
Applications of Chebotarev density

V .1. Definition of the deformation problem. As in the previous sections, we let

ΓF+ = Gal(Q/F+), ΓF = Gal(Q/F ). A decomposition group at the prime v

is denoted Zv, the inertia subgroup by Iv. The group Gn, viewed as a Z-group

scheme, is as in the previous lectures. We fix a prime `, unramified in F , and a

representation ρ : ΓF+ → G̃(Fl), and let rρ denote the restriction of ρ to ΓF . The

representation ρ is assumed to satisfy the following conditions:

V .1.1.0. There is a finite subfield k ⊂ Fl such that ρ takes values in G̃(k).

V .1.1.1. The composite ΓF+ → G̃(Fl) → {1, c} cuts out F/F+.

V .1.1.2. rρ is unramified except at primes above ` and above a non-empty finite

set of primes Smin of F+. At primes above `, rρ is crystalline. If p ∈ Smin then

p = vvc splits in F and rρ|Zv breaks up as a direct sum of irreducible representations

ri,v. Moreover, there is at least one p ∈ Smin such that rρ|Zv is irreducible, with v

as above.

V .1.1.3. Denote by c any lifting of c to a complex conjugation in ΓF+ . In the

adjoint representation ad ρ of ΓF+ on Lie(G̃), the +1-eigenspace of c has dimension

≥ n(n−1)
2 .

V .1.1.4. The composite ωρ = ν◦ρ : ΓF+→k×, restricted to ΓF , equals the (1−n)th

power of the cyclotomic character, where ν : G̃ → GL(1) is the similitude character

defined in §I.1.

Here and in what follows the term ”crystalline,” applied to `-torsion modules, is

used to refer to Galois representations obtained by the Fontaine-Laffaille construc-

tion. The details of this theory were recalled in earlier notes.

We note the following consequence of (V .1.1.2):

V .1.1.7. The intersection F ∩Q(ζ`) = Q.

Let O denote the ring of integers in a totally ramified finite extension K of

the fraction field of the Witt ring W (k). Let CO denote the category of complete

noetherian local O-algebras with residue field k; morphisms in CO are assumed to

be local (take maximal ideals to maximal ideals). If R is an object of CO we let mR

denote its maximal ideal. Since ` > 2 by the banality hypothesis, the character ωρ
defined by V .1.1.4 has a unique lift ωρ,R : ΓF+ → R× for any object R of CO.

V .1.2. Let R be an object of CO. A deformation of ρ to R is a homomorphism

ρ : ΓF+ → G̃(R) such that

(V .1.2.1) ρ ≡ ρ (mod mR).
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(V .1.2.2) ν ◦ ρ(g) = ωρ,R.

Here ν : G̃(R)→R× is the similitude character.

We assume

V .1.3. ρ has a deformation ρ0 to O such that for each prime λ of F dividing `

rρ0 |Γλ
is crystalline and the filtered module has n graded pieces, each free of rank

one over O, and of weights 0, 1, . . . , n− 1.

V .1.4. We will be considering deformations of ρ with conditions at certain auxiliary

sets of primes. Let Q denote a finite set of height one primes q of F+ disjoint from

Smin ∪ S` [divisors of `] which satisfy

V .1.4.1. q splits in F and the division algebras D and D# are split above q;

V .1.4.2. The residue characteristic q of q satisfies q ≡ 1 (mod `);

V .1.4.3. ρ(Frobq) has a distinguished eigenvalue αq of multiplicity one.

As representations of Zq, we write

(V .1.4.4) ρ = ρα ⊕ ρβ ,

where ρα is the αq-eigenspace of ρ(Frobq) and ρβ is the direct sum of the remaining

eigenspaces. Let ∆q denote the maximal `-power quotient of (Z/qZ)× and ∆Q =∏
q∈Q ∆q.

By a deformation of ρ of type Q we shall mean a pair (R, ρ) as in Definition

V .1.2 such that:

V .1.5.1. For each prime λ of F dividing `, rρ|Zλ
is crystalline and the filtered

module has n graded pieces, each free of rank one over R, and of weights 0, 1, . . . ,

n− 1.

V .1.5.2. If q ∈ Q then rρ|Zq = χ ⊕ r′ where r′ = r′q is unramified and χ = χq :

Zq→R× is a character whose reduction modulo mR is unramified and takes Frobq
to αq.

