Applications of Chebotarev density

V.1. Definition of the deformation problem. As in the previous sections, we let $\Gamma_{F^{+}}=\operatorname{Gal}\left(\overline{\mathbb{Q}} / F^{+}\right), \Gamma_{F}=\operatorname{Gal}(\overline{\mathbb{Q}} / F)$. A decomposition group at the prime v is denoted Z_{v}, the inertia subgroup by I_{v}. The group \mathcal{G}_{n}, viewed as a \mathbb{Z}-group scheme, is as in the previous lectures. We fix a prime ℓ, unramified in F, and a representation $\bar{\rho}: \Gamma_{F^{+}} \rightarrow \tilde{G}\left(\overline{\mathbb{F}}_{l}\right)$, and let $r_{\bar{\rho}}$ denote the restriction of $\bar{\rho}$ to Γ_{F}. The representation $\bar{\rho}$ is assumed to satisfy the following conditions:
V.1.1.0. There is a finite subfield $k \subset \overline{\mathbb{F}}_{l}$ such that $\bar{\rho}$ takes values in $\tilde{G}(k)$.
V.1.1.1. The composite $\Gamma_{F^{+}} \rightarrow \tilde{G}\left(\overline{\mathbb{F}}_{l}\right) \rightarrow\{1, c\}$ cuts out F / F^{+}.
V.1.1.2. $r_{\bar{\rho}}$ is unramified except at primes above ℓ and above a non-empty finite set of primes $S_{\text {min }}$ of F^{+}. At primes above $\ell, r_{\bar{\rho}}$ is crystalline. If $\mathfrak{p} \in S_{\text {min }}$ then $\mathfrak{p}=v v^{c}$ splits in F and $\left.r_{\bar{\rho}}\right|_{Z_{v}}$ breaks up as a direct sum of irreducible representations $\mathfrak{r}_{i, v}$. Moreover, there is at least one $\mathfrak{p} \in S_{\text {min }}$ such that $\left.r_{\bar{\rho}}\right|_{Z_{v}}$ is irreducible, with v as above.
V.1.1.3. Denote by c any lifting of c to a complex conjugation in $\Gamma_{F^{+}}$. In the adjoint representation ad $\bar{\rho}$ of $\Gamma_{F^{+}}$on Lie (\tilde{G}), the +1 -eigenspace of c has dimension $\geq \frac{n(n-1)}{2}$.
V.1.1.4. The composite $\omega_{\bar{\rho}}=\nu \circ \bar{\rho}: \Gamma_{F^{+}} \rightarrow k^{\times}$, restricted to Γ_{F}, equals the $(1-n)$ th power of the cyclotomic character, where $\nu: \tilde{G} \rightarrow G L(1)$ is the similitude character defined in §I.1.

Here and in what follows the term "crystalline," applied to ℓ-torsion modules, is used to refer to Galois representations obtained by the Fontaine-Laffaille construction. The details of this theory were recalled in earlier notes.

We note the following consequence of (V.1.1.2):
V.1.1.7. The intersection $F \cap \mathbb{Q}\left(\zeta_{\ell}\right)=\mathbb{Q}$.

Let \mathcal{O} denote the ring of integers in a totally ramified finite extension \mathbb{K} of the fraction field of the Witt ring $W(k)$. Let $\mathcal{C}_{\mathcal{O}}$ denote the category of complete noetherian local \mathcal{O}-algebras with residue field k; morphisms in $\mathcal{C}_{\mathcal{O}}$ are assumed to be local (take maximal ideals to maximal ideals). If R is an object of $\mathcal{C}_{\mathcal{O}}$ we let m_{R} denote its maximal ideal. Since $\ell>2$ by the banality hypothesis, the character $\omega_{\bar{\rho}}$ defined by V.1.1.4 has a unique lift $\omega_{\bar{\rho}, R}: \Gamma_{F^{+}} \rightarrow R^{\times}$for any object R of $\mathcal{C}_{\mathcal{O}}$.
V.1.2. Let R be an object of $\mathcal{C}_{\mathcal{O}}$. A deformation of $\bar{\rho}$ to R is a homomorphism $\rho: \Gamma_{F^{+}} \rightarrow \tilde{G}(R)$ such that

$$
\begin{gather*}
\bar{\rho} \equiv \rho \quad\left(\bmod m_{R}\right) . \tag{V.1.2.1}\\
1
\end{gather*}
$$

$$
\begin{equation*}
\nu \circ \rho(g)=\omega_{\bar{\rho}, R} . \tag{V.1.2.2}
\end{equation*}
$$

Here $\nu: \tilde{G}(R) \rightarrow R^{\times}$is the similitude character.
We assume
V.1.3. $\bar{\rho}$ has a deformation ρ_{0} to \mathcal{O} such that for each prime λ of F dividing ℓ $\left.r_{\rho_{0}}\right|_{\lambda}$ is crystalline and the filtered module has n graded pieces, each free of rank one over \mathcal{O}, and of weights $0,1, \ldots, n-1$.
V.1.4. We will be considering deformations of $\bar{\rho}$ with conditions at certain auxiliary sets of primes. Let Q denote a finite set of height one primes \mathfrak{q} of F^{+}disjoint from $S_{\text {min }} \cup S_{\ell}$ [divisors of ℓ] which satisfy
$V .1 .4 .1$. \mathfrak{q} splits in F and the division algebras D and $D^{\#}$ are split above \mathfrak{q};
V.1.4.2. The residue characteristic q of \mathfrak{q} satisfies $q \equiv 1(\bmod \ell)$;
V.1.4.3. $\bar{\rho}\left(\right.$ Frob $\left._{\mathfrak{q}}\right)$ has a distinguished eigenvalue $\alpha_{\mathfrak{q}}$ of multiplicity one.

