
AUTOMORPHIC REPRESENTATIONS

OF INNER FORMS OF GL(2)

M. Harris, Luminy 2007

1. Local theory of representations of GL(2)

The irreducible admissible representations of GL(2, F ) have been divided into
three classes, for convenience, since the time of Jacquet-Langlands (and even be-
fore). These are the principal series, the supercuspidal representations, and the
Steinberg (or special) representations. This classification is incomplete; it does not
include the finite dimensional representations, which are (almost) irrelevant to the
global theory, as we’ll see below. I will state a lemma, which I leave as an exercise:

Lemma 1.1.1. Let π be a finite-dimensional smooth irreducible complex represen-
tation of GL(2, F ). Then dim π = 1 and there is a continuous (locally constant)
character χ : F× → C× such that π = χ ◦ det .

Remark. In the above lemma, and in most of what I will be writing in this sec-
tion, it is immaterial that the coefficient field be C: it works just as well for smooth
representations with coefficients in any algebraically closed field of characteristic
zero.

Now for the three main classes:

1.1.2 Principal series. Let (χ1, χ2) be an ordered pair of characters of F×. Let
G = GL(2, F ), B ⊂ G the upper-triangular Borel subgroup, B = A ·N , where

A = {
(

a1 0
0 a2

)
}, N = {

(
1 x
0 1

)
}.

Define

I(χ1, χ2) = {f : G → C | f(ang) = χ1(a1)|a1|
1
2 χ2(a2)|a2|−

1
2 · f(g)}.

This is a (normalized) induced representation and G acts on I(χ1, χ2) by right
translation:

r(g)f(h) = f(hg).

Those half-powers of the norm guarantee that

I(χ1, χ2)
∼−→ I(χ2, χ1)

almost always. More precisely
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Proposition 1.1.2.1. (a) I(χ1, χ2) is irreducible unless χ1/χ2 = | • |±1. (b) If
χ1/χ2 6= |•|±1 then I(χ1, χ2)

∼−→ I(χ2, χ1) as irreducible admissible representations
of GL(2, F ). (c) If χ1/χ2 6= | • |±1 then I(χ1, χ2)∨

∼−→I(χ−1
1 , χ−1

2 ).

Let K = GL(2,O) ⊂ G, where O is the integer ring of F . Suppose χ1 and χ2

are unramified. Then I(χ1, χ2) contains a canonical K-invariant vector f0 defined
by

f0(k) = 1∀k ∈ K.

This is unique because of the Iwasawa decomposition G = B ·K. For any ring A one
can define a local Hecke algebra HA(G, K) as the convolution algebra of compactly
supported functions on G that are right-and left-invariant under K-translation.
The algebra HA(G, K) is commutative and if A is a Q-algebra there are canonical
generators

T = K ·
(

$ 0
0 1

)
·K, RK ·

(
$ 0
0 $

)
·K,

where $ is a uniformizer in O, so that

HA(G, K) = A[T,R, R−1].

The convolution algebra H(G) of all locally constant compactly supported func-
tions operates on any (admissible) representation of G, and the function f0 is an
eigenvector for the subalgebra H(G, K), with

(1.1.2.2) Tf0 = q
1
2 (χ1($) + χ2($))f0, Rf0 = χ1($)χ2($)f0,

where q is the order of the residue field. Any irreducible representation with a
K-fixed vector is determined up to isomorphism by its T and R-eigenvalues; such
a representation is called spherical.

If F = Qp then T is the classical Hecke operator T (p), and R = T (p, p). The
classical theory of Hecke operators is completely subsumed by the theory of spherical
principal series.

1.1.2 Steinberg representations.
Let χ : F× → C× be a smooth character. Let

χ1 = χ · | • |− 1
2 , χ2 = χ · | • | 12 .

In that case it is easy to see that the function fχ(g) = χ(det(g)) ∈ I(χ1, χ2). There
is a short exact sequence of admissible representations

0 → Cfχ → I(χ1, χ2) → St(χ) → 0

where G acts by χ ◦ det on Cfχ and St(χ) is irreducible; these are the Steinberg
representations. When χ is trivial, one calls St(1) the Steinberg representation.

The representation I(χ2, χ1) is again reducible and has St(χ) as subspace, χ◦det
as quotient.

1.1.3 Supercuspidal representations.
Sections 1.1.1 and 1.1.2 complete the analysis of principal series. Any irreducible

representation of G that has not yet been mentioned is called supercuspidal.
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Theorem 1.1.3.1. Let π be an irreducible admissible representation of GL(2,K).
The following are equivalent:

(i) π is supercuspidal
(ii) For all χ1, χ2, Hom(π, I(χ1, χ2)) = 0.
(iii) The Jacquet modules of π vanish
Iiv) The matrix coefficients of π are compactly supported modulo translation by

the center Z of G.

