ0 (x)

))
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are contained in M̃(ρ0) and minimizing.
When not necessary, the subscripts ρ0 will be omitted.

Proposition 4.2. For all n ∈ Z−, y−n(θ̃0) 6 θ̃n 6 y+n(θ̃0). In particular,

y±(θ̃n) = y±n(θ̃0).

Proof. We use the notations of the proof of the previous Proposition 4.1 and recall
that x′k 6 θ̃k 6 xk for all k 6 0. Using Lemma 2.1, a straightforward induction

applied to ũc yields that for all n ∈ Z−, y−n(θ̃0) 6 x′n and that xn 6 y+n(θ̃0). The
result follows.

�

Next we give a property on minimizing sequences that almost cross twice:

Proposition 4.3. Let (θ̃i)i∈Z− ∈ RZ− and (θ̃′i)i∈Z− ∈ RZ− be two minimizing
sequences. Assume that

• θ̃0 = θ̃′0,

• lim
n→−∞

θ̃n − θ̃′n = 0,

• there exists c ∈ R and uc : T → R, weak K.A.M. solution for T c such that
(θ̃′i)i∈Z− calibrates ũc, meaning that

∀n < 0, ũc(θ̃
′
0)− ũc(θ̃′n) =

−1∑
k=n

S(θ̃′i, θ̃
′
i+1) + c(θ̃′n − θ̃′0)− nα(c).

Then (θ̃i, ri)i∈Z− ∈ RZ− calibrates ũc.

Proof. Let us argue by contradiction and assume that

ũc(θ̃0)− ũc(θ̃n0
) <

−1∑
k=n0

S(θ̃i, θ̃i+1) + c(θ̃n0
− θ̃0)− n0α(c)− 2ε,

for some n0 < 0 and ε > 0. Recall now that if n < n0 then

ũc(θ̃n0
)− ũc(θ̃n) 6

n0−1∑
k=n

S(θ̃i, θ̃i+1)− (n− n0)α(c) + c(θ̃n − θ̃n0
),

and summing we find that

∀n < n0, ũc(θ̃0)− ũc(θ̃n) <

−1∑
k=n

S(θ̃i, θ̃i+1)− nα(c) + c(θ̃n − θ̃0)− ε.

Pick n < n0 such that |S(θ̃′n, θ̃
′
n+1)−S(θ̃n, θ̃

′
n+1)| < ε and |ũc(θ̃′n)− ũc(θ̃n) + c(θ̃′n−

θ̃n)| < ε. We obtain that

S(θ̃n, θ̃
′
n+1) +

−1∑
k=n+1

S(θ̃′i, θ̃
′
i+1) <

−1∑
k=n

S(θ̃′i, θ̃
′
i+1) + ε

= ũc(θ̃
′
0)− ũc(θ̃′n) + nα(c)− c(θ̃′n − θ̃′0) + ε

< ũc(θ̃
′
0)− ũc(θ̃n) + nα(c)− c(θ̃n − θ̃′0) + 2ε <

−1∑
k=n

S(θ̃i, θ̃i+1).

As θ̃0 = θ̃′0, this contradicts the fact that (θ̃i)i∈Z− is minimizing.
�
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In order to finish our study, we now discuss in function of the rationality of ρ0.

4.1. Case where ρ0 /∈ Q. In this case we recover that {c0} = ρ−1({ρ0}) is a
singleton and that uc is unique up to constants.

For all x ∈ R, Aubry-Mather theory says that
(
y±nρ0 (x)

)
n∈Z are orbits of the lift of

a circle homeomorphism of rotation number ρ0. Looking back at their definition we
see that if they do not coincide, the circle homeomorphism is a Denjoy counterex-
ample and

(
y−(x), y+(x)

)
projects to a wandering interval of this homeomorphism.

In all cases, lim
n→±∞

|y−n(x)− y+n(x)| = 0.

We deduce the following Theorem that contains Mather’s and Bangert’s result14

and proves Theorem 1.4 for irrational rotation numbers:

Theorem 4.2. There exists a unique c0 ∈ R such that ρ(c0) = ρ0. Moreover, there
exists a unique weak K.A.M. solution ũc0 at cohomology c0 such that ũc0(0) = 0.

Any minimizing sequence (θ̃i)i∈Z− ∈ RZ− with rotation number ρ0 calibrates ũc0 .

In particular, (θ̃i, ri)i<0 ⊂ G(c0 + ũ′c0) and (θ̃0, r0) ∈ PG(c0 + ũ′c0).

Proof. Let [a, b] = ρ−1({ρ0}). We establish first that if (θ̃i)i∈Z− ∈ RZ− is a minimiz-
ing sequence with rotation number ρ0, then it calibrates the weak K.A.M. solution
ũb. Let us define for all n 6 0, xn = π1 ◦Fn

(
θ̃0, r

+(θ̃0)
)

15 . It follows that (xn)n60

calibrates ũb and is therefore minimizing. Arguing as in Proposition 4.1 and by
Proposition 4.2 we discover that

∀n ∈ Z−, y−n(θ̃0) 6 xn 6 θ̃n 6 y
+n(θ̃0).

Using the previous discussion and applying Proposition 4.3 we obtain the result.
Let now c ∈ [a, b] and ṽ : R → R be the lift of a weak K.A.M. solution at

cohomology c. Let θ̃0 ∈ R be a point of derivability of both ṽ and ũb. It follows
there are respectively a unique sequence (θ̃ci )i∈Z− ∈ RZ− calibrating ṽ and a unique

sequence (θ̃bi )i∈Z− ∈ RZ− calibrating ũb such that θ̃0 = θ̃c0 = θ̃b0. It follows from the

beginning of the proof that (θ̃ci )i∈Z− ∈ RZ− calibrates ũb and by uniqueness that

(θ̃ci )i∈Z− ∈ RZ− = (θ̃bi )i∈Z− ∈ RZ− . As a consequence, the equality

b+ ũ′b(θ̃0) = c+ ṽ′(θ̃0) =
∂S

∂Θ
(θ̃c−1, θ̃0)

is obtained. As this equality holds almost everywhere, we conclude that

b =

∫ 1

0

(
b+ ũ′b(θ̃)

)
dθ̃ =

∫ 1

0

(
c+ ṽ′(θ̃)

)
dθ̃ = c,

and then that ũb − ṽ is constant. �

4.2. Case where ρ0 ∈ Q. In this case we denote [a, b] = ρ−1({ρ0}) and we write
ρ0 = p/q in irreducible form with q > 0. It follows that for all x ∈ R,

(
y±nρ0 (x)

)
n∈Z =(

y±n+q
ρ0 (x)+p

)
n∈Z. Moreover, we have seen previously that ua and ub are unique up

to constants. Hereafter, unless specified otherwise, (θ̃i)i60 is a minimizing sequence
with rotation number p/q.

In the spirit of Aubry-Mather theory, we start by a property of non-crossing of
a minimizing sequence with its translates, in the spirit of Corollary 4.2:

14 Recall that for all i 6 0 we set ri = ∂S

∂Θ̃
(θ̃i−1, θ̃i).

15 See the notations after Corollary 4.2 for r+.
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Proposition 4.4. Assume (θ̃i)i60 does not verify (θ̃i)i60 = (θ̃i−q − p)i60. One of
the two holds:

• θ̃0 6 θ̃−q − p, θ̃i < θ̃i−q − p for all i < 0 and lim
i→−∞

|θ̃i − y+i(θ̃0)| = 0.

• θ̃0 > θ̃−q − p, θ̃i > θ̃i−q − p for all i < 0 and lim
i→−∞

|θ̃i − y−i(θ̃0)| = 0.