V .1.5.3. If v /∈ Q ∪ {`} then ρ(Iv)
∼−→ ρ(Iv).

Proposition V .1.6. There exists a universal deformation (RQ, ρQ) of ρ of type

Q.

Proof. We need to verify that the conditions in V .1.5 define a Ramakrishna sub-

category.
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V .1.7 For q ∈ Q we let χq : Zq→R×Q be the character defined in (V .1.5.2). Then

χq necessarily factors through a natural map ∆q→R×Q. Thus RQ is tautologically

an O[∆Q]-module.

V .2. Bounding the Selmer group.

Henceforward, we assume ` > n. We fix a finite set Q of primes of F+ as

in V .1.4. Let ad rρ denote the composition of ρ with the adjoint representation

ad : G̃→Aut(gl(n)), where gl(n) ⊂ Lie(G̃) is viewed as the kernel of the similitude

map. For each place v of F+ we fix a k-subspace LQ,v ⊂ H1(Zv, ad rρ). The LQ,v
are chosen as follows:

V .2.1.1. For v dividing `, LQ,v is the Bloch-Kato group H1
f (Zv, ad rρ).

In [BlK], Bloch and Kato work with characteristic zero coefficients. The `-torsion

group H1
f (Zv, ad rρ) will be defined in V .4, below.

V .2.1.2. For v = q ∈ Q, write

ad rρ = ad ρα ⊕ ad ρ′α,

where

ad ρ′α = ad ρβ ⊕Hom(ρα, ρβ)⊕Hom(ρβ , ρα),

(notation V .1.4.4). We set

LQ,q = H1(Zq, ad ρα)⊕H1(Zq/Iq, ad ρ
′
α).

V .2.1.3. At all other finite primes v LQ,v = H1(Zv/Iv, ad rIv

ρ ).

V .2.1.4. At archimedean primes we take LQ,v = 0.

There is a natural isomorphism (Poincaré duality)

ad rρ
∼−→ ad r∗ρ,

hence natural non-degenerate pairings for each place v

(V .2.1.5) Hi(Zv, ad rρ)×H2−i(Zv, ad rρ(1)) → Q/Z

(Tate’s local duality), where (1) denotes Tate twist. For each v we let L⊥Q,v ⊂
H1(Zv, ad rρ(1)) be the annihilator of LQ,v with respect to (V .2.1.5), and define

the Selmer group of ad rρ(1), relative to the data L⊥Q,v:

(V .2.1.6) H1
Q∗(F+, ad rρ(1)) = {h ∈ H1(F+, ad rρ(1)) | ∀ v rv(h) ∈ L⊥Q,v}

(So the index is Q rather than S or D.) We write MQ for mRQ
. The objective

of this section is to prove the following theorem.
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Theorem V .2.2. The Selmer group H1
Q∗(F+, ad rρ(1)) is finite and we have the

inequality

dimk MQ/(MQ
2, `) ≤ #Q+ dimkH

1
Q∗(F+, ad rρ(1)).

In particular, if dimH1
Q∗(F+, adrρ) = 0 then the O-algebra RQ can be topologically

generated by #Q elements.

This theorem generalizes Lemma 5 of [TW]. Henceforward we write dim instead

of dimk. We begin by translating the theorem into a statement purely in terms of

Galois cohomology.

Proposition V .2.3. Define the Selmer group of ad rρ, relative to the data LQ,v:

H1
Q(F+, ad rρ) = {h ∈ H1(F+, ad rρ) | ∀ v rv(h) ∈ LQ,v}.

Then

dim MQ/(MQ
2, `) = dimH1

Q(F+, ad rρ).

Proof. This is proved as in [DDT,Theorem 2.41]. Let D denote the category of

k[ΓF+ ]-modules M finite over k with dimension divisible by n, satisfying the ana-

logues of properties V .1.5.1-3:

V .2.3.1. As a module over Zv, v above `, M is a Fontaine-Laffaille representation

(cf. §V .4, below).

V .2.3.2. As a module over Zq, q in Q, M is a the sum of an unramified module B

and a module A whose semisimplification is isotypic for the unramified character

αq.

V .2.3.3. If v /∈ Q ∪ {`} then the action of Iv on M is a direct sum of copies of

irreducible direct summands of ρ(Iv).

