A THEOREM OF CARAYOL AND APPLICATIONS

Carayol’s theorem.

Let A be a complete noetherian local ring with maximal ideal m such that k =
A/m is a finite field. We consider a continuous representation of a Galois group
I' (local or global) with values in a semilocal extension A’ of A. Thus A’ = [[ 4}
where each A} is local with maximal ideal m; and residue field &}, an extension of
k, and we have a continuous map

p/: T=GL(n, A') = [[ GL(n, A})
that defines a continuous map of A-algebras

[10i: R= A= M(n, A)).
By linearity this extends to a map of A’-algebras
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We make the following

Hypothesis 1. For all v € T', the trace tr(y) € A" in fact belongs to the subring
A.

In particular, for each ¢, the residual representation

pi + ki[T]—=M(n, k)
has the property that tr(p}(y)) € k and in particular x;(y) = tr(pi(v)) is indepen-
dent of ¢ for all v € T'.

Hypothesis 2. For some i, p} is absolutely irreducible.

We will see in the corollary to Theorem 2 below that this implies that all the p]
are absolutely irreducible.

Theorem 1. Under Hypotheses 1 and 2, there exists a representation p : '—=GL(n, A)
such that p' is equivalent to p @ A’. Moreover, p is unique up to equivalence.

It is explained in Carayol’s article [C] that several of these hypotheses are un-
necessary. In particular, it is enough that A be henselian. But in the applications,
we will assume A complete.

As a necessary first step, we prove

Theorem 2. Let p,p’ be two representations of I' with coefficients in A. Suppose
p is absolutely irreducible and tr(p) = tr(p’) as functions on T'. Then p and p’ are
equivalent.

Proof. We first prove that p and p’ are equivalent. It suffices by general principles

(Hilbert’s Theorem 90) to prove this after passage to the algebraic closure of k,

so we may assume k algebraically closed. If k is of characteristic zero, then p is

determined by its trace, and the claim is clear. If char(k) = p > 0, we need
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to use that the traces of distinct irreducible representations of R ® k are linearly
independent functions on R (cf. Curtis-Reiner, (27.8)). Now p’ is not necessarily
semisimple, but its semisimplification (p’)°® can be written as a finite sum ®n,m
where the 7 are irreducible and mutually distinct. It follows from equality of traces
that n; = 1 (mod p) and n, = 0 (mod p) for m # p. But dimp = dimp’ which
means that there is no room for any more than a single copy of p in (p’)*s.

Now we replace A by A3 = A/m%*! d =0,1,2,..., and we show by induction
that pg = p (mod m?) is equivalent to pl, for all d. We have already shown this for
d = 0; suppose we know it for d — 1. Thus, after conjugating by an appropriate
element of GL(n, A), we may assume that

p(r)=p'(r) (mod m?),Vr € R.
Thus
Pa(r) = pa(r) +8(r), 8(r) € M(n,m?/m™*1).

It is clear that § is A-linear, hence factors through R ®4 k = R. Since p/, and pg4
are homomorphisms, one checks that the map ¢ satisfies

d(rir2) = p(r1)d(ra) + 6(r1)p(ra).

tr(p’), we know that ¢r o § vanishes identically.

Moreover, since tr(p) = tr
, 7 € R. We have

Take Y € ker(p)
6(rY’) = p(r)o(Y)

and since the kernel is an ideal in R, tr(p(r)6(Y)) = 0. Now we apply Burnside’s
theorem: since p is absolutely irreducible, p : R—M (n, k) is surjective. It follows
that for all X € M(n,k), tr(Xd(Y)) = 0, hence 6(Y) = OVY € ker(p). Thus §
factors through a derivation
d: R/ ker(p) = M(n, k)—M (n,m%/m?*) = M(n, k)*

where a = dim; m?/m*!. In other words, § is a sum of derivations from M (n, k)
to itself. Now it is known that any derivation of M (n, k) is inner, i.e. there exists
a matrix U € M (n, m%/m?*!) such that

d(r)=p(r)U—-U(p(r)),Vr € R.