This doesn’t help identify supercuspidal representations, and even now, long after
they have been classified, there is no simple way to present the supercuspidals.

Definition 1.1.3.2. An irreducible admissible representation π of G is called discrete
series (or square-integrable) if it is either Steinberg or supercuspidal.

The term “discrete series” comes from the theory of harmonic analysis on G;
these are the representations that contribute to the Plancherel measure on G non-
trivially (when they are unitary). Equivalently, they occur discretely in the Hilbert
decomposition of L2(G/Z) under right and left-translation by G.

1.2. Parametrization of irreducible admissible representations of GL(2, F ).
Let A = A2,F denote the set of equivalence classes of irreducible admissible

representations of GL(2, F ). There are several uniform parametrizations of A.

1.2.1 Distribution characters. If π is admissible and φ ∈ H(G) then φ : π → π
has finite image, hence, one can define its Tr(φ;π). The linear functional

Trπ : H(G) → C;Trπ(φ) = Tr(φ;π)

is a distribution. Fix a Haar measure dg on G (usually the one with measure 1 on
K).

Theorem 1.2.1.1. The distribution Trπ that is represented by a locally integrable
function, denoted χπ, on G:

Trπ(φ) =
∫

G

χπ(g)φ(g)dg.

The function χπ is invariant:

χπ(hgh−1) = χπ(g)∀h ∈ G.

Of course χπ depends on the choice of dg. The function χπ usually has singu-
larities on G but is continuous on the subset Greg of regular elements: g ∈ G is
regular if and only if its characteristic polynomial has distinct roots (in which case
it is certainly semisimple.

Definition 1.2.1.2. A regular semisimple g ∈ G is elliptic if its characteristic
polynomial is irreducible over F . The set of regular elliptic elements is denoted
Gre.
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Proposition 1.2.1.3. Let π be irreducible admissible and infinite dimensional. If
χπ(g) 6= 0 for some g ∈ Gre, then π is discrete series, and in that case χπ(g) = 0
if g ∈ Greg \Gre.

The distribution character χπ determines π up to isomorphism (up to semisim-
plification if π is an admissible representation of finite length). Moreover, linear
independence of characters is valid for irreducible admissible representations. There
are explicit formulas for χπ when π is principal series and these are useful in the
trace formula, but we will not describe them.

1.2.2. Langlands parametrization.
The most conceptually useful parametrization of A. Let G = G2,F denote the set

of equivalence classes of (Frobenius-semisimple) two-dimensional representations of
the Weil-Deligne group WDF . Let

rF : (WDF )ab ∼−→F×

be the (normalized) reciprocity isomorphism.

1.2.2.1. Local Langlands correspondence (Kutzko). There is a bijection

L : A2,F → G2,F

with the following natural properties, among others;
(i) If I(χ1, χ2) is irreducible, then

L(I(χ1, χ2)) = χ1 ◦ rF ⊕ χ2 ◦ rF .

(ii) π is supercuspidal if and only if L(π) is irreducible.
(iii) L(St(χ)) = χ⊗Sp(2) where Sp(2) is the trivial extension of the non-trivial

2-dimensional representation of the unipotent N ∈ WDF .
(iv) L preserves local L and ε factors.
(v) detL(π)) = rF ◦ ξπ, where ξπ is the central character of π.

A word about (iv): In what follows, I take the attitude that everything concern-
ing representations of WDF is understood. In particular, one could define local
L and ε factors of irreducible admissible representations of GL(2, F ) by (iv). Of
course, these factors were defined by Jacquet-Langlands and coincide with Hecke’s
local Euler factors of elliptic modular forms in the classical setting, and (iv) is the
non-trivial theorem that the two definitions are compatible.

Example (Iwahori-stable vectors). Let I ⊂ K be the Iwahori subgroup, general-
izing the classical Γ0(p):

I = {
(

a b
c d

)
∈ GL(2,O) | c ∈ mO}

where mO ⊂ O is the maximal ideal. We are interested in classifying irreducible
representations π of G with vectors v ∈ π on which I acts by a character. Let
I(1) be the subgroup of I as above with a, d ≡ 1 (mod ()mO). The classification is
simple.
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Proposition 1.2.2.2. Let π be an irreducible admissible representation of G which
contains a vector on which I acts by a character trivial on I(1). Then π is one of
the following:

(a) π is an irreducible spherical principal series I(χ1, χ2), with χ1 and χ2 un-
ramified, and dim πK = 1, dim πI = 2. In this case L(π) = χ1◦rF ⊕χ2◦rF .

