Applications of Chebotarev density

V.1. Definition of the deformation problem. As in the previous sections, we let $\Gamma_{F^+} = Gal(\overline{\mathbb{Q}}/F^+), \ \Gamma_F = Gal(\overline{\mathbb{Q}}/F)$. A decomposition group at the prime v is denoted Z_v , the inertia subgroup by I_v . The group \mathcal{G}_n , viewed as a \mathbb{Z} -group scheme, is as in the previous lectures. We fix a prime ℓ , unramified in F, and a representation $\overline{\rho} : \Gamma_{F^+} \to \tilde{G}(\overline{\mathbb{F}}_l)$, and let $r_{\overline{\rho}}$ denote the restriction of $\overline{\rho}$ to Γ_F . The representation $\overline{\rho}$ is assumed to satisfy the following conditions:

V.1.1.0. There is a finite subfield $k \subset \overline{\mathbb{F}}_l$ such that $\overline{\rho}$ takes values in $\tilde{G}(k)$.

V.1.1.1. The composite $\Gamma_{F^+} \to \tilde{G}(\overline{\mathbb{F}}_l) \to \{1, c\}$ cuts out F/F^+ .

V.1.1.2. $r_{\overline{\rho}}$ is unramified except at primes above ℓ and above a non-empty finite set of primes S_{\min} of F^+ . At primes above ℓ , $r_{\overline{\rho}}$ is crystalline. If $\mathfrak{p} \in S_{\min}$ then $\mathfrak{p} = vv^c$ splits in F and $r_{\overline{\rho}}|_{Z_v}$ breaks up as a direct sum of irreducible representations $\mathfrak{r}_{i,v}$. Moreover, there is at least one $\mathfrak{p} \in S_{\min}$ such that $r_{\overline{\rho}}|_{Z_v}$ is irreducible, with vas above.

V.1.1.3. Denote by c any lifting of c to a complex conjugation in Γ_{F^+} . In the adjoint representation ad $\overline{\rho}$ of Γ_{F^+} on $Lie(\tilde{G})$, the +1-eigenspace of c has dimension $\geq \frac{n(n-1)}{2}$.

V.1.1.4. The composite $\omega_{\overline{\rho}} = \nu \circ \overline{\rho} : \Gamma_{F^+} \to k^{\times}$, restricted to Γ_F , equals the (1-n)th power of the cyclotomic character, where $\nu : \tilde{G} \to GL(1)$ is the similitude character defined in §I.1.

Here and in what follows the term "crystalline," applied to ℓ -torsion modules, is used to refer to Galois representations obtained by the Fontaine-Laffaille construction. The details of this theory were recalled in earlier notes.

We note the following consequence of (V.1.1.2):

V.1.1.7. The intersection $F \cap \mathbb{Q}(\zeta_{\ell}) = \mathbb{Q}$.

Let \mathcal{O} denote the ring of integers in a totally ramified finite extension \mathbb{K} of the fraction field of the Witt ring W(k). Let $\mathcal{C}_{\mathcal{O}}$ denote the category of complete noetherian local \mathcal{O} -algebras with residue field k; morphisms in $\mathcal{C}_{\mathcal{O}}$ are assumed to be local (take maximal ideals to maximal ideals). If R is an object of $\mathcal{C}_{\mathcal{O}}$ we let m_R denote its maximal ideal. Since $\ell > 2$ by the banality hypothesis, the character $\omega_{\overline{\rho}}$ defined by V.1.1.4 has a unique lift $\omega_{\overline{\rho},R}: \Gamma_{F^+} \to R^{\times}$ for any object R of $\mathcal{C}_{\mathcal{O}}$.

V.1.2. Let R be an object of $\mathcal{C}_{\mathcal{O}}$. A deformation of $\overline{\rho}$ to R is a homomorphism $\rho: \Gamma_{F^+} \to \tilde{G}(R)$ such that

$$(V.1.2.1) \qquad \qquad \overline{\rho} \equiv \rho \pmod{m_R}.$$

$$(V.1.2.2) \qquad \qquad \nu \circ \rho(g) = \omega_{\overline{\rho},R}.$$

Here $\nu : \tilde{G}(R) \rightarrow R^{\times}$ is the similar character.

We assume

V.1.3. $\overline{\rho}$ has a deformation ρ_0 to \mathcal{O} such that for each prime λ of F dividing ℓ $r_{\rho_0}|_{\Gamma_{\lambda}}$ is crystalline and the filtered module has n graded pieces, each free of rank one over \mathcal{O} , and of weights $0, 1, \ldots, n-1$.