As representations of $Z_{\mathfrak{q}}$, we write

$$
\begin{equation*}
\bar{\rho}=\bar{\rho}_{\alpha} \oplus \bar{\rho}_{\beta}, \tag{V.1.4.4}
\end{equation*}
$$

where $\bar{\rho}_{\alpha}$ is the $\alpha_{\mathfrak{q}}$-eigenspace of $\bar{\rho}\left(F r o b_{\mathfrak{q}}\right)$ and $\bar{\rho}_{\beta}$ is the direct sum of the remaining eigenspaces. Let $\Delta_{\mathfrak{q}}$ denote the maximal ℓ-power quotient of $(\mathbb{Z} / q \mathbb{Z})^{\times}$and $\Delta_{Q}=$ $\prod_{\mathfrak{q} \in Q} \Delta_{\mathfrak{q}}$.

By a deformation of $\bar{\rho}$ of type Q we shall mean a pair (R, ρ) as in Definition V.1.2 such that:
V.1.5.1. For each prime λ of F dividing $\ell,\left.r_{\rho}\right|_{Z_{\lambda}}$ is crystalline and the filtered module has n graded pieces, each free of rank one over R, and of weights $0,1, \ldots$, $n-1$.
V.1.5.2. If $\mathfrak{q} \in Q$ then $\left.r_{\rho}\right|_{Z_{\mathfrak{q}}}=\chi \oplus r^{\prime}$ where $r^{\prime}=r_{\mathfrak{q}}^{\prime}$ is unramified and $\chi=\chi_{\mathfrak{q}}$: $Z_{\mathfrak{q}} \rightarrow R^{\times}$is a character whose reduction modulo m_{R} is unramified and takes Frob $_{\mathfrak{q}}$ to $\alpha_{\mathfrak{q}}$.
V 1.5.3. If $v \notin Q \cup\{\ell\}$ then $\rho\left(I_{v}\right) \xrightarrow{\sim} \bar{\rho}\left(I_{v}\right)$.
Proposition V.1.6. There exists a universal deformation $\left(R_{Q}, \rho_{Q}\right)$ of $\bar{\rho}$ of type Q.

Proof. We need to verify that the conditions in V.1.5 define a Ramakrishna subcategory.
V.1.7 For $\mathfrak{q} \in Q$ we let $\chi_{\mathfrak{q}}: Z_{\mathfrak{q}} \rightarrow R_{Q}^{\times}$be the character defined in (V.1.5.2). Then $\chi_{\mathfrak{q}}$ necessarily factors through a natural map $\Delta_{\mathfrak{q}} \rightarrow R_{Q}^{\times}$. Thus R_{Q} is tautologically an $\mathcal{O}\left[\Delta_{Q}\right]$-module.

V.2. Bounding the Selmer group.

Henceforward, we assume $\ell>n$. We fix a finite set Q of primes of F^{+}as in $V .1 .4$. Let $a d r_{\bar{\rho}}$ denote the composition of $\bar{\rho}$ with the adjoint representation ad : $\tilde{G} \rightarrow \operatorname{Aut}(\mathfrak{g l}(n))$, where $\mathfrak{g l}(n) \subset \operatorname{Lie}(\tilde{G})$ is viewed as the kernel of the similitude map. For each place v of F^{+}we fix a k-subspace $L_{Q, v} \subset H^{1}\left(Z_{v}, a d r_{\bar{\rho}}\right)$. The $L_{Q, v}$ are chosen as follows:
V.2.1.1. For v dividing $\ell, L_{Q, v}$ is the Bloch-Kato group $H_{f}^{1}\left(Z_{v}, a d r_{\bar{\rho}}\right)$.

In [BlK], Bloch and Kato work with characteristic zero coefficients. The ℓ-torsion group $H_{f}^{1}\left(Z_{v}, a d r_{\bar{\rho}}\right)$ will be defined in $V .4$, below.
V.2.1.2. For $v=\mathfrak{q} \in Q$, write

$$
a d r_{\bar{\rho}}=a d \bar{\rho}_{\alpha} \oplus a d \bar{\rho}_{\alpha}^{\prime}
$$

where

$$
a d \bar{\rho}_{\alpha}^{\prime}=a d \bar{\rho}_{\beta} \oplus \operatorname{Hom}\left(\bar{\rho}_{\alpha}, \bar{\rho}_{\beta}\right) \oplus \operatorname{Hom}\left(\bar{\rho}_{\beta}, \bar{\rho}_{\alpha}\right)
$$

(notation V.1.4.4). We set

$$
L_{Q, \mathfrak{q}}=H^{1}\left(Z_{\mathfrak{q}}, \text { ad } \bar{\rho}_{\alpha}\right) \oplus H^{1}\left(Z_{\mathfrak{q}} / I_{\mathfrak{q}}, \text { ad } \bar{\rho}_{\alpha}^{\prime}\right)
$$