Hence , - -
pa(r) = pa(r) + p(r)(U) — Up(r)
= (1=U)pa(r)(1 +U)
Here p is not well-defined in M (n, A4) but its product with U is, and indeed
Upa(r) = Up(r)

depends only on p(r). Thus pg and p/; are equivalent for all d by induction. By con-
tinuity, this implies that there is a convergent sequence of matrices My € GL(n, A)
such that, if M = limy M, then

p'(r) =Mp(r)M~"

for all r € R.
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Corollary. Under Hypothesis 2, all p; are absolutely irreducible and equivalent
when the k! are embedded in a common field.

Proof of Theorem 1. Let 8" = M(n,A") = [[, M(n, A]) and let S = p(R) C S'.
Thus for all s € S, Tr(s) € A.

Now for each i, p! : k}[[']—M (n, ki) is surjective by Burnside’s theorem. Since p/
is deduced from a map of k[I'], it follows that there exists a sequence rq,...,r, of
elements of R such that, for each ¢, the p}(r; ® 1) form a kl-basis of M (n, k). Let
e; = p'(r;®1). By Nakayama’s Lemma, the projections of e; on each S; = M (n, A})
forms a system of generators of the free module S/, and by comparing ranks we see
they even form a basis.

I claim the e; form a basis of S as A-module. Indeed, for any s € S, we can
write s = Y aje; with o; € A’. Now for any 1 </ < n?,

() tr(s-ep) = Z ajtr(ejee) € A.

J

Now for any basis e; of a matrix algebra, the determinant of the matrix ¢r(e;ep)
is invertible. (This is clear over a field, the trace being a non-degenerate bilinear
form, and so it follows easily over a semilocal ring.) Now the matrix tr(eje,) is
invertible over A’ but it has coefficients in A, hence the inverse also has coefficients
in A. The system of equations (*) for «; thus can be inverted to show that o;; € A
for all j. This proves the claim.

Now S is a free A-module of rank n?, and the isomorphism S ®4 A" — S’
induces isomoprhisms for each i:

(S®a k)@ k; — 8" @a ki = M(n, k).

Hence S = S® 4 k is a central simple algebra over k. Thus S is an Azumaya algebra
over A, i.e. a twisted matrix algebra.

But since A is Henselian, any Azumaya algebra over A is determined by its
reduction mod m. Since k is finite, the only central simple algebras over k are the
matrix algebras. Thus there exists an isomorphism

¢:S -~ M(n,A).

Now define p(r) = ¢(p'(r®1). This defines a representation of I' with coefficients
in A. It remains to show that p ® 4 A’ is equivalent to p’. But consider

Mn,A) =8 =So4 A" 22 M(n, A).

This is an automorphism of M (n, A’), and any automorphism of M (n, A’) is inner
(because M (n, A") = [[ M(n, A}) and this is true for any local ring), say is given
by conjugation by a matrix 5 € M(n, A’). This conjugation defines the desired
equivalence.

Applications to deformation rings.

I follow the article of de Smit and Lenstra [dS-L] that proves a more general
version of Mazur’s theorem on existence of deformation rings without appealing to
Schlessinger’s criterion. The next few paragraphs are copied from the lecture on
Schlessinger’s theorem, to which I refer as [Sch].



In what follows, G is either (i) Gal(Kg/K), where K is a number field, S is a
finite set of places of K, and Kg is the maximal extension of K unramified outside
S, or (i) Gal(K /K), where K is a p-adic field. In case (i), if L is a finite extension of
K, let Lg be the maximal extension of L unramified outside the primes of L above
S. Let O be an f-adic integer ring with finite residue field k. We let C = O be the
category of artinian local O-algebras with residue field k (such that the structure

map O — A induces the identity map on residue fields), and C the category of
complete noetherian local O-algebras with residue field k as above.

Lemma 1. For any finite extension L/K, let Gr = Gal(Ls/L) in case (i), resp.
Gp = Gal(K/L) in case (ii). Then Hom(Gp, k) is a finite set.

The proof is in [Sch].

Now let 7 : G—=GL(n, k) be a finite-dimensional representation. For A in C, a
lifting of ¥ to A is a homomorphism

p:G—GL(n,A);p=7 (mod my).
For all N, let I'(m%) be the principal congruence subgroup of GL(n, A):
T(m)) ={y€GL(n,A) |y=1 (mod m})}.