V.1.4. We will be considering deformations of $\overline{\rho}$ with conditions at certain auxiliary sets of primes. Let Q denote a finite set of height one primes \mathfrak{q} of F^+ disjoint from $S_{min} \cup S_{\ell}$ [divisors of ℓ] which satisfy

V.1.4.1. \mathfrak{q} splits in F and the division algebras D and D[#] are split above \mathfrak{q} ;

V.1.4.2. The residue characteristic q of q satisfies $q \equiv 1 \pmod{\ell}$;

V.1.4.3. $\overline{\rho}(Frob_{\mathfrak{q}})$ has a distinguished eigenvalue $\alpha_{\mathfrak{q}}$ of multiplicity one.

As representations of $Z_{\mathfrak{q}}$, we write

$$(V.1.4.4) \qquad \qquad \overline{\rho} = \overline{\rho}_{\alpha} \oplus \overline{\rho}_{\beta},$$

where $\overline{\rho}_{\alpha}$ is the $\alpha_{\mathfrak{q}}$ -eigenspace of $\overline{\rho}(Frob_{\mathfrak{q}})$ and $\overline{\rho}_{\beta}$ is the direct sum of the remaining eigenspaces. Let $\Delta_{\mathfrak{q}}$ denote the maximal ℓ -power quotient of $(\mathbb{Z}/q\mathbb{Z})^{\times}$ and $\Delta_Q = \prod_{\mathfrak{q}\in Q} \Delta_{\mathfrak{q}}$.

By a deformation of $\overline{\rho}$ of type Q we shall mean a pair (R, ρ) as in Definition V.1.2 such that:

V.1.5.1. For each prime λ of F dividing ℓ , $r_{\rho}|_{Z_{\lambda}}$ is crystalline and the filtered module has n graded pieces, each free of rank one over R, and of weights $0, 1, \ldots, n-1$.

V.1.5.2. If $\mathfrak{q} \in Q$ then $r_{\rho}|_{Z_{\mathfrak{q}}} = \chi \oplus r'$ where $r' = r'_{\mathfrak{q}}$ is unramified and $\chi = \chi_{\mathfrak{q}} : Z_{\mathfrak{q}} \to R^{\times}$ is a character whose reduction modulo m_R is unramified and takes $Frob_{\mathfrak{q}}$ to $\alpha_{\mathfrak{q}}$.

V.1.5.3. If $v \notin Q \cup \{\ell\}$ then $\rho(I_v) \xrightarrow{\sim} \overline{\rho}(I_v)$.

Proposition V.1.6. There exists a universal deformation (R_Q, ρ_Q) of $\overline{\rho}$ of type Q.

Proof. We need to verify that the conditions in V.1.5 define a Ramakrishna subcategory.

2

V.1.7 For $\mathfrak{q} \in Q$ we let $\chi_{\mathfrak{q}} : Z_{\mathfrak{q}} \to R_Q^{\times}$ be the character defined in (V.1.5.2). Then $\chi_{\mathfrak{q}}$ necessarily factors through a natural map $\Delta_{\mathfrak{q}} \to R_Q^{\times}$. Thus R_Q is tautologically an $\mathcal{O}[\Delta_Q]$ -module.

V.2. Bounding the Selmer group.

Henceforward, we assume $\ell > n$. We fix a finite set Q of primes of F^+ as in V.1.4. Let $ad \ r_{\overline{\rho}}$ denote the composition of $\overline{\rho}$ with the adjoint representation $ad: \tilde{G} \rightarrow Aut(\mathfrak{gl}(n))$, where $\mathfrak{gl}(n) \subset Lie(\tilde{G})$ is viewed as the kernel of the similitude map. For each place v of F^+ we fix a k-subspace $L_{Q,v} \subset H^1(Z_v, ad \ r_{\overline{\rho}})$. The $L_{Q,v}$ are chosen as follows:

V.2.1.1. For v dividing ℓ , $L_{Q,v}$ is the Bloch-Kato group $H^1_f(Z_v, ad r_{\overline{\rho}})$.

In [BIK], Bloch and Kato work with characteristic zero coefficients. The ℓ -torsion group $H^1_f(Z_v, ad r_{\overline{\rho}})$ will be defined in V.4, below.