V.2.1.3. At all other finite primes $v L_{Q, v}=H^{1}\left(Z_{v} / I_{v}, a d r_{\bar{\rho}}^{I_{v}}\right)$.
V 2.1.4. At archimedean primes we take $L_{Q, v}=0$.
There is a natural isomorphism (Poincaré duality)

$$
a d r_{\bar{\rho}} \xrightarrow{\sim} a d r_{\bar{\rho}}^{*},
$$

hence natural non-degenerate pairings for each place v

$$
\begin{equation*}
H^{i}\left(Z_{v}, a d r_{\bar{\rho}}\right) \times H^{2-i}\left(Z_{v}, a d r_{\bar{\rho}}(1)\right) \rightarrow \mathbb{Q} / \mathbb{Z} \tag{V.2.1.5}
\end{equation*}
$$

(Tate's local duality), where (1) denotes Tate twist. For each v we let $L_{Q, v}^{\perp} \subset$ $H^{1}\left(Z_{v}\right.$, ad $\left.r_{\bar{\rho}}(1)\right)$ be the annihilator of $L_{Q, v}$ with respect to ($V .2 .1 .5$), and define the Selmer group of $a d r_{\bar{\rho}}(1)$, relative to the data $L_{Q, v}^{\perp}$:

$$
\begin{equation*}
H_{Q^{*}}^{1}\left(F^{+}, \operatorname{ad} r_{\bar{\rho}}(1)\right)=\left\{h \in H^{1}\left(F^{+}, \text {ad } r_{\bar{\rho}}(1)\right) \mid \forall v r_{v}(h) \in L_{Q, v}^{\perp}\right\} \tag{V.2.1.6}
\end{equation*}
$$

(So the index is Q rather than \mathcal{S} or \mathcal{D}.) We write \mathfrak{M}_{Q} for $m_{R_{Q}}$. The objective of this section is to prove the following theorem.

Theorem V.2.2. The Selmer group $H_{Q^{*}}^{1}\left(F^{+}\right.$, ad $\left.r_{\bar{\rho}}(1)\right)$ is finite and we have the inequality

$$
\operatorname{dim}_{k} \mathfrak{M}_{Q} /\left(\mathfrak{M}_{Q^{2}}{ }^{2}, \ell\right) \leq \# Q+\operatorname{dim}_{k} H_{Q^{*}}^{1}\left(F^{+}, \text {ad } r_{\bar{\rho}}(1)\right)
$$

In particular, if $\operatorname{dim} H_{Q^{*}}^{1}\left(F^{+}, a d r_{\bar{\rho}}\right)=0$ then the \mathcal{O}-algebra R_{Q} can be topologically generated by $\# Q$ elements.

This theorem generalizes Lemma 5 of [TW]. Henceforward we write dim instead of dim_{k}. We begin by translating the theorem into a statement purely in terms of Galois cohomology.

Proposition V.2.3. Define the Selmer group of ad $r_{\bar{\rho}}$, relative to the data $L_{Q, v}$:

$$
H_{Q}^{1}\left(F^{+}, a d r_{\bar{\rho}}\right)=\left\{h \in H^{1}\left(F^{+}, a d r_{\bar{\rho}}\right) \mid \forall v r_{v}(h) \in L_{Q, v}\right\} .
$$

Then

$$
\operatorname{dim} \mathfrak{M}_{Q} /\left(\mathfrak{M}_{Q}^{2}, \ell\right)=\operatorname{dim} H_{Q}^{1}\left(F^{+}, \text {ad } r_{\bar{\rho}}\right)
$$

Proof. This is proved as in [DDT,Theorem 2.41]. Let \mathcal{D} denote the category of $k\left[\Gamma_{F^{+}}\right]$-modules M finite over k with dimension divisible by n, satisfying the analogues of properties V.1.5.1-3:
V.2.3.1. As a module over Z_{v}, v above ℓ, M is a Fontaine-Laffaille representation (cf. §V.4, below).
V.2.3.2. As a module over $Z_{\mathfrak{q}}, \mathfrak{q}$ in Q, M is a the sum of an unramified module B and a module A whose semisimplification is isotypic for the unramified character $\alpha_{\mathfrak{q}}$.
V 2.3.3. If $v \notin Q \cup\{\ell\}$ then the action of I_{v} on M is a direct sum of copies of irreducible direct summands of $\bar{\rho}\left(I_{v}\right)$.

The category \mathcal{D} is closed under products and taking subobjects and quotient objects. Obviously it contains $\bar{\rho}$. Thus Lemma 2.39 of [DDT] applies and yields

$$
\operatorname{dim} \mathfrak{M}_{Q} /\left(\mathfrak{M}_{Q}{ }^{2}, \ell\right)=\operatorname{dim} H_{\mathcal{D}}^{1}\left(F^{+}, a d r_{\bar{\rho}}\right)
$$

where $H_{\mathcal{D}}^{1}\left(F^{+}, a d r_{\bar{\rho}}\right) \subset H^{1}\left(F^{+}, a d r_{\bar{\rho}}\right) \simeq E x t_{\Gamma_{F^{+}}}^{1}(\bar{\rho}, \bar{\rho})$ is the subspace of classes whose corresponding extensions lie in \mathcal{D}.

Now we have to verify that conditions $V \cdot 2.3 .1-3$ for extensions translate into the cohomological conditions V.2.1.1-3. Specifically, the equivalence of $V \cdot 2.3 .1$ and $V .2 .1 .1$ is proved below in $V .4 .7$. The equivalence of $V .2 .3 .2$ with $V .2 .1 .2$ is easy to verify. At finite places $v \notin Q \cup \ell \cup S_{\text {min }}$, and such that v is unramified in F,
$V .2 .3 .3$ says the action of I_{v} is trivial, which is obviously equivalent to V.2.1.3. Now suppose v in $S_{\text {min }}$. The compatibility of $V .2 .3 .3$ and $V .2 .1 .3$ is equivalent to the condition

$$
H^{1}\left(Z_{v} / I_{v}, \operatorname{Hom}_{I_{v}}(\bar{\rho}, \bar{\rho})\right) \simeq \operatorname{Ker}\left[H^{1}\left(Z_{v}, \operatorname{Hom}(\bar{\rho}, \bar{\rho})\right) \rightarrow H^{1}\left(I_{v}, \operatorname{Hom}(\bar{\rho}, \bar{\rho})\right)\right]
$$

and this is just the inflation-restriction sequence. For v ramified in F, the argument is similar.