The category D is closed under products and taking subobjects and quotient

objects. Obviously it contains ρ. Thus Lemma 2.39 of [DDT] applies and yields

dim MQ/(MQ
2, `) = dimH1

D(F+, ad rρ),

where H1
D(F+, ad rρ) ⊂ H1(F+, ad rρ) ' Ext1ΓF+

(ρ, ρ) is the subspace of classes

whose corresponding extensions lie in D.

Now we have to verify that conditions V .2.3.1-3 for extensions translate into

the cohomological conditions V .2.1.1-3. Specifically, the equivalence of V .2.3.1 and

V .2.1.1 is proved below in V .4.7. The equivalence of V .2.3.2 with V .2.1.2 is easy

to verify. At finite places v /∈ Q ∪ ` ∪ Smin, and such that v is unramified in F ,
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V .2.3.3 says the action of Iv is trivial, which is obviously equivalent to V .2.1.3.

Now suppose v in Smin. The compatibility of V .2.3.3 and V .2.1.3 is equivalent to

the condition

H1(Zv/Iv,HomIv (ρ, ρ)) ' Ker[H1(Zv,Hom(ρ, ρ)) → H1(Iv,Hom(ρ, ρ))],

and this is just the inflation-restriction sequence. For v ramified in F , the argument

is similar.

We thus need to prove the inequality

(V .2.4) dimH1
Q(F+, ad rρ)− dimH1

Q∗(F+, ad rρ(1)) ≤ #Q.

Following Wiles [W,Prop. 1.6], the left hand side of (V .2.4) can be expressed as a

sum of local terms. We write the formula as in [DDT, Theorem 2.19], where it is

stated for a general number field:

Proposition V .2.5. Let h0 = dimH0(F+, ad rρ), h0,∗ = dimH0(F+, ad rρ(1)).

For any place v of F+ let h0
v = dimH0(Zv, ad rρ). Then we have the formula

dimH1
Q(F+, ad rρ)− dimH1

Q∗(F+, ad rρ(1)) = h0 − h0,∗ +
∑
v

(dimLQ,v − h0
v).

Lemma V .2.6. Under the hypotheses of Proposition V .2.5, the local terms are

computed as follows:

(a) For v real, h0
v ≥

n(n−1)
2 , dimLQ,v = 0.

(b) For v ∈ Q, dimLQ,v − h0
v = 1.

(c) For v above `, dimLQ,v − h0
v = [k(v) : F`] · n(n−1)

2 .

(d) For all other places v, dimLQ,v − h0
v = 0.

Finally, the global terms are given by h0 = h0,∗ = 0.

Admit this lemma for the moment. Comparing Proposition V .2.5 with Lemma

V .2.6, we find

(V .2.7) dimH1
Q(F+, ad rρ)− dimH1

Q∗(F+, ad rρ(1))

≤ #Q−
∑
v real

n(n− 1)
2

+
∑
v|`

[k(v) : F`] ·
n(n− 1)

2

≤ #Q− [F+ : Q]
n(n− 1)

2
+ [F+ : Q]

n(n− 1)
2

≤ #Q

Theorem V .2.2 now follows by comparing (V .2.7) with Proposition V .2.3.

V .2.8. We begin by calculating the global terms in Lemma V .2.6. The hypothesis

that Smin is non-empty implies that ρ is already irreducible when restricted to
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a decomposition group of ΓF above a prime in Smin. Thus H0(F, ad rρ) is one-

dimensional and given by the trace of rρ. But complex conjugation c acts as −1 on

the center of the GL(n)-component of the L-group, so H0(F+, ad rρ) is trivial. In

the same way, and using V .1.1.5, we see that h0,∗ = 0.

The local terms will be computed in the next two sections.

V .3. Local calculations, char v 6= `.

In this section we carry out the calculations summarized in Lemma V .2.6. For

any place v and any finite F`[Zv]-module M we set

hi(M) = dimHi(Γv,M); hi,unr(M) = dimHi(Zv/Iv,M Iv ),

i = 0, 1, 2.

V .3.1. If M is an unramified Zv-module then of course h0,unr(M) = h0(M). On

the other hand, M is always assumed to be Frobv-semi-simple when ` is not equal

to the residue characteristic of v. Then M is the sum of characters of Zv/Iv and

(V .3.1) h1,unr(M) = h0(M) = dimMZv .