V.2.1.2. For $v = q \in Q$, write

$$ad \ r_{\overline{\rho}} = ad \ \overline{\rho}_{\alpha} \oplus ad \ \overline{\rho}'_{\alpha},$$

where

$$ad \ \overline{\rho}'_{\alpha} = ad \ \overline{\rho}_{\beta} \oplus Hom(\overline{\rho}_{\alpha}, \overline{\rho}_{\beta}) \oplus Hom(\overline{\rho}_{\beta}, \overline{\rho}_{\alpha}),$$

(notation V.1.4.4). We set

$$L_{Q,\mathfrak{q}} = H^1(Z_{\mathfrak{q}}, ad \ \overline{\rho}_{\alpha}) \oplus H^1(Z_{\mathfrak{q}}/I_{\mathfrak{q}}, ad \ \overline{\rho}_{\alpha}').$$

V.2.1.3. At all other finite primes $v L_{Q,v} = H^1(Z_v/I_v, ad r_{\overline{\rho}}^{I_v}).$

V.2.1.4. At archimedean primes we take $L_{Q,v} = 0$.

There is a natural isomorphism (Poincaré duality)

$$ad \ r_{\overline{\rho}} \xrightarrow{\sim} ad \ r_{\overline{\rho}}^*,$$

hence natural non-degenerate pairings for each place v

$$(V.2.1.5) H^i(Z_v, ad \ r_{\overline{\rho}}) \times H^{2-i}(Z_v, ad \ r_{\overline{\rho}}(1)) \to \mathbb{Q}/\mathbb{Z}$$

(Tate's local duality), where (1) denotes Tate twist. For each v we let $L_{Q,v}^{\perp} \subset H^1(Z_v, ad \ r_{\overline{\rho}}(1))$ be the annihilator of $L_{Q,v}$ with respect to (V.2.1.5), and define the Selmer group of $ad \ r_{\overline{\rho}}(1)$, relative to the data $L_{Q,v}^{\perp}$:

$$(V.2.1.6) H^{1}_{Q^{*}}(F^{+}, ad \ r_{\overline{\rho}}(1)) = \{h \in H^{1}(F^{+}, ad \ r_{\overline{\rho}}(1)) \mid \forall \ v \ r_{v}(h) \in L^{\perp}_{Q,v}\}$$

(So the index is Q rather than S or \mathcal{D} .) We write \mathfrak{M}_Q for m_{R_Q} . The objective of this section is to prove the following theorem.

Theorem V.2.2. The Selmer group $H^1_{Q^*}(F^+, ad r_{\overline{\rho}}(1))$ is finite and we have the inequality

$$\dim_k \mathfrak{M}_Q/(\mathfrak{M}_Q^2, \ell) \le \#Q + \dim_k H^1_{Q^*}(F^+, ad r_{\overline{\rho}}(1)).$$

In particular, if dim $H^1_{Q^*}(F^+, adr_{\overline{\rho}}) = 0$ then the \mathcal{O} -algebra R_Q can be topologically generated by #Q elements.

This theorem generalizes Lemma 5 of [TW]. Henceforward we write dim instead of \dim_k . We begin by translating the theorem into a statement purely in terms of Galois cohomology.

Proposition V.2.3. Define the Selmer group of ad $r_{\overline{\rho}}$, relative to the data $L_{Q,v}$:

$$H^1_Q(F^+, ad \ r_{\overline{\rho}}) = \{h \in H^1(F^+, ad \ r_{\overline{\rho}}) \mid \forall \ v \ r_v(h) \in L_{Q,v}\}.$$

Then

$$\dim \mathfrak{M}_Q/(\mathfrak{M}_Q^2, \ell) = \dim H^1_Q(F^+, ad \ r_{\overline{\rho}}).$$

Proof. This is proved as in [DDT,Theorem 2.41]. Let \mathcal{D} denote the category of $k[\Gamma_{F^+}]$ -modules M finite over k with dimension divisible by n, satisfying the analogues of properties V.1.5.1-3:

V.2.3.1. As a module over Z_v , v above ℓ , M is a Fontaine-Laffaille representation (cf. $\S V.4$, below).

V.2.3.2. As a module over $Z_{\mathfrak{q}}$, \mathfrak{q} in Q, M is a the sum of an unramified module Band a module A whose semisimplification is isotypic for the unramified character $\alpha_{\mathfrak{q}}$.

V.2.3.3. If $v \notin Q \cup \{\ell\}$ then the action of I_v on M is a direct sum of copies of irreducible direct summands of $\overline{\rho}(I_v)$.

The category \mathcal{D} is closed under products and taking subobjects and quotient objects. Obviously it contains $\overline{\rho}$. Thus Lemma 2.39 of [DDT] applies and yields

$$\dim \mathfrak{M}_Q/(\mathfrak{M}_Q^2, \ell) = \dim H^1_{\mathcal{D}}(F^+, ad r_{\overline{\rho}}),$$

where $H^1_{\mathcal{D}}(F^+, ad \ r_{\overline{\rho}}) \subset H^1(F^+, ad \ r_{\overline{\rho}}) \simeq Ext^1_{\Gamma_{F^+}}(\overline{\rho}, \overline{\rho})$ is the subspace of classes whose corresponding extensions lie in \mathcal{D} .