We thus need to prove the inequality

$$
\begin{equation*}
\operatorname{dim} H_{Q}^{1}\left(F^{+}, a d r_{\bar{\rho}}\right)-\operatorname{dim} H_{Q^{*}}^{1}\left(F^{+}, a d r_{\bar{\rho}}(1)\right) \leq \# Q \tag{V.2.4}
\end{equation*}
$$

Following Wiles [W,Prop. 1.6], the left hand side of (V.2.4) can be expressed as a sum of local terms. We write the formula as in [DDT, Theorem 2.19], where it is stated for a general number field:

Proposition V.2.5. Let $h^{0}=\operatorname{dim} H^{0}\left(F^{+}, a d r_{\bar{\rho}}\right), h^{0, *}=\operatorname{dim} H^{0}\left(F^{+}, a d r_{\bar{\rho}}(1)\right)$. For any place v of F^{+}let $h_{v}^{0}=\operatorname{dim} H^{0}\left(Z_{v}, a d r_{\bar{\rho}}\right)$. Then we have the formula

$$
\operatorname{dim} H_{Q}^{1}\left(F^{+}, a d r_{\bar{\rho}}\right)-\operatorname{dim} H_{Q^{*}}^{1}\left(F^{+}, a d r_{\bar{\rho}}(1)\right)=h^{0}-h^{0, *}+\sum_{v}\left(\operatorname{dim} L_{Q, v}-h_{v}^{0}\right) .
$$

Lemma V.2.6. Under the hypotheses of Proposition V.2.5, the local terms are computed as follows:
(a) For v real, $h_{v}^{0} \geq \frac{n(n-1)}{2}$, $\operatorname{dim} L_{Q, v}=0$.
(b) For $v \in Q, \operatorname{dim} L_{Q, v}-h_{v}^{0}=1$.
(c) For v above $\ell, \operatorname{dim} L_{Q, v}-h_{v}^{0}=\left[k(v): \mathbb{F}_{\ell}\right] \cdot \frac{n(n-1)}{2}$.
(d) For all other places $v, \operatorname{dim} L_{Q, v}-h_{v}^{0}=0$.

Finally, the global terms are given by $h^{0}=h^{0, *}=0$.
Admit this lemma for the moment. Comparing Proposition V.2.5 with Lemma V.2.6, we find

$$
\begin{align*}
& \operatorname{dim} H_{Q}^{1}\left(F^{+}, a d r_{\bar{\rho}}\right)- \operatorname{dim} H_{Q^{*}}^{1}\left(F^{+}, a d r_{\bar{\rho}}(1)\right) \tag{V.2.7}\\
& \leq \# Q-\sum_{v \text { real }} \frac{n(n-1)}{2}+\sum_{v \mid \ell}\left[k(v): \mathbb{F}_{\ell}\right] \cdot \frac{n(n-1)}{2} \\
& \leq \# Q-\left[F^{+}: \mathbb{Q}\right] \frac{n(n-1)}{2}+\left[F^{+}: \mathbb{Q}\right] \frac{n(n-1)}{2} \leq \# Q
\end{align*}
$$

Theorem $V .2 .2$ now follows by comparing ($V .2 .7$) with Proposition V.2.3.
$V .2 .8$. We begin by calculating the global terms in Lemma $V .2 .6$. The hypothesis that $S_{\text {min }}$ is non-empty implies that $\bar{\rho}$ is already irreducible when restricted to
a decomposition group of Γ_{F} above a prime in $S_{\text {min }}$. Thus $H^{0}\left(F, a d r_{\bar{\rho}}\right)$ is onedimensional and given by the trace of $r_{\bar{\rho}}$. But complex conjugation c acts as -1 on the center of the $G L(n)$-component of the L-group, so $H^{0}\left(F^{+}, a d r_{\bar{\rho}}\right)$ is trivial. In the same way, and using $V .1 .1 .5$, we see that $h^{0, *}=0$.

The local terms will be computed in the next two sections.

V.3. Local calculations, char $v \neq \ell$.

In this section we carry out the calculations summarized in Lemma V.2.6. For any place v and any finite $\mathbb{F}_{\ell}\left[Z_{v}\right]$-module M we set

$$
h^{i}(M)=\operatorname{dim} H^{i}\left(\Gamma_{v}, M\right) ; \quad h^{i, u n r}(M)=\operatorname{dim} H^{i}\left(Z_{v} / I_{v}, M^{I_{v}}\right),
$$

$i=0,1,2$.
$V .3 .1$. If M is an unramified Z_{v}-module then of course $h^{0, u n r}(M)=h^{0}(M)$. On the other hand, M is always assumed to be $F r o b_{v}$-semi-simple when ℓ is not equal to the residue characteristic of v. Then M is the sum of characters of Z_{v} / I_{v} and

$$
\begin{equation*}
h^{1, u n r}(M)=h^{0}(M)=\operatorname{dim} M^{Z_{v}} \tag{V.3.1}
\end{equation*}
$$