Proof. If (θ̃i)i60 and (θ̃i−q − p)i60 do not cross, we set i0 = 0. Otherwise, there

exists i0 6 0 such that (θ̃i)i60 and (θ̃i−q−p)i60 cross either at i0 or between i0 and
i0 + 1 for some i0 < 0. As two minimizing sequences cross at most once, it follows
that in all the previous cases, either θ̃i < θ̃i−q − p for all i < i0 or θ̃i > θ̃i−q − p for
all i < i0. Let us assume the first holds, the second case is treated similarly. Then
for i < i0 the sequence (θ̃i−kq−kp)k>0 is increasing. Moreover, by Proposition 4.2,

θ̃i−kq − kp 6 y+i−kq(θ̃0) − kp = y+i(θ̃0). Hence the limit zi = lim
k→+∞

θ̃i−kq − kp
exists and verifies that zi−q − p = zi. As this sequence is minimizing (as a limit of
minimizing sequences) and projects to a periodic sequence on the circle, we deduce

that (zi)i<i0 ⊂ M̃(ρ0) and then (zi)i<i0 = y+i(θ̃0) by definition of y+i(θ̃0).

If now (θ̃i)i60 and (θ̃i−q−p)i60 cross either at i0 or between i0 and i0+1 for some
i0 < 0, as we have also proven they are α-asymptotic, we obtain a contradiction
with [9, Lemma 3.9].

�

The following result ends the proof of Theorem 4.1 and also gives precisions to
Proposition 4.4 by excluding the possibility of an equality θ̃0 = θ̃−q − p under its
hypotheses.

Proposition 4.5. Using the previous notations, if lim
i→−∞

|θ̃i − y+i(θ̃0)| = 0 then

(θ̃i)i60 calibrates ũb.

If lim
i→−∞

|θ̃i − y−i(θ̃0)| = 0 then (θ̃i)i60 calibrates ũa.

In particular, θ̃0 = θ̃−q − p if and only if (θ̃i)i60 = (θ̃i−q − p)i60.

In all cases, (θ̃i, ri)i<0 ⊂ G(a + ũ′a) ∪ G(b + ũ′b) and (θ̃i, ri)i60 ⊂ PG(a + ũ′a) ∪
PG(b+ ũ′b).

Proof. Let us prove the first assertion, the rest is done in a similar way. If lim
i→−∞

|θ̃i−

y+i(θ̃0)| = 0, let us define for all n 6 0, xn = π1 ◦ Fn
(
θ̃0, r

−(θ̃0)
)
. It follows that

(xn)n60 calibrates ũa and is therefore minimizing. Arguing as in Proposition 4.1

and by Proposition 4.2 we discover that for all n ∈ Z−, y−n(θ̃0) 6 θ̃n 6 xn 6
y+n(θ̃0). Applying Proposition 4.3 we obtain the result.

The next assertion in the Theorem is a direct consequence of Corollary 4.1. The
rest follows from general properties of weak K.A.M. solutions.

�

In particular we have finished proving Theorem 1.4 establishing more precisely
that the cohomology can be taken to be a or b.

Next, the reciprocal question of existence of minimizing sequences verifying cer-
tain conditions is addressed:

Proposition 4.6. For all θ̃0 ∈ R there exist two minimizing sequences (θ̃±i )i60

with rotation number p/q such that θ̃+
0 = θ̃−0 = θ̃0 and
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• lim
i→−∞

|θ̃+
i − y+i(θ̃0)| = 0 (and (θ̃+

i )i60 calibrates ũa);

• lim
i→−∞

|θ̃−i − y−i(θ̃0)| = 0 (and (θ̃−i )i60 calibrates ũb);

Proof. If θ̃0 ∈ M̃(p/q) then by Aubry-Mather theory, y+i(θ̃0) = y−i(θ̃0) for all

i 6 0 and
(
y±i(θ̃0)

)
i60

is the only minimizing orbit starting at θ̃0 with rotation

number p/q.

We handle now the other and more interesting case where y−0(θ̃0) < θ̃0 < y+0(θ̃0)

and prove the existence of (θ̃−i )i60 as the existence of (θ̃+
i )i60 is established in a

very similar way.
Let (cn)n>0 be a decreasing sequence of real numbers converging to b. Setting

for n > 0, ρn = ρ(cn) it follows that (ρn)n>0 is nonincreasing, converges to p/q and

that ρn > p/q for all n > 0. For all n > 0, let (θ̃nk )k60 be a minimizing sequence

with rotation number ρn and such that θ̃n0 = θ̃0 (take any calibrating sequence for

a weak K.A.M. solution at cohomology cn starting at θ̃0). Up to extracting, we

may assume that for all k 6 0, the sequence (θ̃nk )n>0 converges to a θ̃−k . It follows

that (θ̃−k )k60 is minimizing, has rotation number p/q and verifies θ̃−0 = θ̃0.
Applying Corollary 4.2 yields the inequalities

∀n > 0, θ̃n−q > θ̃0 + p.

Passing to the limit we get θ̃−−q > θ̃0 + p, as equality is prohibited by Corollary 4.1.
The rest now follows from Proposition 4.4. �

This leads to a reciprocal to Proposition 4.5:

Theorem 4.3. Let θ̃0 /∈ M̃(p/q) and (θ̃i)i60 a minimizing sequence with rotation
number p/q. The following assertions are equivalent:

(1) θ̃0 < θ̃−q − p (resp. θ̃0 > θ̃−q − p);

(2) lim
i→−∞

|θ̃i − y+i(θ̃0)| = 0 (resp. lim
i→−∞

|θ̃i − y−i(θ̃0)| = 0);

(3) (θ̃i)i60 calibrates ũa (resp. (θ̃i)i60 calibrates ũb).

Proof. The only thing left to prove is that (3) implies (1).

Let us assume in a first step that θ̃0 is a point of derivability of ũa. Let (θ̃±i )i60 be
the sequences given by Proposition 4.6 and let (r±i )i60 be the associated sequences

such that (θ̃±i , r
±
i )i60 are orbits of F . As (θ̃+

i )i60 calibrates ũa, we discover that

r+
0 = a+ ũ′a(θ̃0).

Assume now θ̃0 is arbitrary and {θ̃0} × [R0, R
′
0] = ∂ũa(θ̃0). Let (θ̃n0 )n∈N be a

decreasing sequence converging to θ̃0, of derivability points of ũa. It follows that
ũ′a(θ̃n0 ) → R′0. For all n > 0, let (θ̃ni )i60 be the unique sequence calibrating ũa,

starting at θ̃n0 . Finally, let (θ̃′i)i60 be the limit of the sequences (θ̃ni )i60 so that

for all i 6 0, θ̃i = π1 ◦ F i(θ̃0, a + R′0). Thanks to the beginning of the proof,

for all n > 0, the inequality θ̃n0 6 θ̃n−q − p. Passing to the limit we discover that

θ̃0 < θ̃′−q − p, the inequality being strict as θ̃0 /∈ M̃(p/q).

If now (θ̃i)i60 is any minimizing sequence starting at θ̃0 that calibrates ũa and

(θ̃i, ri)i60 the associated orbit of F we know that (θ̃i)i60 and (θ̃′i)i60 can only cross

at 0. As r0 ∈ [R0, R
′
0], the twist condition implies that θ̃−1 > θ̃′−1. We therefore

conclude that θ̃0 < θ̃′−q − p 6 θ̃−q − p that was to be proven.
�
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We deduce a further property concerning the pseudographs of ua and ub:

Proposition 4.7. The full pseudographs PG(a+ua) and PG(b+ub) only intersect
above M(p/q).