Now we have to verify that conditions V.2.3.1-3 for extensions translate into the cohomological conditions V.2.1.1-3. Specifically, the equivalence of V.2.3.1 and V.2.1.1 is proved below in V.4.7. The equivalence of V.2.3.2 with V.2.1.2 is easy to verify. At finite places $v \notin Q \cup \ell \cup S_{min}$, and such that v is unramified in F, V.2.3.3 says the action of I_v is trivial, which is obviously equivalent to V.2.1.3. Now suppose v in S_{min} . The compatibility of V.2.3.3 and V.2.1.3 is equivalent to the condition

$$H^{1}(Z_{v}/I_{v}, Hom_{I_{v}}(\overline{\rho}, \overline{\rho})) \simeq Ker[H^{1}(Z_{v}, Hom(\overline{\rho}, \overline{\rho})) \to H^{1}(I_{v}, Hom(\overline{\rho}, \overline{\rho}))],$$

and this is just the inflation-restriction sequence. For v ramified in F, the argument is similar.

We thus need to prove the inequality

(V.2.4)
$$\dim H^1_Q(F^+, ad \ r_{\overline{\rho}}) - \dim H^1_{Q^*}(F^+, ad \ r_{\overline{\rho}}(1)) \le \#Q.$$

Following Wiles [W,Prop. 1.6], the left hand side of (V.2.4) can be expressed as a sum of local terms. We write the formula as in [DDT, Theorem 2.19], where it is stated for a general number field:

Proposition V.2.5. Let $h^0 = \dim H^0(F^+, ad r_{\overline{\rho}}), h^{0,*} = \dim H^0(F^+, ad r_{\overline{\rho}}(1)).$ For any place v of F^+ let $h^0_v = \dim H^0(Z_v, ad r_{\overline{\rho}})$. Then we have the formula

$$\dim H^1_Q(F^+, ad \ r_{\overline{\rho}}) - \dim H^1_{Q^*}(F^+, ad \ r_{\overline{\rho}}(1)) = h^0 - h^{0,*} + \sum_v (\dim L_{Q,v} - h^0_v).$$

Lemma V.2.6. Under the hypotheses of Proposition V.2.5, the local terms are computed as follows:

(a) For v real, $h_v^0 \ge \frac{n(n-1)}{2}$, dim $L_{Q,v} = 0$. (b) For $v \in Q$, dim $L_{Q,v} - h_v^0 = 1$. (c) For v above ℓ , dim $L_{Q,v} - h_v^0 = [k(v) : \mathbb{F}_\ell] \cdot \frac{n(n-1)}{2}$. (d) For all other places v, dim $L_{Q,v} - h_v^0 = 0$.

Finally, the global terms are given by $h^0 = h^{0,*} = 0$.

Admit this lemma for the moment. Comparing Proposition V.2.5 with Lemma V.2.6, we find

$$(V.2.7) \quad \dim H^1_Q(F^+, ad \ r_{\overline{\rho}}) - \dim H^1_{Q^*}(F^+, ad \ r_{\overline{\rho}}(1)) \\ \leq \#Q - \sum_{v \ real} \frac{n(n-1)}{2} + \sum_{v|\ell} [k(v) : \mathbb{F}_{\ell}] \cdot \frac{n(n-1)}{2} \\ \leq \#Q - [F^+ : \mathbb{Q}] \frac{n(n-1)}{2} + [F^+ : \mathbb{Q}] \frac{n(n-1)}{2} \leq \#Q$$

Theorem V.2.2 now follows by comparing (V.2.7) with Proposition V.2.3.

V.2.8. We begin by calculating the global terms in Lemma V.2.6. The hypothesis that S_{min} is non-empty implies that $\overline{\rho}$ is already irreducible when restricted to

a decomposition group of Γ_F above a prime in S_{min} . Thus $H^0(F, ad r_{\overline{\rho}})$ is onedimensional and given by the trace of $r_{\overline{\rho}}$. But complex conjugation c acts as -1 on the center of the GL(n)-component of the L-group, so $H^0(F^+, ad r_{\overline{\rho}})$ is trivial. In the same way, and using V.1.1.5, we see that $h^{0,*} = 0$.

The local terms will be computed in the next two sections.

V.3. Local calculations, char $v \neq \ell$.