It follows that, for v unramified, $v \notin Q$, we have

$$
\operatorname{dim} L_{Q, v}-h_{v}^{0}=0
$$

This verifies $V .2 .6$ (d) at unramified places.
V.3.2. Now take $v \in Q$. We have

$$
\operatorname{dim} L_{Q, v}-h_{v}^{0}=h^{1}\left(a d \bar{\rho}_{\alpha}\right)-h^{0}\left(a d \bar{\rho}_{\alpha}\right)+h^{1, u n r}\left(a d \bar{\rho}_{\alpha}\right)^{\prime}-h^{0}\left(a d \bar{\rho}_{\alpha}\right)^{\prime}
$$

Since $a d\left(\bar{\rho}_{\alpha}\right)^{\prime}$ is unramified the last two terms cancel, by (V.3.1). On the other hand, the first two terms give

$$
h^{0}\left(a d \bar{\rho}_{\alpha}(1)\right)
$$

by the local Euler characteristic formula and local duality (cf. [W,p. 473]). But $\bar{\rho}_{\alpha}$ is one-dimensional, so $a d\left(\bar{\rho}_{\alpha}\right)$ is the trivial Z_{v} module. Since $q \equiv 1(\bmod \ell)$ the Tate twist is also trivial, and we find

$$
\operatorname{dim} L_{Q, v}-h_{v}^{0}=1
$$

which verifies $V .2 .6$ (b).
$V .3 .3$. For v real, we have $\operatorname{dim} L_{Q, v}=0$, by hypothesis. On the other hand,

$$
h_{v}^{0}=\operatorname{dim}\left[a d r_{\bar{\rho}}\right]^{c=1}
$$

independently of v. Then (a) follows immediately from hypothesis V.1.1.3.
$V .3 .4$. Now suppose v is ramified, but of residue characteristic $\neq \ell$. By hypothesis, either $v \in S_{\text {min }}$, or v ramifies in F / F^{+}and $r_{\bar{\rho}}$ is unramified at the prime above v. We need to calculate

$$
\operatorname{dim} L_{Q, v}-h_{v}^{0}=h^{1, u n r}\left(a d r_{\bar{\rho}}\right)-h^{0}\left(a d r_{\bar{\rho}}\right)
$$

First, suppose $v \in S_{m i n}$, and $r_{\bar{\rho}}=\oplus_{i=1}^{r}\left(\mathfrak{r}_{i}\right)^{a_{i}}$, where the \mathfrak{r}_{i} are irreducible and distinct. Returning to $V .1 .1 .2$, we find that

$$
\operatorname{dim}\left[a d r_{\bar{\rho}}\right]^{Z_{v}}=\sum_{i}\left(a_{i}\right)^{2}
$$

Let $L_{i j}=H^{1}\left(Z_{v} / I_{v}, \mathfrak{r}_{i} \otimes \mathfrak{r}_{j}^{*}\right)$, where $*$ denotes dual. It suffices to show that $\operatorname{dim} L_{i j}=\delta_{i j}$. Suppose $\left.\mathfrak{r}_{i}\right|_{I_{v}}$ breaks up as the sum of d irreducible representations $\tau_{i k}$. Then

$$
\begin{equation*}
\left(\mathfrak{r}_{i} \otimes \mathfrak{r}_{i}^{*}\right)^{I_{v}}=\oplus_{k=1}^{d}\left[a d \tau_{k}\right]^{I_{v}} \tag{V.3.5}
\end{equation*}
$$

has dimension d. As a representation of the cyclic group Z_{v} / I_{v}, the right-hand side of $V .3 .5$ is isomorphic to the sum $\oplus \chi$ of the distinct characters of Z_{v} / H, where $H \supset I_{v}$ is the stabilizer in Z_{v} of τ_{1}, say. Thus

$$
\operatorname{dim} L_{i i}=\sum_{\chi} \operatorname{dim} H^{1}\left(Z_{v} / H, \chi\right)=1
$$

since only the trivial character has non-trivial cohomology. The verification for $L_{i j}$ with $i \neq j$ breaks up into two cases. If \mathfrak{r}_{j} is not an unramified twist of r_{i}, then $\left(\mathfrak{r}_{i} \otimes \mathfrak{r}_{j}^{*}\right)^{I_{v}}=0$. If $\mathfrak{r}_{i}=\mathfrak{r}_{j} \otimes \xi$, with ξ an unramified character, then we find

$$
\left(\mathfrak{r}_{i} \otimes \mathfrak{r}_{j}^{*}\right)^{I_{v}}=\oplus_{k=1}^{d} \chi \cdot \xi
$$

where χ runs through the characters of Z_{v} / H, as above. We conclude that $\operatorname{dim} L_{i j}=$ 0 by observing that the non-isomorphy of \mathfrak{r}_{i} and \mathfrak{r}_{j} implies that ξ does not factor through Z_{v} / H.

Now suppose v ramifies in F / F^{+}. Let w denote the prime above v. In this case Z_{v} acts via the abelian group $\operatorname{Gal}\left(F / F^{+}\right) \times Z_{w} / I_{w}$. Let M denote the subspace of $a d \bar{\rho}$ fixed by $\operatorname{Gal}\left(F / F^{+}\right)$. Then $\operatorname{dim} L_{Q, v}-h_{v}^{0}=h^{1, u n r}(M)-h^{0}(M)=0$ as in V.3.1. This completes the verification of (d).