It follows that, for v unramified, v /∈ Q, we have

dimLQ,v − h0
v = 0.

This verifies V .2.6 (d) at unramified places.

V .3.2. Now take v ∈ Q. We have

dimLQ,v − h0
v = h1(ad ρα)− h0(ad ρα) + h1,unr(ad ρα)′ − h0(ad ρα)′.

Since ad(ρα)′ is unramified the last two terms cancel, by (V .3.1). On the other

hand, the first two terms give

h0(ad ρα(1))

by the local Euler characteristic formula and local duality (cf. [W,p. 473]). But

ρα is one-dimensional, so ad(ρα) is the trivial Zv module. Since q ≡ 1 (mod `) the

Tate twist is also trivial, and we find

dimLQ,v − h0
v = 1,

which verifies V .2.6 (b).

V .3.3. For v real, we have dimLQ,v = 0, by hypothesis. On the other hand,

h0
v = dim[ad rρ]c=1,
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independently of v. Then (a) follows immediately from hypothesis V .1.1.3.

V .3.4. Now suppose v is ramified, but of residue characteristic 6= `. By hypothesis,

either v ∈ Smin, or v ramifies in F/F+ and rρ is unramified at the prime above v.

We need to calculate

dimLQ,v − h0
v = h1,unr(ad rρ)− h0(ad rρ).

First, suppose v ∈ Smin, and rρ = ⊕ri=1(ri)
ai , where the ri are irreducible and

distinct. Returning to V .1.1.2, we find that

dim[ad rρ]Zv =
∑
i

(ai)2.

Let Lij = H1(Zv/Iv, ri ⊗ r∗j ), where ∗ denotes dual. It suffices to show that

dimLij = δij . Suppose ri|Iv
breaks up as the sum of d irreducible representations

τik. Then

(V .3.5) (ri ⊗ r∗i )
Iv = ⊕dk=1[ad τk]

Iv

has dimension d. As a representation of the cyclic group Zv/Iv, the right-hand side

of V .3.5 is isomorphic to the sum ⊕χ of the distinct characters of Zv/H, where

H ⊃ Iv is the stabilizer in Zv of τ1, say. Thus

dimLii =
∑
χ

dimH1(Zv/H, χ) = 1,

since only the trivial character has non-trivial cohomology. The verification for Lij
with i 6= j breaks up into two cases. If rj is not an unramified twist of ri, then

(ri ⊗ r∗j )
Iv = 0. If ri = rj ⊗ ξ, with ξ an unramified character, then we find

(ri ⊗ r∗j )
Iv = ⊕dk=1χ · ξ

where χ runs through the characters of Zv/H, as above. We conclude that dimLij =

0 by observing that the non-isomorphy of ri and rj implies that ξ does not factor

through Zv/H.

Now suppose v ramifies in F/F+. Let w denote the prime above v. In this case

Zv acts via the abelian group Gal(F/F+) × Zw/Iw. Let M denote the subspace

of ad ρ fixed by Gal(F/F+). Then dimLQ,v − h0
v = h1,unr(M)− h0(M) = 0 as in

V .3.1. This completes the verification of (d).

To complete the proof of Lemma V .2.6, it remains to estimate the local terms

at primes dividing `. This is the subject of the next section.
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V .5. Capturing ramification by tame classes.

In order to make Theorem V .2.2 effective, we need to find sets Q for which

dimH1
Q∗(F+, ad ρ) = 0. We follow the strategy of [TW]. For this additional hy-

potheses are needed. Unfortunately, we have not found an optimal set of hypothe-

ses. In the coordinates of (I.1.4) the map

(V .5.1) G̃0 → GL(n)×GL(1); g 7→ (g1, a = ν(g))

is an isomorphism. Let riρ, i = 1, 2, denote the composition of rρ with projection

on the i-th factor in (V .5.1.1). Thus Ker(r1ρ) determines an extension F 1 of F

with Galois group naturally a subgroup of GL(n, k); Ker(r2(ρ)) determines the

extension F (ζn−1
` ) of F , of degree [Q(ζn−1

` ) : Q] (cf. (V .1.1.4) and (V .1.1.7)). We

consider the following conditions.

Hypotheses V .5.2.

(a) F 1 ∩ F (ζ`) = F .

(b) The group Im(ρ) has no quotient of order `.