In this section we carry out the calculations summarized in Lemma V.2.6. For any place v and any finite $\mathbb{F}_{\ell}[Z_v]$ -module M we set

$$h^{i}(M) = \dim H^{i}(\Gamma_{v}, M); \quad h^{i,unr}(M) = \dim H^{i}(Z_{v}/I_{v}, M^{I_{v}}),$$

i = 0, 1, 2.

V.3.1. If M is an unramified Z_v -module then of course $h^{0,unr}(M) = h^0(M)$. On the other hand, M is always assumed to be $Frob_v$ -semi-simple when ℓ is not equal to the residue characteristic of v. Then M is the sum of characters of Z_v/I_v and

(V.3.1)
$$h^{1,unr}(M) = h^0(M) = \dim M^{Z_v}.$$

It follows that, for v unramified, $v \notin Q$, we have

$$\dim L_{Q,v} - h_v^0 = 0.$$

This verifies V.2.6 (d) at unramified places. V.3.2. Now take $v \in Q$. We have

$$\dim L_{Q,v} - h_v^0 = h^1(ad \ \overline{\rho}_\alpha) - h^0(ad \ \overline{\rho}_\alpha) + h^{1,unr}(ad \ \overline{\rho}_\alpha)' - h^0(ad \ \overline{\rho}_\alpha)'.$$

Since $ad(\overline{\rho}_{\alpha})'$ is unramified the last two terms cancel, by (V.3.1). On the other hand, the first two terms give

$$h^0(ad \ \overline{\rho}_{\alpha}(1))$$

by the local Euler characteristic formula and local duality (cf. [W,p. 473]). But $\overline{\rho}_{\alpha}$ is one-dimensional, so $ad(\overline{\rho}_{\alpha})$ is the trivial Z_v module. Since $q \equiv 1 \pmod{\ell}$ the Tate twist is also trivial, and we find

$$\dim L_{Q,v} - h_v^0 = 1,$$

which verifies V.2.6 (b).

V.3.3. For v real, we have dim $L_{Q,v} = 0$, by hypothesis. On the other hand,

$$h_v^0 = \dim[ad \ r_{\overline{\rho}}]^{c=1},$$

$$\dim L_{Q,v} - h_v^0 = h^{1,unr} (ad \ r_{\overline{\rho}}) - h^0 (ad \ r_{\overline{\rho}}).$$

First, suppose $v \in S_{min}$, and $r_{\overline{\rho}} = \bigoplus_{i=1}^{r} (\mathfrak{r}_i)^{a_i}$, where the \mathfrak{r}_i are irreducible and distinct. Returning to V.1.1.2, we find that

$$\dim[ad \ r_{\overline{\rho}}]^{Z_v} = \sum_i (a_i)^2.$$

Let $L_{ij} = H^1(Z_v/I_v, \mathfrak{r}_i \otimes \mathfrak{r}_j^*)$, where * denotes dual. It suffices to show that $\dim L_{ij} = \delta_{ij}$. Suppose $\mathfrak{r}_i|_{I_v}$ breaks up as the sum of d irreducible representations τ_{ik} . Then

$$(V.3.5) \qquad \qquad (\mathfrak{r}_i \otimes \mathfrak{r}_i^*)^{I_v} = \bigoplus_{k=1}^d [ad \ \tau_k]^{I_v}$$

has dimension d. As a representation of the cyclic group Z_v/I_v , the right-hand side of V.3.5 is isomorphic to the sum $\oplus \chi$ of the distinct characters of Z_v/H , where $H \supset I_v$ is the stabilizer in Z_v of τ_1 , say. Thus

$$\dim L_{ii} = \sum_{\chi} \dim H^1(Z_v/H, \chi) = 1,$$

since only the trivial character has non-trivial cohomology. The verification for L_{ij} with $i \neq j$ breaks up into two cases. If \mathfrak{r}_j is not an unramified twist of r_i , then $(\mathfrak{r}_i \otimes \mathfrak{r}_j^*)^{I_v} = 0$. If $\mathfrak{r}_i = \mathfrak{r}_j \otimes \xi$, with ξ an unramified character, then we find

$$(\mathfrak{r}_i \otimes \mathfrak{r}_j^*)^{I_v} = \oplus_{k=1}^d \chi \cdot \xi$$

where χ runs through the characters of Z_v/H , as above. We conclude that dim $L_{ij} = 0$ by observing that the non-isomorphy of \mathfrak{r}_i and \mathfrak{r}_j implies that ξ does not factor through Z_v/H .