To complete the proof of Lemma $V .2 .6$, it remains to estimate the local terms at primes dividing ℓ. This is the subject of the next section.

V.5. Capturing ramification by tame classes.

In order to make Theorem V.2.2 effective, we need to find sets Q for which $\operatorname{dim} H_{Q^{*}}^{1}\left(F^{+}, a d \bar{\rho}\right)=0$. We follow the strategy of [TW]. For this additional hypotheses are needed. Unfortunately, we have not found an optimal set of hypotheses. In the coordinates of (I.1.4) the map

$$
\begin{equation*}
\tilde{G}^{0} \rightarrow G L(n) \times G L(1) ; g \mapsto\left(g_{1}, a=\nu(g)\right) \tag{V.5.1}
\end{equation*}
$$

is an isomorphism. Let $r_{\bar{\rho}}^{i}, i=1,2$, denote the composition of $r_{\bar{\rho}}$ with projection on the i-th factor in (V.5.1.1). Thus $\operatorname{Ker}\left(r \frac{1}{\rho}\right)$ determines an extension F^{1} of F with Galois group naturally a subgroup of $G L(n, k) ; \operatorname{Ker}\left(r^{2}(\bar{\rho})\right)$ determines the extension $F\left(\zeta_{\ell}^{n-1}\right)$ of F, of degree $\left[\mathbb{Q}\left(\zeta_{\ell}^{n-1}\right): \mathbb{Q}\right]$ (cf. (V.1.1.4) and (V.1.1.7)). We consider the following conditions.

Hypotheses V.5.2.

(a) $F^{1} \cap F\left(\zeta_{\ell}\right)=F$.
(b) The group $\operatorname{Im}(\bar{\rho})$ has no quotient of order ℓ.
(c) Let $V \subset a d \bar{\rho}$ be an irreducible subrepresentation. Then there is $s \in \Gamma_{F}$ such that $r_{\bar{\rho}}(s)$ has n distinct eigenvalues and such that ad $(\bar{\rho})(s)$ has eigenvalue 1 on V.

Theorem V.5.3. Assume Hypotheses V.5.2. Then there is an integer r such that, for any $m \geq 1$ there is a set Q_{m} satisfying the hypotheses of $V .1 .4$, and such that moreoever
(a) $\# Q_{m}=r$;
(b) For all $\mathfrak{q} \in Q_{m}$ we have $q=N \mathfrak{q} \equiv 1\left(\bmod \ell^{m}\right)$;
(c) $H_{Q_{m}^{*}}^{1}\left(F^{+}, a d \bar{\rho}(1)\right)=0$.
(d) $r_{\bar{\rho}}\left(\right.$ Frob $\left._{\mathfrak{q}}\right)$ has n distinct eigenvalues, and in particular a distinguished eigenvalue $\alpha_{\mathfrak{q}}$ of multiplicity one.

Proof. We begin by recalling that, for any Q as in V.1.4, and any $\mathfrak{q} \in Q$, the subspace $L_{Q, \mathfrak{q}}^{\perp} \subset H^{1}\left(Z_{\mathfrak{q}}\right.$, ad $\left.\bar{\rho}(1)\right)$ is defined by

$$
H^{1}\left(Z_{\mathfrak{q}} / I_{\mathfrak{q}}, \text { ad } \bar{\rho}_{\alpha}^{\prime}(1)\right)
$$

in the notation of V.2.1.2. In other words, $L_{Q, \mathfrak{q}}^{\perp}$ consists of unramified classes with trivial $a d\left(\bar{\rho}_{\alpha}\right)(1)$-component. Thus

$$
\begin{equation*}
H_{Q^{*}}^{1}\left(F^{+}, a d r_{\bar{\rho}}(1)\right)=\operatorname{Ker}\left[H_{\emptyset}^{1}\left(F^{+}, \operatorname{ad} \bar{\rho}(1)\right) \rightarrow \oplus_{\mathfrak{q} \in Q_{m}} H^{1}\left(Z_{\mathfrak{q}} / I_{\mathfrak{q}}, \operatorname{ad} \bar{\rho}_{\alpha}(1)\right)\right] \tag{V.5.3.1}
\end{equation*}
$$

For r we take the dimension of $H_{\emptyset}^{1}\left(F^{+}, a d^{0} \bar{\rho}(1)\right)$. As in [TW,p. 567] we need to find sets Q_{m} satisfying conditions (a), (b), (d), and the hypotheses of V.1.4, and such that the natural map

$$
\begin{equation*}
H_{\emptyset}^{1}\left(F^{+}, a d \bar{\rho}(1)\right) \rightarrow \oplus_{\mathfrak{q} \in Q_{m}} H^{1}\left(Z_{\mathfrak{q}} / I_{\mathfrak{q}}, a d\left(\bar{\rho}_{\alpha}\right)(1)\right) \tag{V.5.3.2}
\end{equation*}
$$

is injective, hence an isomorphism for dimension reasons. Condition (b) asserts that \mathfrak{q} splits completely in $F\left(\zeta_{\ell^{m}}\right)$.