Proof. Let θ̃0 /∈ M̃(p/q). We denote {θ̃0}× [ra0 , R
a
0 ] = ∂ũa(θ̃0) and {θ̃0}× [rb0, R

b
0] =

∂ũb(θ̃0). We will prove that b + rb0 > a + Ra0 thus establishing that PG(b + ũb) is

strictly above PG(a+ũa) on the interval
(
y−(θ̃0), y+(θ̃0)

)
. We set θ̃a0 = θ̃b0 = θ̃0 and

for i < 0, θ̃ai = π1 ◦ F i(θ̃0, a+Ra0) and θ̃bi = π1 ◦ F i(θ̃0, b+ rb0). From the previous

Theorem 4.3 we know that lim
i→−∞

|θ̃ai −y+i(θ̃0)| = 0 and that lim
i→−∞

|θ̃bi−y−i(θ̃0)| = 0.

Therefore for i small enough, θ̃ai > θ̃bi . As both minimizing sequences only can

cross at 0, it follows that θ̃a−1 > θ̃b−1. We conclude from the twist condition that

b+ rb0 > a+Ra0 . �

As a Corollary we recover a famous result of Mather and Bangert:

Corollary 4.3. The set ρ−1(p/q) is a singleton if and only if M̃(p/q) = T.

Proof. If M̃(p/q) = T then there is an invariant, 1–periodic Lipschitz graph θ̃ 7→ rθ̃
for all c ∈ ρ−1(p/q), if ũ : R→ R is a corresponding weak K.A.M. solution, it is of

class C1 and c+ ũ′(θ̃) = rθ̃ for all θ̃ ∈ R. It follows that c =
∫ 1

0
rxdx is unique.

Reciprocally, if M̃(p/q) 6= T, thanks to the preceding Proposition 4.7, there

is θ̃0 /∈ M̃(p/q) such that ũa and ũb both are derivable at θ̃0 with a + ũ′a(θ̃0) <

b+ ũ′b(θ̃0) and by property of semi–concave functions, this inequality is strict in a

neighborhood of θ̃0. As a+ ũ′a(θ̃) 6 b+ ũ′b(θ̃) holds almost everywhere, integrating
on [0, 1] we find a < b. �

As a conclusion we obtain the following property on weak K.A.M. solutions:

Theorem 4.4. Let c ∈ [a, b] and uc be a weak K.A.M. solution for T c. Let
(
θ̃0, c+

ũ′c(θ̃0)
)
∈ G(c + ũ′c) and (θ̃i)i60 the associated minimizing sequence that calibrates

ũc.

• If lim
i→−∞

θ̃i − y−i(θ̃0) = 0 then
(
θ̃0, c+ ũ′c(θ̃0)

)
∈ G(b+ ũ′b).

• If lim
i→−∞

θ̃i − y+i(θ̃0) = 0 then
(
θ̃0, c+ ũ′c(θ̃0)

)
∈ G(a+ ũ′a).

Proof. Let us recall that for a semi-concave function v : R→ R, if v′(x0) exists then
x0 is a continuity point of x 7→ ∂v(x). On the other side, if N ⊂ R has Lebesgue
measure 0 and contains the nonderivable points of v, and if lim

x→x0

x/∈N
v′(x) = p exists,

then v′(x0) = p exists.

Coming back to the Theorem, the result obviously holds is θ̃0 ∈ M̃(ρ0). We now
assume otherwise.

Let us introduce N ⊂ R to be the countable set of points where either ũa, ũb or
ũc is not derivable.

Let us prove the first point. In this case, by Proposition 4.4, θ̃−q−p < θ̃0. There

exists ε > 0 such that if θ̃′0 ∈ R \N verifies |θ̃0 − θ̃′0| < ε, then θ̃′−q − p < θ̃′0 where

θ̃′i = π1 ◦ F i
(
θ̃′0, c+ ũ′c(θ̃

′
0)
)
. Up to taking ε smaller, then θ̃′0 ∈

(
y−(θ̃0), y+(θ̃0)

)
, it

then follows from Proposition 4.4 and Theorem 4.5 that (θ̃′i)i60 calibrates ũb and
then that

∀i 6 0, θ̃′i = π1 ◦ F i
(
θ̃′0, b+ ũ′b(θ̃

′
0)
)
.
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Finally, we have established that

lim
θ̃′0→θ̃0
θ̃′0 /∈N

b+ ũ′b(θ̃
′
0) = lim

θ̃′0→θ̃0
θ̃′0 /∈N

c+ ũ′c(θ̃
′
0) = c+ ũ′c(θ̃0),

that proves our result. �

The following corollary ends the proof of Theorem 1.5.

Corollary 4.4. Let c ∈ [a, b] and uc be a weak K.A.M. solution for T c then

G(c+ ũ′c) ⊂ G(a+ ũ′a) ∪ G(b+ ũ′b),

G(c+ ũ′c) ⊂ G(a+ ũ′a) ∪ G(b+ ũ′b).

We may also provide a description of what PG(c + ũ′c) looks like, similar to
the classical example of the pendulum. The open region between PG(a + ũ′a)
and PG(b+ ũ′b) has a connected component between two consecutive points of the
projected Mather set that projects on an interval (y−, y+). Then, either PG(c+ ũ′c)
coincides with PG(a+ ũ′a) on (y−, y+), either PG(c+ ũ′c) coincides with PG(b+ ũ′b)
on (y−, y+), either there exists z ∈ (y−, y+) such that PG(c + ũ′c) coincides with
PG(b+ ũ′b) on (y−, z) and PG(c+ ũ′c) coincides with PG(a+ ũ′a) on (z, y+).

4.3. Pseudographs of weak K.A.M. solutions. We end by a crucial property
of pseudo-graphs associated to weak K.A.M. solutions that we believe is of inde-
pendent interest:

Proposition 4.8. Let c ∈ R and uc : T → R be a weak K.A.M. solution for T c.
Then f−1

(
PG(c+ u′c)

)
is the graph of a continuous function.

Proof. Recall that by [4], PG(c + u′c) is a Lipschitz embedded circle (see Lemma
2.5) that we can parametrize by a map γ : T → A. Is γ̃ : R → R2 is a lift of γ we
assume without loss of generality that π1 ◦ γ̃ is nondecreasing.

If t < t′ are real numbers we consider two cases: if π1 ◦ γ̃(t) = π1 ◦ γ̃(t′) then π2 ◦
γ̃(t) > π2 ◦ γ̃(t′) (because ũc is semi-concave) and π1 ◦F−1

(
γ̃(t)

)
< π1 ◦F−1

(
γ̃(t′)

)
because of the twist condition.

If now π1 ◦ γ̃(t) < π1 ◦ γ̃(t′) then we consider t 6 t1 < t2 6 t′ such that

π1 ◦ γ̃(t) = π1 ◦ γ̃(t1), π1 ◦ γ̃(t′) = π1 ◦ γ̃(t2) and {γ̃(t1), γ̃(t2)} ∈ G(c+ ũ′c). It
follows that π2 ◦ γ̃(t) > π2 ◦ γ̃(t1) and π2 ◦ γ̃(t2) > π2 ◦ γ̃(t′). Moreover, we
deduce from Lemma 2.1 that π1 ◦ F−1

(
γ̃(t1)

)
6 π1 ◦ F−1

(
γ̃(t2)

)
. Moreover, as

F−1
(
G(c+ ũ′c)

)
⊂ G(c+ ũ′c) the previous inequality is strict. We conclude that

π1 ◦ F−1
(
γ̃(t)

)
6 π1 ◦ F−1

(
γ̃(t1)

)
< π1 ◦ F−1

(
γ̃(t2)

)
6 π1 ◦ F−1

(
γ̃(t′)

)
.

