
A theorem of Carayol and applications

Carayol’s theorem.

Let A be a complete noetherian local ring with maximal ideal m such that k =
A/m is a finite field. We consider a continuous representation of a Galois group
Γ (local or global) with values in a semilocal extension A′ of A. Thus A′ =

∏
A′

i

where each A′
i is local with maximal ideal mi and residue field k′

i, an extension of
k, and we have a continuous map

ρ′ : Γ→GL(n, A′) =
∏

i

GL(n, A′
i)

that defines a continuous map of A-algebras

∏
ρ′

i : R = A[Γ]→
∏

i

M(n, A′
i).

By linearity this extends to a map of A′-algebras

∏
ρ′

i : R′ = A′[Γ]→
∏

i

M(n, A′
i) = M(n, A′).

We make the following

Hypothesis 1. For all γ ∈ Γ, the trace tr(γ) ∈ A′ in fact belongs to the subring
A.

In particular, for each i, the residual representation

ρ̄′
i : k′

i[Γ]→M(n, k′
i)

has the property that tr(ρ′
i(γ)) ∈ k and in particular χi(γ) = tr(ρ′

i(γ)) is indepen-
dent of i for all γ ∈ Γ.

Hypothesis 2. For some i, ρ̄′
i is absolutely irreducible.

We will see in the corollary to Theorem 2 below that this implies that all the ρ̄′
i

are absolutely irreducible.

Theorem 1. Under Hypotheses 1 and 2, there exists a representation ρ : Γ→GL(n, A)
such that ρ′ is equivalent to ρ⊗A′. Moreover, ρ is unique up to equivalence.

It is explained in Carayol’s article [C] that several of these hypotheses are un-
necessary. In particular, it is enough that A be henselian. But in the applications,
we will assume A complete.

As a necessary first step, we prove

Theorem 2. Let ρ, ρ′ be two representations of Γ with coefficients in A. Suppose
ρ̄ is absolutely irreducible and tr(ρ) = tr(ρ′) as functions on Γ. Then ρ and ρ′ are
equivalent.

Proof. We first prove that ρ̄ and ρ̄′ are equivalent. It suffices by general principles
(Hilbert’s Theorem 90) to prove this after passage to the algebraic closure of k,
so we may assume k algebraically closed. If k is of characteristic zero, then ρ̄ is
determined by its trace, and the claim is clear. If char(k) = p > 0, we need
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to use that the traces of distinct irreducible representations of R ⊗ k are linearly
independent functions on R (cf. Curtis-Reiner, (27.8)). Now ρ̄′ is not necessarily
semisimple, but its semisimplification (ρ̄′)ss can be written as a finite sum ⊕nππ
where the π are irreducible and mutually distinct. It follows from equality of traces
that nρ̄ ≡ 1 (mod p) and nπ ≡ 0 (mod p) for π 6= ρ̄. But dim ρ̄ = dim ρ̄′ which
means that there is no room for any more than a single copy of ρ̄ in (ρ̄′)ss.

Now we replace A by Ad = A/m
d+1, d = 0, 1, 2, . . . , and we show by induction

that ρd = ρ (mod m
d) is equivalent to ρ′

d for all d. We have already shown this for
d = 0; suppose we know it for d − 1. Thus, after conjugating by an appropriate
element of GL(n, A), we may assume that

ρ(r) ≡ ρ′(r) (mod m
d), ∀r ∈ R.

Thus
ρ′

d(r) ≡ ρd(r) + δ(r), δ(r) ∈M(n, md/m
d+1).

It is clear that δ is A-linear, hence factors through R ⊗A k = R̄. Since ρ′
d and ρd

are homomorphisms, one checks that the map δ satisfies

δ(r1r2) = ρ̄(r1)δ(r2) + δ(r1)ρ̄(r2).

Moreover, since tr(ρ) = tr(ρ′), we know that tr ◦ δ vanishes identically.
Take Y ∈ ker(ρ̄), r ∈ R̄. We have

δ(rY ) = ρ̄(r)δ(Y )

and since the kernel is an ideal in R, tr(ρ̄(r)δ(Y )) = 0. Now we apply Burnside’s
theorem: since ρ̄ is absolutely irreducible, ρ̄ : R̄→M(n, k) is surjective. It follows
that for all X ∈ M(n, k), tr(Xδ(Y )) = 0, hence δ(Y ) = 0∀Y ∈ ker(ρ̄). Thus δ
factors through a derivation

d : R̄/ ker(ρ̄) = M(n, k)→M(n, md/m
d+1) = M(n, k)a

where a = dimk m
d/m

d+1. In other words, δ is a sum of derivations from M(n, k)
to itself. Now it is known that any derivation of M(n, k) is inner, i.e. there exists
a matrix U ∈M(n, md/m

d+1) such that

δ(r) = ρ̄(r)U − U(ρ̄(r)), ∀r ∈ R.