Let $[\psi] \in H_{\emptyset}^{1}\left(F^{+}, a d \bar{\rho}(1)\right)$ be a non-zero class. The objective is to find \mathfrak{q} as above satisfying condition (b), (d), and V.1.4 and such that

$$
\begin{equation*}
\operatorname{res}_{\mathfrak{q}}[\psi] \in H^{1}\left(Z_{\mathfrak{q}} / I_{\mathfrak{q}}, \text { ad } \bar{\rho}_{\alpha}(1)\right) \text { is nontrivial. } \tag{V.5.3.3}
\end{equation*}
$$

By Chebotarev density it thus suffices to find $\sigma \in \Gamma_{F^{+}}$such that
V.5.3.4. (i) σ fixes $F^{+}\left(\zeta_{\ell^{m}}\right)$;
(ii) $\bar{\rho}(\sigma)$ has n distinct eigenvalues;
(iii) There is a distinguished eigenvalue α of $\bar{\rho}(\sigma)$ such that $\psi(\sigma) \notin a d \bar{\rho}_{\alpha}^{\prime}(1)$
where $a d \bar{\rho}_{\alpha}^{\prime} \subset a d \bar{\rho}$ is the codimension one subspace defined with respect to α by analogy with V.2.1.2.

Let $F_{m}^{+}=F^{+}\left(\zeta_{\ell^{m}}\right)$, and let F_{m} denote the extension of F_{m}^{+}fixed by the kernel of $a d \bar{\rho}$. We claim ψ restricts to non-trivially to $H_{\emptyset}^{1}\left(F_{m}, a d \bar{\rho}(1)\right)$. The kernel of the restriction map is $H^{1}\left(\operatorname{Gal}\left(F_{m} / F^{+}\right), a d \bar{\rho}(1)\right)$. It suffices to show

$$
\begin{equation*}
H^{1}\left(G a l\left(F_{m} / F^{+}\right), a d \bar{\rho}(1)\right)=0 \tag{V.5.3.5}
\end{equation*}
$$

We argue as in [DDT], p. 84. The inflation-restriction sequence for $F_{m} \supset F_{1} \supset$ F^{+}is an exact sequence

$$
\begin{aligned}
& H^{1}\left(G a l\left(F_{1} / F^{+}\right), \operatorname{ad} \bar{\rho}(1)^{\Gamma_{F_{1}}}\right) \hookrightarrow H^{1}\left(G a l\left(F_{m} / F^{+}\right), \operatorname{ad} \bar{\rho}(1)\right) \\
& \rightarrow\left[H^{1}\left(\operatorname{Gal}\left(F_{m} / F_{1}\right), \operatorname{ad} \bar{\rho}(1)\right)\right]^{\Gamma_{F^{+}}}
\end{aligned}
$$

Now $\Gamma_{F_{1}}$ acts trivially on $a d \bar{\rho}(1)$. Hence

$$
\left.\left[H^{1}\left(\operatorname{Gal}\left(F_{m} / F_{1}\right), a d \bar{\rho}(1)\right)\right]^{\Gamma_{F+}} \cong \operatorname{Hom}\left(\operatorname{Gal}\left(F_{m} / F_{1}\right),[\operatorname{ad} \bar{\rho}(1))\right]^{\Gamma_{F^{+}}}\right)
$$

Moreover, it follows from Condition $V .5 .2$ (a) that $\operatorname{Gal}\left(F_{1} / F^{+}\right)$breaks up as the direct product $\operatorname{Gal}\left(F_{1} / F_{0}\right) \times \operatorname{Gal}\left(F_{0} / F^{+}\right)$. Thus

$$
\begin{equation*}
\left.[\operatorname{ad} \bar{\rho}(1))]^{\Gamma_{F}+} \subset[\operatorname{ad} \bar{\rho}(1))\right]^{\operatorname{Gal}\left(F_{1} / F_{0}\right)}=\{0\} \tag{V.5.3.6}
\end{equation*}
$$

Indeed, $\operatorname{Gal}\left(F_{1} / F_{0}\right)$ acts on $\left.a d \bar{\rho}(1)\right)$ as a direct sum of copies of the natural action on the ℓ th roots of unity. But $\operatorname{Gal}\left(F_{1} / F_{0}\right)$ can be identified with the subgroup of $A u t\left(\mu_{\ell}\right)$ that acts trivially on $\mu_{\ell}^{\otimes(n-1)}$. The hypothesis $\ell>n$ implies that this subgroup is non-trivial.

Thus the above exact sequence simplifies to yield

$$
\begin{equation*}
H^{1}\left(\operatorname{Gal}\left(F_{1} / F^{+}\right), a d \bar{\rho}(1)\right) \xrightarrow{\sim} H^{1}\left(\operatorname{Gal}\left(F_{m} / F^{+}\right), a d \bar{\rho}(1)\right) . \tag{V.5.3.7}
\end{equation*}
$$

On the other hand, applying the inflation restriction sequence for $F_{1} \supset F_{0} \supset F^{+}$ to the left-hand side of (V.5.3.7), we find

$$
\begin{aligned}
H^{1}\left(\operatorname{Gal}\left(F_{0} / F^{+}\right), \operatorname{ad} \bar{\rho}(1)^{\operatorname{Gal}\left(F_{1} / F_{0}\right)}\right) \hookrightarrow & H^{1}\left(\operatorname{Gal}\left(F_{1} / F^{+}\right), \text {ad } \bar{\rho}(1)\right) \\
& \rightarrow\left[H^{1}\left(G a l\left(F_{1} / F_{0}\right), \text { ad } \bar{\rho}(1)\right)\right]^{\operatorname{Gal}\left(F_{0} / F^{+}\right)} .
\end{aligned}
$$

Here the right-hand side vanishes because $\left[F_{1}: F_{0}\right]$ is prime to ℓ, while the left-hand side vanishes as in ($V .5 .3 .6$). This completes the verification of ($V .5 .3 .5$).