We have established that the function π1 ◦ F−1 ◦ γ̃ is increasing and that proves
the Proposition. �

Remark. The preceding result may be interpreted in terms of positive Lax-Oleinik
maps. Indeed if one defines T c+ũc(x) = max

x′∈R
ũc(x

′) − S(x, x′) + c(x′ − x) then one

may deduce that T c+ũc is a C1 function and that F−1
(
PG(c+ ũ′c)

)
= G(c+ T c+ũ

′
c).

This is related to Lasry-Lyons type results, see [14, 15, 47, 28].
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In Aubry-Mather Theory, it is known that given a rotation number ρ, on each
vertical Vθ there is

• at most one bi-infinite minimizing orbit of rotation number ρ intersecting
Vθ if ρ /∈ Q,
• at most two bi-infinite minimizing orbit of rotation number ρ intersecting
Vθ if ρ ∈ Q,

in the latter case if there are two, one is α-asymptotic to
(
y−i(θ)

)
i∈Z and ω-

asymptotic to
(
y+i(θ)

)
i∈Z and the other is ω-asymptotic to

(
y−i(θ)

)
i∈Z and α-

asymptotic to
(
y+i(θ)

)
i∈Z.

In our study of one-sided infinite minimizing sequence we obtain as a corollary
a similar statement. The only difference is that instead of taking as reference the
vertical foliation, we take its image by f .

As an application of the previous Theorem we obtain:

Theorem 4.5. Let θ ∈ T and ρ0 ∈ R, then

• if ρ0 /∈ Q, there exists at most one (x, p) ∈ f(Vθ) such that
(
π1◦f i(x, p)

)
i∈Z−

is minimizing with rotation number ρ0;
• if ρ0 ∈ Q, there exists at most two (x, p) ∈ f(Vθ) such that

(
π1◦f i(x, p)

)
i∈Z−

is minimizing with rotation number ρ0.

In the latter case, if there are two such points (x1, p1) and (x2, p2) with x1 < x2 then(
π1 ◦f i(x1, p1)

)
i∈Z−

is α-asymptotic to
(
y+(i−1)(θ)

)
i∈Z and

(
π1 ◦f i(x2, p2)

)
i∈Z−

is

α-asymptotic to
(
y−(i−1)(θ)

)
i∈Z.

Proof. If ρ0 /∈ Q the only possible such point is f
(
Vθ ∩ f−1

(
PG(c + u′c)

))
where

{c} = ρ−1({ρ0}).
If ρ ∈ Q the only possible such points are f

(
Vθ ∩ f−1

(
PG(a+ u′a)

))
and f

(
Vθ ∩

f−1
(
PG(b+ u′b)

))
where [a, b] = ρ−1({ρ0}).

�

This proves the end of Theorem 1.1.

Appendix A. Examples

A.1. An example a semi-concave function that is not a weak K.A.M.

solution for T̂ c and that satisfies f−1
(
G(c+ u′)

)
⊂ G(c+ u′). Let us begin by

introducing gt : A → A as being the time t map of the Hamiltonian flow of the
double pendulum Hamiltonian

H(θ, r) =
1

2
r2 + cos(4πθ).

If t > 0 is small enough, gt is an ESTwD.
Observe that H is a so-called Tonelli Hamiltonian (see [27] for the definition) with
associated Lagrangian L(θ, v) = 1

2v
2 − cos(4πθ). The global minimum −1 of L is

attained in (0, 0) and ( 1
2 , 0).

If Gt is the time t map of the lift of H to R2, then Gt is a lift of gt and if Gs(θ, r) =
(θs, rs), a generating function of Gt is

St(θ, θt) =

∫ t

0

L(θs, θ̇s)ds.
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By using this formula, observe that the only ergodic minimizing measures for the
cohomology class 0 are the Dirac measure at 0 and 1

2 .

Then we denote by h : A → A the map that is defined by h(θ, r) = (θ + 1
2 , r).

Then f = h ◦ gt = gt ◦ h is again an ESTwD and H is an integral for f , which
means that H ◦ f = H.
It is easy to check that a generating function of a lift F of f is given by

S(θ,Θ) = St
(
θ,Θ− 1

2

)
.

From this, we deduce that the Mather set corresponding to the cohomology class
zero (and the rotation number 1

2 ) is the support of a unique ergodic measure, that

is the mean of two Dirac measure 1
2 (δ(0,0) + δ( 1

2 ,0)).

As there is only one such minimizing measure, we know that there is a unique, up
to constants, weak K.A.M. solution u with cohomology class 0. But there are a lot
of graphs of v′ with v : T→ R semi–concave that are invariant by f . The first one
we draw corresponds to the weak K.A.M. solution whose graph is strictly mapped
into itself by f−1. Perturbing slightly the pseudograph in the level {H = 1}, we
obtain another backward invariant pseudograph that doesn’t correspond to a weak
K.A.M. solution.

In the right drawing 5, the perturbation of the pseudograph must be small enough
so that, in the right eye on the upper manifold, the piece of pseudograph that goes
beyond the vertical dotted line is mapped by f−1 in the upper piece of pseudograph
of the left eye. With the notations of the figure, f−1

(
d, s+(d)

)
=
(
e, s+(e)

)
.

0 1

Figure 4. The pseu-
dograph of the weak
K.A.M. solution at
cohomology 0

0 1
d
•

e
•

(d, s+(d))
••

(e, s+(e))

Figure 5. A back-
ward invariant pseu-
dograph that is not a
weak K.A.M. solution

Remark. The previous example also shows that Corollary 4.4 is not an equivalence
in the sense that if the pseudograph of a semi–concave function c+ u′c satisfies the
inclusions of Corollary 4.4, then uc is not necessarily a weak K.A.M. solution at
cohomology c.

A.2. Cases where the discounted solution doesn’t depend continuously
on c. Let us start this appendix of counterexamples with a positive result. We will
show that even if discounted solutions may depend in a discontinuous way on c, the
same is not true for their derivative. In what follows we use the notion of Clarke
sub-derivative introduced earlier in Definition 2.3.
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Let us recall that by Proposition 2.2, if gn : T → R are equi-semi-concave
functions converging to g : T → R, then PG(g′n) converges to PG(g′) for the
Hausdorff distance.

Let us now state our result:

Proposition A.1. Let f : A → A be an ESTwD. For c ∈ R, we denote by Uc the
weak K.A.M. discounted solution. Then the map c 7→ PG(U ′c) is continuous.

As a straightforward corollary, we deduce for instance that if cn → c and xn → x
and if the U ′cn(xn) exist, as well as U ′(c)(x), then U ′cn(xn)→ U ′(c)(x).

Proof of Proposition A.1. If ρ(c0) ∈ R \Q, there is a unique weak K.A.M. solution
up to constants, hence continuity of PG(U ′c) at c0 follows from Proposition 2.2.

If ρ(c) = r ∈ Q, let us denote ρ−1(r) = [c1, c2]. Again, continuity at c1 and c2 is
obvious as there is a unique weak K.A.M solution at these cohomology classes (see
Proposition 2.4).

It remains to study what happens inside (c1, c2) and we will prove that in this
interval, the map c 7→ Uc is concave. Let us set Mr the set of Mather measures
corresponding to any cohomology class c ∈ (c1, c2). Recall that as seen in (1) page
15, this set does not depend on c. Moreover, the function α is affine on (c1, c2).

From [22], we know that Uc(x) = supu u(x), where the supremum is taken
amongst (continuous) c-dominated functions u : T→ R such that

∫
u(x)dµ(x, y) 6

0 for all µ ∈ Mr. Moreover, it is proven that
∫
Uc(x)dµ(x, y) 6 0 for all µ ∈ Mr.