Now suppose v ramifies in F/F^+ . Let w denote the prime above v. In this case Z_v acts via the abelian group $Gal(F/F^+) \times Z_w/I_w$. Let M denote the subspace of $ad \ \overline{\rho}$ fixed by $Gal(F/F^+)$. Then $\dim L_{Q,v} - h_v^0 = h^{1,unr}(M) - h^0(M) = 0$ as in V.3.1. This completes the verification of (d).

To complete the proof of Lemma V.2.6, it remains to estimate the local terms at primes dividing ℓ . This is the subject of the next section.

V.5. Capturing ramification by tame classes.

In order to make Theorem V.2.2 effective, we need to find sets Q for which $\dim H^1_{Q^*}(F^+, ad \overline{\rho}) = 0$. We follow the strategy of [TW]. For this additional hypotheses are needed. Unfortunately, we have not found an optimal set of hypotheses. In the coordinates of (I.1.4) the map

(V.5.1)
$$\tilde{G}^0 \to GL(n) \times GL(1); \ g \mapsto (g_1, a = \nu(g))$$

is an isomorphism. Let $r_{\overline{\rho}}^i$, i = 1, 2, denote the composition of $r_{\overline{\rho}}$ with projection on the *i*-th factor in (V.5.1.1). Thus $Ker(r_{\overline{\rho}}^1)$ determines an extension F^1 of Fwith Galois group naturally a subgroup of GL(n,k); $Ker(r^2(\overline{\rho}))$ determines the extension $F(\zeta_{\ell}^{n-1})$ of F, of degree $[\mathbb{Q}(\zeta_{\ell}^{n-1}):\mathbb{Q}]$ (cf. (V.1.1.4) and (V.1.1.7)). We consider the following conditions.

Hypotheses V.5.2.

(a) $F^1 \cap F(\zeta_\ell) = F$.

(b) The group $Im(\overline{\rho})$ has no quotient of order ℓ .

(c) Let $V \subset ad \overline{\rho}$ be an irreducible subrepresentation. Then there is $s \in \Gamma_F$ such that $r_{\overline{\rho}}(s)$ has n distinct eigenvalues and such that $ad(\overline{\rho})(s)$ has eigenvalue 1 on V.

Theorem V.5.3. Assume Hypotheses V.5.2. Then there is an integer r such that, for any $m \ge 1$ there is a set Q_m satisfying the hypotheses of V.1.4, and such that moreoever

$$(a) \ \#Q_m = r_s$$

(b) For all $\mathfrak{q} \in Q_m$ we have $q = N\mathfrak{q} \equiv 1 \pmod{\ell^m}$;

(c) $H^1_{Q^*_{-}}(F^+, ad \ \overline{\rho}(1)) = 0.$

(d) $r_{\overline{\rho}}(Frob_{\mathfrak{q}})$ has n distinct eigenvalues, and in particular a distinguished eigenvalue $\alpha_{\mathfrak{q}}$ of multiplicity one.

Proof. We begin by recalling that, for any Q as in V.1.4, and any $\mathfrak{q} \in Q$, the subspace $L_{Q,\mathfrak{q}}^{\perp} \subset H^1(Z_{\mathfrak{q}}, ad \overline{\rho}(1))$ is defined by

$$H^1(Z_{\mathfrak{q}}/I_{\mathfrak{q}}, ad \ \overline{\rho}'_{\alpha}(1))$$

in the notation of V.2.1.2. In other words, $L_{Q,\mathfrak{q}}^{\perp}$ consists of unramified classes with trivial $ad \ (\overline{\rho}_{\alpha})(1)$ -component. Thus

$$H^1_{Q^*}(F^+, ad \ r_{\overline{\rho}}(1)) = Ker[H^1_{\emptyset}(F^+, ad \ \overline{\rho}(1)) \to \bigoplus_{\mathfrak{q} \in Q_m} H^1(Z_{\mathfrak{q}}/I_{\mathfrak{q}}, ad \ \overline{\rho}_{\alpha}(1))]$$

For r we take the dimension of $H^1_{\emptyset}(F^+, ad^0\overline{\rho}(1))$. As in [TW,p. 567] we need to find sets Q_m satisfying conditions (a), (b), (d), and the hypotheses of V.1.4, and such that the natural map

$$(V.5.3.2) H^1_{\emptyset}(F^+, ad\overline{\rho}(1)) \to \bigoplus_{\mathfrak{q}\in Q_m} H^1(Z_{\mathfrak{q}}/I_{\mathfrak{q}}, ad(\overline{\rho}_{\alpha})(1))$$

is injective, hence an isomorphism for dimension reasons. Condition (b) asserts that \mathfrak{q} splits completely in $F(\zeta_{\ell^m})$.