Hence
ρ′

d(r) = ρd(r) + ρ̄(r)(U)− Uρ̄(r)

= (1− U)ρd(r)(1 + U)

Here ρ̄ is not well-defined in M(n, Ad) but its product with U is, and indeed

Uρd(r) = Uρ̄(r)

depends only on ρ̄(r). Thus ρd and ρ′
d are equivalent for all d by induction. By con-

tinuity, this implies that there is a convergent sequence of matrices Md ∈ GL(n, A)
such that, if M = limd Md then

ρ′(r) = Mρ(r)M−1

for all r ∈ R.
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Corollary. Under Hypothesis 2, all ρ̄′
i are absolutely irreducible and equivalent

when the k′
i are embedded in a common field.

Proof of Theorem 1. Let S′ = M(n, A′) =
∏

i M(n, A′
i) and let S = ρ(R) ⊂ S′.

Thus for all s ∈ S, Tr(s) ∈ A.
Now for each i, ρ̄′

i : k′
i[Γ]→M(n, k′

i) is surjective by Burnside’s theorem. Since ρ̄′
i

is deduced from a map of k[Γ], it follows that there exists a sequence r1, . . . , rn of
elements of R such that, for each i, the ρ̄′

i(rj ⊗ 1) form a k′
i-basis of M(n, k′

i). Let
ej = ρ′(rj⊗1). By Nakayama’s Lemma, the projections of ej on each S′

i = M(n, A′
i)

forms a system of generators of the free module S′
i, and by comparing ranks we see

they even form a basis.
I claim the ej form a basis of S as A-module. Indeed, for any s ∈ S, we can

write s =
∑

αjej with αj ∈ A′. Now for any 1 ≤ ℓ ≤ n2,

(*) tr(s · eℓ) =
∑

j

αjtr(ejeℓ) ∈ A.

Now for any basis ej of a matrix algebra, the determinant of the matrix tr(ejeℓ)
is invertible. (This is clear over a field, the trace being a non-degenerate bilinear
form, and so it follows easily over a semilocal ring.) Now the matrix tr(ejeℓ) is
invertible over A′ but it has coefficients in A, hence the inverse also has coefficients
in A. The system of equations (*) for αj thus can be inverted to show that αj ∈ A
for all j. This proves the claim.

Now S is a free A-module of rank n2, and the isomorphism S ⊗A A′ ∼
−→ S′

induces isomoprhisms for each i:

(S ⊗A k)⊗k k′
i

∼
−→ S′ ⊗A′

i
k′

i = M(n, k′
i).

Hence S̄ = S⊗A k is a central simple algebra over k. Thus S is an Azumaya algebra
over A, i.e. a twisted matrix algebra.

But since A is Henselian, any Azumaya algebra over A is determined by its
reduction mod m. Since k is finite, the only central simple algebras over k are the
matrix algebras. Thus there exists an isomorphism

φ : S
∼
−→ M(n, A).

Now define ρ(r) = φ(ρ′(r⊗1). This defines a representation of Γ with coefficients
in A. It remains to show that ρ⊗A A′ is equivalent to ρ′. But consider

M(n, A′) = S′ = S ⊗A A′ φ⊗1
−→M(n, A′).

This is an automorphism of M(n, A′), and any automorphism of M(n, A′) is inner
(because M(n, A′) =

∏
M(n, A′

i) and this is true for any local ring), say is given
by conjugation by a matrix β ∈ M(n, A′). This conjugation defines the desired
equivalence.

Applications to deformation rings.

I follow the article of de Smit and Lenstra [dS-L] that proves a more general
version of Mazur’s theorem on existence of deformation rings without appealing to
Schlessinger’s criterion. The next few paragraphs are copied from the lecture on
Schlessinger’s theorem, to which I refer as [Sch].
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In what follows, G is either (i) Gal(KS/K), where K is a number field, S is a
finite set of places of K, and KS is the maximal extension of K unramified outside
S, or (ii) Gal(K̄/K), where K is a p-adic field. In case (i), if L is a finite extension of
K, let LS be the maximal extension of L unramified outside the primes of L above
S. Let O be an ℓ-adic integer ring with finite residue field k. We let C = O be the
category of artinian local O-algebras with residue field k (such that the structure

map O 7→ A induces the identity map on residue fields), and Ĉ the category of
complete noetherian local O-algebras with residue field k as above.

Lemma 1. For any finite extension L/K, let GL = Gal(LS/L) in case (i), resp.
GL = Gal(K̄/L) in case (ii). Then Hom(GL, k) is a finite set.

The proof is in [Sch].
Now let r̄ : G→GL(n, k) be a finite-dimensional representation. For A in C, a

lifting of r̄ to A is a homomorphism

ρ : G→GL(n, A); ρ = r̄ (mod mA).