Let now c, c′ ∈ (c1, c2) and λ ∈ [0, 1]. Let us set v = λUc + (1− λ)Uc′ .
As
∫
Uc(x)dµ(x, y) 6 0 and

∫
U ′c(x)dµ(x, y) 6 0 for all µ ∈ Mr we deduce that∫

v(x)dµ(x, y) 6 0 for all µ ∈Mr.
Moreover, passing to lifts (with the same ∼ notation as previously), from

∀θ, θ′ ∈ R, Ũc(θ)− Ũc(θ′) 6 S(θ′, θ) + c(θ′ − θ) + α(c);

∀θ, θ′ ∈ R, Ũc′(θ)− Ũc′(θ′) 6 S(θ′, θ) + c′(θ′ − θ) + α(c′);

and recalling that α
(
λc+ (1− λ)c′

)
= λα(c) + (1− λ)α(c′), we get

∀θ, θ′ ∈ R, ṽ(θ)− ṽ(θ′) 6 S(θ′, θ) +
(
λc+ (1− λ)c′

)
(θ′ − θ) + α

(
λc+ (1− λ)c′

)
.

Hence v is
(
λc+ (1− λ)c′

)
-dominated. We conclude that v 6 Uλc+(1−λ)c′ , proving

the claim, and the Proposition.
�

Remark. The previous proof is intimately linked to the 1-dimensional setting we
work with. Indeed, it was communicated to us by Patrick Bernard that as soon as
we move up to dimension 2, there are examples on T2 for which it is not possible
to construct a function c 7→ uc that maps to each cohomology class a weak K.A.M.
solution and such that c 7→ u′c is continuous (in any possible way).

We obtain as a corollary:

Corollary A.1. The function U(x, c) = Uc(x)−Uc(0) also satisfies the conclusions
of Theorem 1.2.

We now give a C∞ integrable example for which the discounted method doesn’t
select a transversely continuous weak K.A.M. solution.
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Example. We use the notation of Theorem 1.6. We define F0, H : A → A
by F0(θ, r) = (θ + r, r) and H(θ, r) = (h(θ), r

h′(θ) ) where h : T → T is a smooth

orientation preserving diffeomorphism of T such that h(t) = t+ d(t) and d : T→ R
satisfies d(0) = 0 and

(10)

∫
T
d(t)dt >

d( 1
2 )

2
.

Observe that h−1(t) = t− d ◦ h−1(t). As the symplectic diffeomorphism H maps a
vertical {θ}×R onto a vertical {h(θ)}×R and preserves the transversal orientation,
the smooth diffeomorphism16 F = H ◦F0 ◦H−1 is also a symplectic C∞ integrable
ESTwD. The new invariant foliation is the set of the graphs of ηc(θ) = c

h′
(
h−1(θ)

) =

c(h−1)′(θ). Hence we have uc(θ) = −cd ◦ h−1(θ). Observe that the function u is
smooth.
Then Hc(θ) = θ+ ∂uc

∂c (θ) = θ− d ◦h−1(θ) = h−1(θ). Hence the measure defined on

T by µ([0, θ]) = h−1(θ), i.e. the measure with density 1
h′◦h−1 , is invariant by the

restricted-projected Dynamics gc. When the rotation number ρ(c) of gc is irrational,
this is the only measure invariant by gc.
Let us recall that the discounted solution Uc that is selected in [46] and [22] is the
weak K.A.M. solution that is the supremum of the subsolutions that satisfy for
every minimizing gc-invariant measure µ:

∫
ucdµ 6 0. When c is irrational, we

deduce that

Uc(θ) = uc(θ)−
∫
uc(t)dµ(t) = c

(∫
T
d ◦ h−1(t)(h−1)′(t)dt− d ◦ h−1(θ)

)
;

i.e.

(11) Uc(θ) = c

(∫
T
d(t)dt− d ◦ h−1(θ)

)
= uc(θ) + c

∫
T
d(t)dt.

Assume now that c = 1
2 . Then

g 1
2
(0) = h ◦R 1

2
◦ h−1(0) = h

(1

2

)
=

1

2
+ d
(1

2

)
and g 1

2

(
1

2
+ d
(1

2

))
= 0.

The mean of the two Dirac measures

ν =
1

2

(
δ0 + δ 1

2 +d( 1
2 )

)
is a measure that is invariant by g 1

2
. Hence U 1

2
(θ) = u 1

2
(θ)−K with K >

∫
T u 1

2
dν.

We deduce that

K >
1

2

(
u 1

2
(0) + u 1

2

(
1

2
+ d
(1

2

)))
= −1

4

(
d ◦ h−1(0) + d ◦ h−1

(
1

2
+ d
(1

2

)))
;

i.e.

K > −1

4
d
(1

2

)
.

By Inequality (10), we know that ε =
∫
T d(t)dt− d( 1

2 )

2 > 0. We have then

U 1
2
(θ) 6 u 1

2
(θ) +

1

4
d
(1

2

)
= u 1

2
(θ) +

1

2

∫
T
d(t)dt− ε

2

16Note that F0 is the time-1 map of the Hamiltonian function f0(θ, r) = 1
2
r2. It follows that

F , being conjugated to F0 by a symplectic map, is itself the time-1 map of the Tonelli Hamiltonian
f0 ◦H−1.
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Using Equation (11), we deduce that

lim sup
c→ 1

2

Uc(θ) > U 1
2
(θ) +

ε

2
.

Hence (θ, c) 7→ Uc(θ) is not continuous.
Observe that in the integrable case, there exists a unique weak K.A.M. solution in
each cohomology class up to the addition of a constant. Hence selecting a weak
K.A.M. solution in every cohomology class is reduced in this case to choosing a
constant. Using this remark, it can be proved that for the integrable case, the
discounted choice is lower semi-continuous.

A.3. An example of weak K.A.M. solution with a calibrating orbit start-
ing from the interior of a vertical bar. We have seen that for an ESTwD

f , if uc is a weak K.A.M. solution for T̂ c and (θ̃k)k∈Z− calibrates its lift ũc, then

setting for k ∈ Z−, rk = ∂S

∂Θ̃
(θ̃k−1, θ̃k), the sequence (θ̃k, rk)k∈Z− is a piece of orbit

of F such that (θ̃0, r0) ∈ PG(c + ũ′c) and for all k < 0, (θ̃k, rk) ∈ G(c + ũ′c). We

now construct an example of such a situation where (θ̃0, r0) /∈ G(c+ ũ′c). It can be
proven that such a situation cannot happen if f is the time–t map of an autonomous
Tonelli Hamiltonian flow, for any t > 0.

Let us start from the classical pendulum Hamiltonian H : T ∗T→ R defined by

∀(θ, p) ∈ T ∗T, H(θ, p) =
1

2
|p|2 + cos(2πθ).

Let s+ : θ 7→
√

2− 2 cos(sπθ) be the function whose graph, S+, is the upper

part of the level set H−1({1}) and c0 =
∫ 1

0
s+(θ)dθ. Finally, let t0 > 0 be a small

enough real number. It is then known that if ΦH denotes the Hamiltonian flow of
H, for t0 small enough, Φt0H is an ESTwD that we denote by f0. We also denote by
S0 : R2 → R a generating function associated to the lift F0 : R2 → R2 of f0 that
fixes (0, 0). It can be proven that at cohomology c0, there is a unique weak K.A.M.

solution u0 for T̂ c0 such that u0(0) = 0 and it is given by

∀θ ∈ R, u0(θ) =

∫ θ

0

s+(t)dt− c0θ.

This function is C1 and G(c0 +u′0) = PG(c0 +u′0) = S+. Moreover, S+ is invariant
by f0.