(c) Let V ⊂ ad ρ be an irreducible subrepresentation. Then there is s ∈ ΓF such

that rρ(s) has n distinct eigenvalues and such that ad (ρ)(s) has eigenvalue 1 on

V .

Theorem V .5.3. Assume Hypotheses V .5.2. Then there is an integer r such that,

for any m ≥ 1 there is a set Qm satisfying the hypotheses of V .1.4, and such that

moreoever

(a) #Qm = r;

(b) For all q ∈ Qm we have q = Nq ≡ 1 (mod `m);

(c) H1
Q∗

m
(F+, ad ρ(1)) = 0.

(d) rρ(Frobq) has n distinct eigenvalues, and in particular a distinguished eigen-

value αq of multiplicity one.

Proof. We begin by recalling that, for any Q as in V .1.4, and any q ∈ Q, the

subspace L⊥Q,q ⊂ H1(Zq, ad ρ(1)) is defined by

H1(Zq/Iq, ad ρ
′
α(1))

in the notation of V .2.1.2. In other words, L⊥Q,q consists of unramified classes with

trivial ad (ρα)(1)-component. Thus

(V .5.3.1)

H1
Q∗(F+, ad rρ(1)) = Ker[H1

∅ (F
+, ad ρ(1))→⊕q∈Qm

H1(Zq/Iq, ad ρα(1))].
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For r we take the dimension of H1
∅ (F

+, ad0ρ(1)). As in [TW,p. 567] we need to

find sets Qm satisfying conditions (a), (b), (d), and the hypotheses of V .1.4, and

such that the natural map

(V .5.3.2) H1
∅ (F

+, adρ(1))→⊕q∈Qm
H1(Zq/Iq, ad(ρα)(1))

is injective, hence an isomorphism for dimension reasons. Condition (b) asserts

that q splits completely in F (ζ`m).

Let [ψ] ∈ H1
∅ (F

+, adρ(1)) be a non-zero class. The objective is to find q as above

satisfying condition (b), (d), and V .1.4 and such that

(V .5.3.3) resq[ψ] ∈ H1(Zq/Iq, ad ρα(1)) is nontrivial.

By Chebotarev density it thus suffices to find σ ∈ ΓF+ such that

V .5.3.4. (i) σ fixes F+(ζ`m);

(ii) ρ(σ) has n distinct eigenvalues;

(iii) There is a distinguished eigenvalue α of ρ(σ) such that ψ(σ) /∈ ad ρ′α(1)

where ad ρ′α ⊂ ad ρ is the codimension one subspace defined with respect to α by

analogy with V .2.1.2.

Let F+
m = F+(ζ`m), and let Fm denote the extension of F+

m fixed by the kernel

of ad ρ. We claim ψ restricts to non-trivially to H1
∅∗(Fm, ad ρ(1)). The kernel of

the restriction map is H1(Gal(Fm/F+), ad ρ(1)). It suffices to show

(V .5.3.5) H1(Gal(Fm/F+), ad ρ(1)) = 0.

We argue as in [DDT], p. 84. The inflation-restriction sequence for Fm ⊃ F1 ⊃
F+ is an exact sequence

H1(Gal(F1/F
+), ad ρ(1)ΓF1 ) ↪→ H1(Gal(Fm/F+), ad ρ(1))

→[H1(Gal(Fm/F1), ad ρ(1))]ΓF+ .

Now ΓF1 acts trivially on ad ρ(1). Hence

[H1(Gal(Fm/F1), ad ρ(1))]ΓF+ ∼= Hom(Gal(Fm/F1), [ad ρ(1))]ΓF+ ).

Moreover, it follows from Condition V .5.2 (a) that Gal(F1/F
+) breaks up as the

direct product Gal(F1/F0)×Gal(F0/F
+). Thus

(V .5.3.6) [ad ρ(1))]ΓF+ ⊂ [ad ρ(1))]Gal(F1/F0) = {0}.
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Indeed, Gal(F1/F0) acts on ad ρ(1)) as a direct sum of copies of the natural action

on the `th roots of unity. But Gal(F1/F0) can be identified with the subgroup

of Aut(µ`) that acts trivially on µ
⊗(n−1)
` . The hypothesis ` > n implies that this

subgroup is non-trivial.