Now it follows from $V .5 .2$ (a) and (b) that $\bar{\rho}$ remains absolutely irreducible upon restriction to $\Gamma_{F_{m}^{+}}$for all m. Thus, to verify ($V .5 .3 .2$), it suffices to find sets of height one primes of F_{m}^{+}satisfying conditions (b), (d), V.1.4, and (V.5.3.3), with F^{+}replaced by F_{m}^{+}. Conditions $V .1 .4 .1-2$ are already satisfied, and $V .1 .4 .3$ concerns only a finite set of primes, which we can avoid. We have

$$
H_{\emptyset}^{1}\left(F_{m}, \operatorname{ad} r_{\bar{\rho}}(1)\right) \subset \operatorname{Hom}\left(\Gamma_{F_{m}}, \text { ad } r_{\bar{\rho}}(1)\right)
$$

is the subset satisfying various ramification conditions. Thus let $\psi \in H_{\emptyset}^{1}\left(F_{m}^{+}, a d r_{\bar{\rho}}(1)\right)$. Its restriction to F_{m} is a homomorphism from $\Gamma_{F_{m}}$ to $a d r_{\bar{\rho}}$ whose image is a $\operatorname{Gal}\left(F_{m} / F_{m}^{+}\right)$-submodule, say V_{ψ}. Moreover, $\operatorname{Gal}\left(F_{m} / F_{m}^{+}\right)=\operatorname{Gal}\left(F_{0} / F^{+}\right)$by $V .5 .2$ (a). Let $s \in \operatorname{Gal}\left(F_{m} / F_{m}^{+}\right)$satisfy the conditions of $V .5 .2$ (c), and let σ_{0} be a lifting of s to $\Gamma_{F_{m}^{+}}$. It already satisfies conditions (i) and (ii) of V.5.3.4, and so does $\sigma=\tau \sigma_{0}$ for any $\tau \in \Gamma_{F_{m}}$. It remains to show that we can choose α and τ so that σ satisfies condition (iii). Now the eigenvalues of $a d r_{\bar{\rho}}(s)$ are of the form $\alpha_{i} \cdot \alpha_{j}^{-1}$, where $\alpha_{i}, i=1, \ldots, n$ are the n distinct eigenvalues of $r_{\bar{\rho}}(s)$. Let $v_{i j}$ be the corresponding eigenvectors. By hypothesis $V .5 .2$ (c) the fixed subspace V_{ψ}^{s} is non-trivial and is spanned by r non-trivial linear combinations $v_{k}=\sum_{i} a_{i k} v_{i i}, 1 \leq k \leq r$. Now $\psi(\sigma)=\psi(\tau)+\psi\left(\sigma_{0}\right)$. Write $\psi\left(\sigma_{0}\right)=\sum b_{i j} v_{i j}, \psi(\tau)=\sum c_{k}(\tau) v_{k}+v^{\prime}$, where v^{\prime} is a linear combination of the $v_{i j}$ with $i \neq j$. Thus the coefficient of $v_{i i}$ in $\psi(\sigma)$ is

$$
b_{i}(\tau)=\sum c_{k}(\tau) a_{i k}+b_{i i} .
$$

But we may vary the $c_{k}(\tau)$ freely, and it is clear that by doing so we can arrange that at least one $b_{i}(\tau)$ is non-zero. Taking $\alpha=\alpha_{i}$, we then see that σ satisfies condition (iii). This completes the proof.

V.6. Eliminating tame deformations

Let q be a rational prime, $q \neq \ell$, and let v be a prime of F^{+}dividing q. The maximal ℓ-power quotient $I_{v, \ell}$ of the inertia group I_{v} is isomorphic to $\mathbb{Z}_{\ell}(1)$ as a module over Z_{v} / I_{v}, where the (1) denotes Tate twist. Let $P^{\ell} \subset I_{v}$ be the kernel of the canonical map to $I_{v, \ell}$; it is a profinite group with pro-order prime to ℓ. Thus, for any Z_{v}-module M, the canonical inflation map $H^{1}\left(Z_{v} / P^{\ell}, M\right) \rightarrow H^{1}\left(Z_{v}, M\right)$ is an isomorphism.

Now let $(\bar{\rho}, V)$ be an n-dimensional semi-simple unramified representation of Z_{v} with coefficients in a finite field k of characteristic ℓ, and let $M=a d \bar{\rho}$.

Lemma V.6.1. Suppose $\bar{\rho}$ is trivial and $N v \neq 1(\bmod \ell)$. Then the inflation map

$$
\begin{equation*}
H^{1}\left(Z_{v} / I_{v}, M\right) \rightarrow H^{1}\left(Z_{v} / P^{\ell}, M\right) \tag{V.6.2}
\end{equation*}
$$

is an isomorphism.
Proof. We use the inflation-restriction sequence for the inclusion of $I_{v, \ell}$ in Z_{v} / P^{ℓ} :

$$
\begin{align*}
0 \rightarrow H^{1}\left(Z_{v} / I_{v}, M\right) \rightarrow H^{1}\left(Z_{v} / P^{\ell}, M\right) & \rightarrow \operatorname{Hom}\left(I_{v, \ell}, M\right)^{Z_{v} / I_{v}} \\
& =\operatorname{Hom}_{Z_{v} / I_{v}}\left(\mathbb{F}_{\ell}(1), M\right) \tag{V.6.3}
\end{align*}
$$

By our hypothesis, Z_{v} / I_{v} acts non-trivially on $\mathbb{F}_{\ell}(1)$ but trivially on M. Thus the right-hand term in (V.6.3) vanishes.