The dynamics of f0 restricted to S+\{(0, 0)} is going from the left to the right
with a fixed point (0, 0) = (1, 0). Let [a−1, a0) ⊂ (0, 1) a fundamental domain of
the projected dynamics restricted to S+\{(0, 0)}. This means that if S+

|[a−1,a0) ={(
θ, s+(θ)

)
, θ ∈ [a−1, a0)

}
, then S+ is the disjoint union of {(0, 0)} and of the

fn0 (S+
|[a−1,a0)) when n ∈ Z. In particular, f0

(
a−1, s

+(a−1)
)

= (a0, s
+(a0)

)
.

Let ϕ : T → [0,+∞) be a C2 function supported in [a−1, a0], we define the
diffeomorphism vϕ : A → A by (θ, r) 7→

(
θ, r + ϕ′(θ)

)
and then fϕ = vϕ ◦ f0

that is also an EStwD. A direct computation shows that Sϕ : R2 → R, defined by

(θ̃, Θ̃) 7→ S0(θ̃, Θ̃) + ϕ(Θ̃) is the generating function of Fϕ, the lift of fϕ that fixes
(0, 0) (we still denote by ϕ : R→ R the lift of ϕ : T→ R). As ϕ > 0, it follows that
Sϕ > S0.

For F0, the projected Mather set at cohomology c0 is {k, k ∈ Z}, as (k, 0), k ∈ Z
are the only fixed points of F0 in S+. Also, the rotation number at cohomology c0 is
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0. We deduce that if k ∈ Z, then S0(k, k) = min
y∈R

S0(y, y) by [9]. It follows that for

Fϕ, the projected Mather set for the 0 rotation number is also {k, k ∈ Z}, by [9], as
if x ∈ R is in this projected Mather set, then Sϕ(x, x) = min

y∈R
Sϕ(y, y) = min

y∈R
S0(y, y).

Let now cϕ ∈ R be the biggest cohomology class such that ρ(cϕ) = 0 for Fϕ.
Let ũϕ : R→ R be the corresponding weak K.A.M. solution at cohomology cϕ such
that ũϕ(0) = 0. In the following lemmas, we study properties of ũϕ. We introduce
a−2 ∈ [0, a−1) such that F0

(
a−2, c0 + ũ′0(a−2)

)
=
(
a−1, c0 + ũ′0(a−1)

)
.

Lemma A.1. The function ũϕ is C1 on [0, a−1] and equality (c0 + ũ′0)|[0,a−1] =
(cϕ + ũ′ϕ)|[0,a−1] holds.

Proof. Let θ̃0 ∈ [0, a−1] and let (θ̃k)k60 be the unique minimizing chain starting at

θ̃0 that calibrates ũ0 (for S0). From what was recalled above, θ̃k → 0 and is non–
decreasing with k. Moreover, as the θk’s are not in the support of ϕ, the sequence
(θ̃k)k60 is also minimizing for Sϕ (because Sϕ > S0). Hence, by Proposition 4.5,

(θ̃k)k60 calibrates ũϕ (for Sϕ). It follows that for k 6 −1, ũϕ is derivable at θ̃k and

cϕ + ũ′ϕ(θ̃k) =
∂Sϕ

∂Θ̃
(θ̃k−1, θ̃k) =

∂S0

∂Θ̃
(θ̃k−1, θ̃k) = c0 + ũ′0(θ̃k).

When θ̃0 sweeps [0, a−1], θ̃−1 takes all values in [0, a−2].

We then extend what was just established to (a−2, a−1]. Let θ̃0 ∈ (a−2, a−1] a

point where ũϕ is derivable. The previous argument shows that if (θ̃k)k60 is the
unique calibrating chain for uϕ, then is is also the unique calibrating chain for ũ0.
Hence using the previous result,(
θ̃0, cϕ+ũ′ϕ(θ̃0)

)
= Fϕ

(
θ̃−1, cϕ+ũ′ϕ(θ̃−1)

)
= F0

(
θ̃−1, c0+ũ′0(θ̃−1)

)
=
(
θ̃0, c0+ũ′0(θ̃0)

)
.

In the above, we used the fact that θ̃−1 ∈ [a−2, a−1] lies away from the support of

ϕ and then F0 and Fϕ coincide on the fiber above θ̃−1. As a conclusion, restricted
to [a−2, a−1], the Lipschitz functions ũϕ and t 7→ ũ0 + (c0 − cϕ)t have the same
derivative almost everywhere and same value at a−2, then they are equal.

�

The next lemma provides the values of ũϕ on (a−1, a0].

Lemma A.2. The function ũϕ is C1 on (a−1, a0] and for all t ∈ (a−1, a0], cϕ +
ũ′ϕ(t) = c0 + ũ′0(t) + ϕ′(t).

Proof. Let us now consider the chain (a−2, a−1, a0), that calibrates ũ0 and is mini-
mizing for S0. By the same arguments used in the previous lemmas, the same chain
(a−2, a−1, a0) is also minimizing for Sϕ and calibrates ũϕ. It follows from Lemma

2.1 that if (θ̃k)k60 calibrates ũϕ, and if θ̃0 ∈ (a−1, a0), then θ̃−1 ∈ (a−2, a−1). If now

θ̃0 is a derivability point of ũϕ, then
(
θ̃0, cϕ + ũ′ϕ(θ0)

)
= Fϕ

(
θ̃−1, cϕ + ũ′ϕ(θ−1)

)
∈

G(c0 + ũ′0 +ϕ′)|(a−1,a0). Indeed, Fϕ
(
G(c0 + ũ′0)|(a−2,a−1)

)
= vϕ

(
G(c0 + ũ′0)|(a−1,a0)

)
=

G(c0 + ũ′0 + ϕ′)|(a−1,a0).
We conclude that G(cϕ + ũ′ϕ)|(a−1,a0) ⊂ G(c0 + ũ′0 + ϕ′)|(a−1,a0). As previously,

this implies that the inclusion must be an equality and this proves the lemma. �

We now specify how to chose ϕ in order to obtain our example:
Hypothesis: Let a1 > a0 such that F0

(
a0, c0 + ũ′0(a0)

)
=
(
a1, c0 + ũ′0(a1)

)
. We

assume that ϕ is chosen as follows: there exists d ∈ (a0, a1) such that Fϕ
(
G(cϕ +
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ũ′ϕ)|(a−1,a0)

)
= F0

(
G(cϕ+ũ′ϕ)|(a−1,a0)

)
is the union of a graph above (a0, d), a graph

above (d, a1) and a non trivial vertical interval above {d}.

0 1a0 a1a−1a−2 d

Figure 6. In red the graph of c0 + u′0. In blue, the perturbation
giving cϕ + u′ϕ on [0, a1].

The next lemma provides a description of the weak K.A.M. solution for Sϕ on
(a0, a1).

Lemma A.3. Under the previous hypothesis,

PG(cϕ + u′ϕ)|(a0,a1) = Fϕ
(
G(cϕ + ũ′ϕ)|(a−1,a0)

)
.

Proof. Arguing as in the two previous lemmas, we find that G(cϕ + u′ϕ)|(a0,a1) ⊂
Fϕ
(
G(cϕ+ ũ′ϕ)|(a−1,a0)

)
. As the right hand side set is a graph above (a0, d)∪(d, a1),

again arguing as previously we obtain that uϕ is C1 on (a0, d) ∪ (d, a1) and that
G(cϕ + u′ϕ)|(a0,d)∪(d,a1) = Fϕ

(
G(cϕ + ũ′ϕ)|(a−1,a0)

)
\ {d}×R. The result follows. �

Next we prove that this construction indeed yields the desired example. To
that end, we prove that any negative orbit of Fϕ starting from the vertical bar of
PG(cϕ + ũ′ϕ) above d calibrates ũϕ.