A deformation of ¥ to A is an equivalence class of liftings p, where p; and po
are equivalent if there exists a matrix v € GL(n, A), with v € I'(m4), such that
pa =70 py oyt Define the functor Def(7) on C for which Def(7)(A) is the set
of deformations of 7 to A.

The functor of liftings is more or less obviously prorepresentable by some sort
of ring (take generators and relations). Here is the construction, following [dS-L].
First let G’ be a finite quotient of G. Let O[G,n| be the commutative O-algebra
with generators Xffj, g€ G',1 <1, 7, <n and relations

n
e __ 5 . gh __ g vh
Xi,j - 5237 Xi,j - ZXikaj'
k=1

This is just the ring of coordinates of homomorphisms from G’ to GL(n); more
precisely, there is an obvious canonical bijection

Homo(O[G,n], A) — Hom(G,GL(n, A))

for any O-algebra A. In particular, 7 corresponds to a homomorphism from O[G, n|
to the finite field k, whose kernel is a maximal ideal m, and we let R denote the
completion of O[G, n] at mz. Then R} is an object in C, and

Lemma 2. The natural map
Homs(Ry, A)—Homy(G,GL(n, A))

is a bijection for any A in C.

Here Homy means continuous liftings of 7. Given a lift p on the right, it defines
a map from O[G,n| that obviously extends to a map f = f, of completions at ms
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and my respectively, but A is already complete at m 4. Since the elements X g ; are
dense in R and their images under f are determined by p, this shows that f is
unique. The identification in the other direction is just as easy.

Now if we write G = lim G; with G finite, we get rings Ry ; as above in é, with
maps between them corresponding to maps between the G;, and let R, = lim R, ;.
This is not necessarily in C.in particular it is not obviously noetherian. We can fix
this. Let H = ker(7), G’ = G/H, which is a finite quotient of G. Obviously R} is a
finite R -algebra. If we can show R}’ is noetherian, then it follows that so is Ry.
So we may replace G by H and assume 7 is trivial. Now in [Sch| I prove that

tr, — H'(H, Ad(p)) = Hom(H, k) ® Ad(p)
which is finite-dimensional by Lemma 1. On the other hand,
tr, = Homcont(Rp, kle]) = lim Homo (Rp. 4, ke])

= lim Homy(m;/(m? +mRy ;, k)

where m; is the maximal ideal of Ry, ; and m is the maximal ideal of O. Moreover, the
transition maps in the inductive limit are injective. So it follows that dim(m;/m?)
is bounded. Now it is easy to show (cf. [dS-L], (5.3)) that this boundedness implies
that Ry is noetherian as well as a complete local O-algebra.

We now apply a variant of Carayol’s theorem. Let p; be the universal lifting of #
over Ry, and let R C Ry, be the closed subring generated by Tr(pp)(g). In [dS-L] it
is proved that, as long as 7 is irreducible, then p;, is obtained from a representation
of G on a free R-module of rank n. The proof is elementary and does not require
that R or R, be noetherian, only that they are both projective limits of Artin
algebras; k does not even have to be finite. Admitting this result, let A € C and p4
be a lift of 7 to A, i.e. pa € Homz(G,GL(n, A)). Thus there is a map f; : Ry—A
classifying pa in the sense that pa = f, 0o pp. But p, = p Qg Rp, so pa = fop
where f is the restriction of f; to R. Now it suffices to show that f is uniquely
determined by pa up to isomorphism. But Tr(pa)(g) = f(Tr(p)(g)) for all g € G.
Of course Tr(pa)(g) is determined by the equivalence class of p4, so the elements
f(Tr(p)(g) € A are determined by the equivalence class of p4. Since the traces
are dense in R and f is continuous, it follows that f is determined uniquely by the
equivalence class of p4, and this proves that (R, p) represents Defr on C.

A slightly more complicated proof, due to Faltings, shows that this works (for a
slightly bigger R) provided Endg(7) = k, which is possible even if 7 is reducible.
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