Thus the above exact sequence simplifies to yield

(V .5.3.7) H1(Gal(F1/F
+), ad ρ(1)) ∼−→ H1(Gal(Fm/F+), ad ρ(1)).

On the other hand, applying the inflation restriction sequence for F1 ⊃ F0 ⊃ F+

to the left-hand side of (V .5.3.7), we find

H1(Gal(F0/F
+), ad ρ(1)Gal(F1/F0)) ↪→ H1(Gal(F1/F

+), ad ρ(1))

→[H1(Gal(F1/F0), ad ρ(1))]Gal(F0/F
+).

Here the right-hand side vanishes because [F1 : F0] is prime to `, while the left-hand

side vanishes as in (V .5.3.6). This completes the verification of (V .5.3.5).

Now it follows from V .5.2 (a) and (b) that ρ remains absolutely irreducible

upon restriction to ΓF+
m

for all m. Thus, to verify (V .5.3.2), it suffices to find sets

of height one primes of F+
m satisfying conditions (b), (d), V .1.4, and (V .5.3.3),

with F+ replaced by F+
m . Conditions V .1.4.1-2 are already satisfied, and V .1.4.3

concerns only a finite set of primes, which we can avoid. We have

H1
∅ (Fm, ad rρ(1)) ⊂ Hom(ΓFm , ad rρ(1))

is the subset satisfying various ramification conditions. Thus let ψ ∈ H1
∅ (F

+
m , ad rρ(1)).

Its restriction to Fm is a homomorphism from ΓFm
to ad rρ whose image is a

Gal(Fm/F+
m)-submodule, say Vψ. Moreover, Gal(Fm/F+

m) = Gal(F0/F
+) by V .5.2

(a). Let s ∈ Gal(Fm/F+
m) satisfy the conditions of V .5.2 (c), and let σ0 be a lift-

ing of s to ΓF+
m

. It already satisfies conditions (i) and (ii) of V .5.3.4, and so does

σ = τσ0 for any τ ∈ ΓFm
. It remains to show that we can choose α and τ so that

σ satisfies condition (iii). Now the eigenvalues of ad rρ(s) are of the form αi · α−1
j ,

where αi, i = 1, . . . , n are the n distinct eigenvalues of rρ(s). Let vij be the corre-

sponding eigenvectors. By hypothesis V .5.2 (c) the fixed subspace V sψ is non-trivial

and is spanned by r non-trivial linear combinations vk =
∑
i aikvii, 1 ≤ k ≤ r. Now

ψ(σ) = ψ(τ) + ψ(σ0). Write ψ(σ0) =
∑
bijvij , ψ(τ) =

∑
ck(τ)vk + v′, where v′ is

a linear combination of the vij with i 6= j. Thus the coefficient of vii in ψ(σ) is

bi(τ) =
∑

ck(τ)aik + bii.



11

But we may vary the ck(τ) freely, and it is clear that by doing so we can arrange

that at least one bi(τ) is non-zero. Taking α = αi, we then see that σ satisfies

condition (iii). This completes the proof.

V .6. Eliminating tame deformations

Let q be a rational prime, q 6= `, and let v be a prime of F+ dividing q. The

maximal `-power quotient Iv,` of the inertia group Iv is isomorphic to Z`(1) as a

module over Zv/Iv, where the (1) denotes Tate twist. Let P ` ⊂ Iv be the kernel of

the canonical map to Iv,`; it is a profinite group with pro-order prime to `. Thus,

for any Zv-module M , the canonical inflation map H1(Zv/P `,M)→H1(Zv,M) is

an isomorphism.

Now let (ρ, V ) be an n-dimensional semi-simple unramified representation of Zv
with coefficients in a finite field k of characteristic `, and let M = ad ρ.

Lemma V .6.1. Suppose ρ is trivial and Nv 6= 1 (mod `). Then the inflation map

(V .6.2) H1(Zv/Iv,M)→H1(Zv/P `,M)

is an isomorphism.

Proof. We use the inflation-restriction sequence for the inclusion of Iv,` in Zv/P `:

(V .6.3)
0 → H1(Zv/Iv,M) → H1(Zv/P `,M) → Hom(Iv,`,M)Zv/Iv

= HomZv/Iv
(F`(1),M)

By our hypothesis, Zv/Iv acts non-trivially on F`(1) but trivially on M . Thus the

right-hand term in (V .6.3) vanishes.