Proposition A.2. Let (θ̃0, r0) ∈ PG(cϕ+ũ′ϕ)∩{d}×R and (θ̃−1, r−1) = F−1
ϕ (θ̃0, r0).

Then

ũϕ(θ̃0)− ũϕ(θ̃−1) = Sϕ(θ̃−1, θ̃0) + cϕ(θ̃−1 − θ̃0) + αϕ(cϕ),

where αϕ is Mather’s function associated to Fϕ.
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Proof. If θ̃0 ∈ (a0, a1) and θ̃0 6= d, then ũϕ is derivable at θ̃0. Setting (θ̃−1, r−1) =

F−1
ϕ

(
θ̃0, cϕ + ũ′ϕ(θ̃0)

)
, then

ũϕ(θ̃0)− ũϕ(θ̃−1) = Sϕ(θ̃−1, θ̃0) + cϕ(θ̃−1 − θ̃0) + αϕ(cϕ),

using classical results on weak K.A.M. solutions recalled page 12
(
see Equation

(5)
)
.

Let now [θ̃(0), θ̃(1)] = π1

(
(π1 ◦ Fϕ|G(cϕ+ũ′ϕ))

−1({d})
)
⊂ (a−1, a0). For t ∈ [0, 1]

we define θ̃(t) = (1− t)θ̃(0) + tθ̃(1) and
(
d,R(t)

)
= Fϕ

(
θ̃(t), cϕ + ũ′ϕ

(
θ̃(t)

))
. As for

i ∈ {0, 1}, Fϕ
(
θ̃(i), cϕ + ũ′ϕ

(
θ̃(i)

))
∈ G(cϕ + ũ′ϕ), equality

ũϕ(d)− ũϕ
(
θ̃(i)

)
= Sϕ(θ̃(i), d) + cϕ(θ̃(i)− d) + αϕ(cϕ),

still holds. Let now t ∈ (0, 1), one computes using the definition of the generating
function Sϕ (see Equations (1)) that

ũϕ(d)− ũϕ
(
θ̃(t)

)
− cϕ(θ̃(t)− d)

= ũϕ(d)− ũϕ
(
θ̃(0)

)
− cϕ(θ̃(0)− d)−

∫ t

0

[
ũ′ϕ
(
θ̃(s)

)
+ cϕ

]
θ′(s)ds

= Sϕ(θ̃(0), d) + αϕ(cϕ) +

∫ t

0

∂S

∂θ̃
(θ̃(s), d)θ̃′(s)ds

= Sϕ(θ̃(t), d) + αϕ(cϕ).

This finishes the proof. �

In order to conclude, we explain how to construct the function ϕ as desired. In
fact, we rather construct Fϕ

(
G(cϕ+ ũ′ϕ)|(a−1,a0)

)
. To that end, let ε0 > 0 be a small

real number to be specified through the construction. Let d ∈ (a0, a1) and assume

ε0 < min(d− a0, a1− d). We set R = {(θ̃, s+(θ̃) + r), θ ∈ [d− ε0, d+ ε0], |r| 6 ε0}.
Let Ψ0 : R 7→ [d − ε0, d + ε0] × [−ε0, ε0] defined by Ψ0(θ̃, r) = (θ̃, r − s+(θ̃)).
Obviously, Ψ0 preserves each vertical Vθ̃.

Let θ̃ ∈ (a−1, a0), and let θ̃0 ∈ (a0, a1) such that F0(Vθ̃) and S+ intersect at(
θ̃0, s

+(θ̃0)
)
. As S+ is F0 invariant and F0 is a twist map, by [3], at this intersection

point, the slope of F0(Vθ̃) is greater than (s+)′(θ̃0). If (θ̃0, r) ∈ [d − ε0, d + ε0] ×
[−ε0, ε0], and θ̃ is the unique real number such that (θ̃0, r) ∈ Ψ0 ◦ F0(Vθ̃) let

v1(θ̃0, r) be the slope of Ψ0 ◦ F0(Vθ̃) at (θ̃0, r). Then up to taking ε0 smaller,

by the previous fact and continuity, we may assume that v1(θ̃0, r) > 0 for all

(θ̃0, r) ∈ [d− ε0, d+ ε0]× [−ε0, ε0]. Let then ε1 > 0 such that v1(θ̃0, r) > ε1 for all

(θ̃0, r) ∈ [d− ε0, d+ ε0]× [−ε0, ε0].

Finally, let ε2 > 0 and Ψ1 : (θ̃, r) 7→ (θ̃ − ε2r, r). Each vertical is sent by Ψ1 to
a straight line of slope −ε−1

2 . We assume that ε2 is chosen small enough so that
in Ψ1([d − ε0, d + ε0] × [−ε0, ε0]) the curves Ψ1 ◦ Ψ0 ◦ F0(Vθ̃) still are graphs of
increasing functions with derivative greater than ε1.

Let now ρ : R→ R be the C∞ function supported in [−1, 1] defined by

∀x ∈ [−1, 1], ρ(x) =

(∫ 1

−1

exp[(s2 − 1)−1]ds

)−1

exp[(x2 − 1)−1],
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and if ε > 0 we define ρε : x 7→ ε−1ρ(ε−1x). For s > 0 small enough, we define
the function gs as the continuous piecewise affine function that vanishes outside of
[d− ε0 + s, d+ ε0 − s] and that is x 7→ d−x

ε2
for x ∈ [d− s, d+ s] and that is affine

on each remaining connected component of R. Finally, we set hs = ρs/2 ∗ gs where
∗ stands for the regular convolution product.

There exists ε3 > 0 such that for s < ε3 the following hold:

(1) hs is C∞ and well defined and the non–vanishing part of its graph is in-
cluded in Ψ1([d− ε0, d+ ε0]× [−ε0, ε0]),

(2) hs coincides with x 7→ d−x
ε2

on [d− s/2, d+ s/2] and has derivative greater

than −ε−1
2 elsewhere,

(3) h′s < ε1 on R.

The second point implies that (Ψ1 ◦Ψ0)−1
(
G(hs|[a0,a1])

)
coincides with Vd on a non

trivial segment, it coincides with S+ on neighborhoods of a0 and a1, and it is the
graph of a smooth function apart for the vertical part on Vd.

The third point implies that F−1
0

(
(Ψ1◦Ψ0)−1

(
G(hs|[a0,a1])

))
is transverse to the

vertical foliation. Hence it is the graph of a smooth function (s+ + ϕs) where ϕs

is supported on [a−1, a0]. We now wish to set ϕ(θ̃) =
∫ θ̃
a−1

ϕs(t)dt. The problem is

that there is a priori no reason that
∫ a0
a−1

ϕs(t)dt = 0 so that ϕ would be compactly

supported.
To remedy this, we slightly modify our construction. If s, s′ < ε3 we set hs,s′ =

hs on [a0, d] and hs,s′ = hs′ on [d, a1]. Again, it coincides with Vd on a non
trivial segment, it coincides with S+ on neighborhoods of a0 and a1, and it is the

graph of a smooth function apart for the vertical part on Vd. Then, F−1
0

(
(Ψ1 ◦

Ψ0)−1
(
G(hs|[a0,a1])

))
is the graph of a smooth function (s+ + ϕs,s′) where ϕs,s′ is

supported on [a−1, a0]. Now, by the intermediate value theorem, it is possible, given

s small, to find s′ such that
∫ a0
a−1

ϕs,s′(t)dt = 0 and defining ϕ(θ̃) =
∫ θ̃
a−1

ϕs,s′(t)dt

on [a−1, a0] we obtain the desired function.
Remark.