Let $[\psi] \in H^1_{\emptyset}(F^+, ad\overline{\rho}(1))$ be a non-zero class. The objective is to find \mathfrak{q} as above satisfying condition (b), (d), and V.1.4 and such that

$$(V.5.3.3) res_{\mathfrak{q}}[\psi] \in H^1(Z_{\mathfrak{q}}/I_{\mathfrak{q}}, ad \ \overline{\rho}_{\alpha}(1)) \text{ is nontrivial.}$$

By Chebotarev density it thus suffices to find $\sigma \in \Gamma_{F^+}$ such that

V.5.3.4. (i) σ fixes $F^+(\zeta_{\ell^m})$;

(ii) $\overline{\rho}(\sigma)$ has n distinct eigenvalues;

(iii) There is a distinguished eigenvalue α of $\overline{\rho}(\sigma)$ such that $\psi(\sigma) \notin ad \ \overline{\rho}'_{\alpha}(1)$

where $ad \ \overline{\rho}'_{\alpha} \subset ad \ \overline{\rho}$ is the codimension one subspace defined with respect to α by analogy with V.2.1.2.

Let $F_m^+ = F^+(\zeta_{\ell^m})$, and let F_m denote the extension of F_m^+ fixed by the kernel of $ad \ \overline{\rho}$. We claim ψ restricts to non-trivially to $H^1_{\emptyset^*}(F_m, ad \ \overline{\rho}(1))$. The kernel of the restriction map is $H^1(Gal(F_m/F^+), ad \ \overline{\rho}(1))$. It suffices to show

(V.5.3.5)
$$H^1(Gal(F_m/F^+), ad \ \overline{\rho}(1)) = 0.$$

We argue as in [DDT], p. 84. The inflation-restriction sequence for $F_m \supset F_1 \supset F^+$ is an exact sequence

$$H^{1}(Gal(F_{1}/F^{+}), ad \ \overline{\rho}(1)^{\Gamma_{F_{1}}}) \hookrightarrow H^{1}(Gal(F_{m}/F^{+}), ad \ \overline{\rho}(1))$$
$$\rightarrow [H^{1}(Gal(F_{m}/F_{1}), ad \ \overline{\rho}(1))]^{\Gamma_{F^{+}}}.$$

Now Γ_{F_1} acts trivially on $ad \overline{\rho}(1)$. Hence

$$[H^1(Gal(F_m/F_1), ad \overline{\rho}(1))]^{\Gamma_{F^+}} \cong Hom(Gal(F_m/F_1), [ad \overline{\rho}(1))]^{\Gamma_{F^+}}).$$

Moreover, it follows from Condition V.5.2 (a) that $Gal(F_1/F^+)$ breaks up as the direct product $Gal(F_1/F_0) \times Gal(F_0/F^+)$. Thus

$$(V.5.3.6) [ad \ \overline{\rho}(1))]^{\Gamma_{F^+}} \subset [ad \ \overline{\rho}(1))]^{Gal(F_1/F_0)} = \{0\}.$$

Indeed, $Gal(F_1/F_0)$ acts on $ad \overline{\rho}(1)$) as a direct sum of copies of the natural action on the ℓ th roots of unity. But $Gal(F_1/F_0)$ can be identified with the subgroup of $Aut(\mu_\ell)$ that acts trivially on $\mu_\ell^{\otimes (n-1)}$. The hypothesis $\ell > n$ implies that this subgroup is non-trivial.

Thus the above exact sequence simplifies to yield

$$(V.5.3.7) \qquad \qquad H^1(Gal(F_1/F^+), ad \ \overline{\rho}(1)) \xrightarrow{\sim} H^1(Gal(F_m/F^+), ad \ \overline{\rho}(1)).$$

On the other hand, applying the inflation restriction sequence for $F_1 \supset F_0 \supset F^+$ to the left-hand side of (V.5.3.7), we find

$$H^{1}(Gal(F_{0}/F^{+}), ad \ \overline{\rho}(1)^{Gal(F_{1}/F_{0})}) \hookrightarrow H^{1}(Gal(F_{1}/F^{+}), ad \ \overline{\rho}(1))$$
$$\rightarrow [H^{1}(Gal(F_{1}/F_{0}), ad \ \overline{\rho}(1))]^{Gal(F_{0}/F^{+})}.$$

Here the right-hand side vanishes because $[F_1 : F_0]$ is prime to ℓ , while the left-hand side vanishes as in (V.5.3.6). This completes the verification of (V.5.3.5).