For all N , let Γ(mN
A ) be the principal congruence subgroup of GL(n, A):

Γ(mN
A ) = {γ ∈ GL(n, A) | γ ≡ 1 (mod m

N
A )}.

A deformation of r̄ to A is an equivalence class of liftings ρ, where ρ1 and ρ2

are equivalent if there exists a matrix γ ∈ GL(n, A), with γ ∈ Γ(mA), such that

ρ2 = γ ◦ ρ1 ◦ γ−1. Define the functor Def(r̄) on Ĉ for which Def(r̄)(A) is the set
of deformations of r̄ to A.

The functor of liftings is more or less obviously prorepresentable by some sort
of ring (take generators and relations). Here is the construction, following [dS-L].
First let G′ be a finite quotient of G. Let O[G, n] be the commutative O-algebra
with generators Xg

i,j , g ∈ G′, 1 ≤ i, j,≤ n and relations

Xe
i,j = δij ; Xgh

i,j =

n∑

k=1

Xg
ikXh

kj .

This is just the ring of coordinates of homomorphisms from G′ to GL(n); more
precisely, there is an obvious canonical bijection

HomO(O[G, n], A)
∼
−→ Hom(G, GL(n, A))

for any O-algebra A. In particular, r̄ corresponds to a homomorphism from O[G, n]
to the finite field k, whose kernel is a maximal ideal mr̄, and we let Rb denote the
completion of O[G, n] at mr̄. Then Rb is an object in Ĉ, and

Lemma 2. The natural map

Hom
Ĉ
(Rb, A)→Homr̄(G, GL(n, A))

is a bijection for any A in Ĉ.

Here Homr̄ means continuous liftings of r̄. Given a lift ρ on the right, it defines
a map from O[G, n] that obviously extends to a map f = fρ of completions at mr̄
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and mA respectively, but A is already complete at mA. Since the elements Xg
i,j are

dense in Rb and their images under f are determined by ρ, this shows that f is
unique. The identification in the other direction is just as easy.

Now if we write G = lim←−Gi with Gi finite, we get rings Rb,i as above in Ĉ, with
maps between them corresponding to maps between the Gi, and let Rb = lim←−Rb,i.

This is not necessarily in Ĉ, in particular it is not obviously noetherian. We can fix
this. Let H = ker(r̄), G′ = G/H, which is a finite quotient of G. Obviously Rb is a
finite RH

b -algebra. If we can show RH
b is noetherian, then it follows that so is Rb.

So we may replace G by H and assume r̄ is trivial. Now in [Sch] I prove that

tRb

∼
−→ H1(H, Ad(ρ)) = Hom(H, k)⊗Ad(ρ)

which is finite-dimensional by Lemma 1. On the other hand,

tRb
= Homcont(Rb, k[ε]) = lim−→

i

HomO(Rb,i, k[ε])

= lim−→
i

Homk(mi/(m2
i + mRb,i, k)

where mi is the maximal ideal of Rb,i and m is the maximal ideal ofO. Moreover, the
transition maps in the inductive limit are injective. So it follows that dim(mi/m2

i )
is bounded. Now it is easy to show (cf. [dS-L], (5.3)) that this boundedness implies
that Rb is noetherian as well as a complete local O-algebra.

We now apply a variant of Carayol’s theorem. Let ρb be the universal lifting of r̄
over Rb, and let R ⊂ Rb be the closed subring generated by Tr(ρb)(g). In [dS-L] it
is proved that, as long as r̄ is irreducible, then ρb is obtained from a representation
of G on a free R-module of rank n. The proof is elementary and does not require
that R or Rb be noetherian, only that they are both projective limits of Artin
algebras; k does not even have to be finite. Admitting this result, let A ∈ C and ρA

be a lift of r̄ to A, i.e. ρA ∈ Homr̄(G, GL(n, A)). Thus there is a map fb : Rb→A
classifying ρA in the sense that ρA = fb ◦ ρb. But ρb = ρ ⊗R Rb, so ρA = f ◦ ρ
where f is the restriction of fb to R. Now it suffices to show that f is uniquely
determined by ρA up to isomorphism. But Tr(ρA)(g) = f(Tr(ρ)(g)) for all g ∈ G.
Of course Tr(ρA)(g) is determined by the equivalence class of ρA, so the elements
f(Tr(ρ)(g) ∈ A are determined by the equivalence class of ρA. Since the traces
are dense in R and f is continuous, it follows that f is determined uniquely by the
equivalence class of ρA, and this proves that (R, ρ) represents Defr̄ on C.

A slightly more complicated proof, due to Faltings, shows that this works (for a
slightly bigger R) provided EndG(r̄) = k, which is possible even if r̄ is reducible.

[C] H. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans
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