(1) In the constructed example, all backward orbits starting on the vertical bar
of PG(cϕ + ũ′ϕ) above d calibrate the weak K.A.M. solution. Modifying
slightly the example is is also possible to have a unique backward orbit
starting on the vertical bar of PG(cϕ + ũ′ϕ) above d calibrate the weak
K.A.M. solution.

(2) The same construction can be made, starting from an invariant circle of
arbitrary rotation number.

Appendix B. Some results concerning the full pseudographs

Most of the results that follow are standard and even hold in all dimension.
One can find them in similar of different formulations in [17]. However, we provide
proofs for the reader’s convenience.

B.1. An equivalent definition.
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Definition. Let u : R → R be a K semi-concave function. Then p ∈ R is a
super-derivative of u at x ∈ R if

∀y ∈ R, u(y)− u(x)− p(y − x) 6
K

2
(y − x)2.

We denote the set of super-derivatives of u at x by ∂+u(x). It is a convex set.

Observe that a derivative is always a super-derivative. If u : R → R is K-
semi-concave, then x 7→ u(x) − K

2 x
2 is concave and thus locally Lipschitz, and

x 7→ u′(x) −Kx is non-increasing. Hence a 1-periodic K-semi-concave function is
K-Lipschitz.

Observe also that
⋃
x∈T
{x} × ∂+u(x) is compact.

Proposition B.1. Let u : R→ R be a K-semi-concave function. Then, for every
x ∈ R, we have

∂u(x) = {x} × ∂+u(x).

Hence the full pseudograph of u is also the subbundle of all the super-derivatives
of u.

Proof. Let us prove the inclusion ∂u(x) ⊂ {x} × ∂+u(x). Let us consider (x, p) ∈
∂u(x). Then there exist (x, p−), (x, p+) ∈ G(u′) such that p− 6 p 6 p+ and there
exist two sequences (xn, pn), (yn, qn) ∈ G(u′) that respectively converge to (x, p−),
(x, p+). Every derivative is a super-derivative and a limit of super-derivatives is a
super-derivative. Hence, we have p−, p+ ∈ ∂+u(x). By convexity of ∂+u(x), we
deduce that p ∈ ∂+u(x).

Let us now prove the reverse inclusion. Being K-semi-concave, u is K-Lipschitz,
hence the set of all its super-derivatives is bounded (by K). If x ∈ R, we have then
∂+u(x) = [p−, p+] with −K 6 p− 6 p+ 6 K. We will prove that (x, p−), (x, p+) ∈
∂u(x). We have

∀y ∈ R, u(y)− u(x)− p−(y − x) 6
K

2
(y − x)2

and u(y)− u(x)− p+(y − x) 6
K

2
(y − x)2.

This implies that

• for y > x, we have

u(y)− u(x)

y − x
6 p− +

K

2
(y − x);

• for y < x, we have

u(y)− u(x)

y − x
> p+ +

K

2
(y − x).

Recall that u(y)−u(x)
y−x = 1

y−x
∫ y
x
u′(t)dt. This gives the existence of two sequences

(xn) ∈ (−∞, x) and (yn) ∈ (x,+∞) that converge to x where u is differentiable
and

lim supu′(xn) > p+ and lim inf u′(yn) 6 p−.
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As we know that a derivative is a super-derivative, that the set of super-derivatives
is closed and that ∂+u(x) = [p−, p+], we deduce that(

x, limu′(xn)
)

= (x, p+) ∈ ∂u(x) and
(
x, limu′(yn)

)
= (x, p−) ∈ ∂u(x).

�

B.2. Proof of Lemma 2.5. We just recall the argument of the proof of

Lemma B.1. For all c ∈ R, PG(c + u′c) is a Lipschitz one dimensional compact
manifold that is an essential circle.

Proof. It is proved in [4], that for every c ∈ R and every K-semi-concave function
u : T→ R, there exists τ > 0 such that ϕ−τ

(
PG(c+u′)

)
is the graph of a Lipschitz

function, where (ϕt) is the flow of the pendulum. This gives the wanted result. �

B.3. Proof of Proposition 2.2. Let us now prove the following proposition17.

Proposition B.2. Let (fn)n∈N be a sequence of equi-semi-concave functions from
T to R that converges (uniformly) to a function f (that is hence also semi-concave).

Then
(
PG(f ′n)

)
converges to PG(f ′) for the Hausdorff distance.

Proof. Let us prove that the lim sup of the PG(f ′n) is in PG(f ′). Up to a subse-
quence, we consider (xn, pn) ∈ PG(f ′n) that converges to some (x, p), and we want
to prove that (x, p) ∈ PG(f ′). We have

∀n,∀y ∈ R, fn(y)− fn(xn)− pn(y − xn) 6
K

2
(y − xn)2.

Taking the limit, we deduce that (x, p) ∈ PG(f ′).
Let us now assume that

(
PG(f ′n)

)
doesn’t converge to PG(f ′). There exists a

point (x, p) ∈ PG(f ′), r > 0 and N > 1 such that, up to a subsequence,

∀n > N, PG(f ′n) ∩B
(
(x, p), r

)
= ∅.

Hence, for n large enough, PG(f ′n) is contained in a small neighbourhood of a simple
arc (and not loop). This implies that for n large enough, PG(f ′n) doesn’t separate
the annulus into two unbounded connected components, a contradiction.

�

Appendix C. Sketch of the proof of point 3 page 16

We wish to explain why if u :M
(
ρ(c)

)
→ R is dominated, then there exists only

one extension U of u to T that is a weak K.A.M. solution for T̂ c that is given by

∀x ∈ T, U(x) = inf
π(θ)∈M

(
ρ(c)

)
π(θ′)=x

ũ(θ) + Sc(θ, θ′)

where Sc(θ,Θ) = inf
n∈N

(
Scn(θ,Θ) + nα(c)

)
.

• It is a general fact that if π(θ) ∈ M
(
ρ(c)

)
the function θ′ 7→ Sc(θ, θ′) is a

weak K.A.M solution that vanishes at θ′ = θ (see [48, Definition 2.1 and
Proposition 2.8] recalling that the function Sc corresponds to the lift of
the Mañé potential ϕ in the reference and that our Mather set M

(
ρ(c)

)
is included in the Aubry set). As the set of weak K.A.M. is invariant by

17The statement holds in arbitrary dimension and follows from the same result for concave
functions. We present here a simple proof relying on the 1-dimensional setting.
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addition of constants and an infimum of weak K.A.M. solutions is a weak
K.A.M. solution ([48, Lemma 2.33]) it follows that U is a weak K.A.M.
solution.
• To prove that U = u on M

(
ρ(c)

)
just notice that as u is dominated, if

x ∈M
(
ρ(c)

)
and π(θ) = x

∀θ′ ∈ π−1
(
M
(
ρ(c)

))
, ũ(θ′) + Sc(θ′, θ) > ũ(θ) = u(x) + Sc(θ, θ).

• It remains to prove that U is unique. This follows from the fact that if two
weak K.A.M. solutions U1 and U2 coincide on M

(
ρ(c)

)
they are equal.

Let x0 ∈ T. One constructs inductively a sequence (xn)n60 such that

∀n < 0, U1(x0) = U1(xn) +

−1∑
k=n

Sc(xk, xk+1).

As U2 is a weak K.A.M. (hence dominated) one also has

∀n < 0, U2(x0) 6 U2(xn) +

−1∑
k=n

Sc(xk, xk+1).

Hence U2(x0) − U1(x0) 6 U2(xn) − U1(xn). To conclude, one proves, us-
ing a Krylov-Bogoliubov type argument that there exists a subsequence
(xϕ(n)) that converges to a point x ∈M

(
ρ(c)

)
, hence proving that U2(x0)−

U1(x0) 6 0. Then the result follows by a symmetrical argument.
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