Now it follows from V.5.2 (a) and (b) that $\overline{\rho}$ remains absolutely irreducible upon restriction to $\Gamma_{F_m^+}$ for all m. Thus, to verify (V.5.3.2), it suffices to find sets of height one primes of F_m^+ satisfying conditions (b), (d), V.1.4, and (V.5.3.3), with F^+ replaced by F_m^+ . Conditions V.1.4.1-2 are already satisfied, and V.1.4.3 concerns only a finite set of primes, which we can avoid. We have

$$H^1_{\emptyset}(F_m, ad \ r_{\overline{\rho}}(1)) \subset Hom(\Gamma_{F_m}, ad \ r_{\overline{\rho}}(1))$$

is the subset satisfying various ramification conditions. Thus let $\psi \in H^1_{\emptyset}(F_m^+, ad r_{\overline{\rho}}(1))$. Its restriction to F_m is a homomorphism from Γ_{F_m} to $ad r_{\overline{\rho}}$ whose image is a $Gal(F_m/F_m^+)$ -submodule, say V_{ψ} . Moreover, $Gal(F_m/F_m^+) = Gal(F_0/F^+)$ by V.5.2 (a). Let $s \in Gal(F_m/F_m^+)$ satisfy the conditions of V.5.2 (c), and let σ_0 be a lifting of s to $\Gamma_{F_m^+}$. It already satisfies conditions (i) and (ii) of V.5.3.4, and so does $\sigma = \tau \sigma_0$ for any $\tau \in \Gamma_{F_m}$. It remains to show that we can choose α and τ so that σ satisfies condition (iii). Now the eigenvalues of $ad r_{\overline{\rho}}(s)$ are of the form $\alpha_i \cdot \alpha_j^{-1}$, where $\alpha_i, i = 1, \ldots, n$ are the n distinct eigenvalues of $r_{\overline{\rho}}(s)$. Let v_{ij} be the corresponding eigenvectors. By hypothesis V.5.2 (c) the fixed subspace V_{ψ}^s is non-trivial and is spanned by r non-trivial linear combinations $v_k = \sum_i a_{ik}v_{ii}, 1 \le k \le r$. Now $\psi(\sigma) = \psi(\tau) + \psi(\sigma_0)$. Write $\psi(\sigma_0) = \sum b_{ij}v_{ij}, \psi(\tau) = \sum c_k(\tau)v_k + v'$, where v' is a linear combination of the v_{ij} with $i \ne j$. Thus the coefficient of v_{ii} in $\psi(\sigma)$ is

$$b_i(\tau) = \sum c_k(\tau)a_{ik} + b_{ii}.$$

10

But we may vary the $c_k(\tau)$ freely, and it is clear that by doing so we can arrange that at least one $b_i(\tau)$ is non-zero. Taking $\alpha = \alpha_i$, we then see that σ satisfies condition (iii). This completes the proof.

V.6. Eliminating tame deformations

Let q be a rational prime, $q \neq \ell$, and let v be a prime of F^+ dividing q. The maximal ℓ -power quotient $I_{v,\ell}$ of the inertia group I_v is isomorphic to $\mathbb{Z}_{\ell}(1)$ as a module over Z_v/I_v , where the (1) denotes Tate twist. Let $P^{\ell} \subset I_v$ be the kernel of the canonical map to $I_{v,\ell}$; it is a profinite group with pro-order prime to ℓ . Thus, for any Z_v -module M, the canonical inflation map $H^1(Z_v/P^{\ell}, M) \to H^1(Z_v, M)$ is an isomorphism.

Now let $(\overline{\rho}, V)$ be an *n*-dimensional semi-simple unramified representation of Z_v with coefficients in a finite field k of characteristic ℓ , and let $M = ad \overline{\rho}$.

Lemma V.6.1. Suppose $\overline{\rho}$ is trivial and $Nv \neq 1 \pmod{\ell}$. Then the inflation map

$$(V.6.2) H^1(Z_v/I_v, M) \to H^1(Z_v/P^{\ell}, M)$$

is an isomorphism.

Proof. We use the inflation-restriction sequence for the inclusion of $I_{v,\ell}$ in Z_v/P^{ℓ} :

(V.6.3)
$$0 \to H^1(Z_v/I_v, M) \to H^1(Z_v/P^{\ell}, M) \to Hom(I_{v,\ell}, M)^{Z_v/I_v}$$
$$= Hom_{Z_v/I_v}(\mathbb{F}_{\ell}(1), M)$$

By our hypothesis, Z_v/I_v acts non-trivially on $\mathbb{F}_{\ell}(1)$ but trivially on M. Thus the right-hand term in (V.6.3) vanishes.