(b) π is 1-dimensional of the form χ ◦ det, with χ unramified. In this case
L(π) = χ ◦ rF ⊕ χ · | • |F ◦ rF .

(c) π = St(χ), with χ unramified . In this case dim πI = 1, and L(π) is as in
1.2.2.1 (iii).

(d) π = St(χ), with χ ramified of conductor mO. In this case dim πI(1) = 1 and(
a b
c d

)
∈ I acts on πI(1) by χ(ad); L(π) is as in 1.2.2.1 (iii).

(d) π is a principal series I(χ1, χ2) with one or both of χ1, χ2 ramified of con-
ductor mCO, the other possibly unramified. In this case πI(1) = 2 is the sum
of two one-dimensional eigenspaces for I/I(1) with eigenvalues(

a b
c d

)
∈ I 7→ χ1(a)χ2(d), χ2(a)χ1(d)

and L(π) is as in 1.2.2.1 (i).

1.2.3. Local base change and automorphic induction.
Let F ′/F be a finite extension. The inclusion WDF ′ ⊂ WDF defines a natural

restriction map
G2,F → G2,F ′ ,

hence by the local Langlands parametrization a natural base change map

BC = BCF ′/F : A2,F → A2,F ′ .

When F ′/F is a cyclic Galois extension of prime degree, the map BCF ′/F coincides
with Langlands’ construction and is determined by an explicit relation between
χπ and χBCπ. The generalization of Langlands’ base change construction, due to
Arthur and Clozel, is a crucial ingredient in every known construction of the local
Langlands correspondence for general GL(n), For n = 2 an alternative construction
not explicitly referring to the distribution character is developed in the book of
Bushnell-Henniart.

Let F ′/F be quadratic, and define G1,F ′ , resp. A1,F , to be the set (group) of
continuous characters of WDF ′ , resp. F ′,×. Thus local class field theory identifies
G1,F ′

∼−→A1,F ′ . Induction defines a natural map

G1,F ′ → G2,F ,

hence by the local Langlands parametrization a natural map called (local) auto-
morphic induction:

AIF ′/F : A1,F ′ → A2,F .
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Proposition 1.2.3.1. If F is of residue characteristic p > 2 then every super-
cuspidal representation of GL(2, F ) is in the image of AIF ′/F for some quadratic
extension F ′/F .

This is because every irreducible two-dimensional representation of the Weil
group of F is tame when p 6= 2, and it is easy to see that it is therefore induced
from a character of the Galois group of a quadratic extension.

However, there is an alternative explicit construction of the automorphic induc-
tion map, using the Weil representation; it is a local version of the theory of theta
functions of binary quadratic forms. Proposition 1.2.3.1 was first proved by means
of this construction. Kutzko’s theorem therefore really concerns the case p = 2.

1.2.4. Other realizations.
I briefly mention two alternative approaches to A2,F . One is purely group-

theoretic and is based on the structure of the lattice of open compact subgroups of
G. This is called the theory of types, which parametrizes the supercuspidal repre-
sentations in A2,F in terms of explicit representations of K. For GL(2, F ) this was
completely worked out by Kutzko, and the (much more difficult) classification for
GL(n, F ) is due to Bushnell and Kutzko. The extension of this technique to other
reductive p-adic groups is an active area of research, and there has been consider-
able progress in recent years for classical groups. The theory of types is the most
useful parametrization for studying congruences among supercuspidal representa-
tions and between supercuspidal representations and others (cf. the modular local
Langlands correspondence of Vignéras). It may be mentioned in some of the later
talks.

The second construction of supercuspidal representations of GL(2, F ) is by means
of arithmetic geometry – indeed, rigid geometry. This was first considered by
Deligne and was completely developed by Carayol (for F of characteristic zero).
All discrete series representations of GL(2, F ) can be realized on a space of vanish-
ing cycles attached to the degeneration of one-dimensional height 2 formal groups
(more generally formal O-modules) with (Drinfeld) level structure. This same space
of vanishing cycles is important in connection with Ribet’s work on congruences of
modular forms of different levels, and may be mentioned in later talks.

1.3. Classification of irreducible representations of GL(2, R).

1.3.1. Harish-Chandra modules.
Now G = GL(2, R), and g = Lie(G) = M(2, R); K = R× · O(2) ⊂ G, k =

Lie(K) = Lie(R× · SO(2)). An admissible representation of GL(2, R), or Harish-
Chandra module, is not a representation of GL(2, R) at all, but rather is a (generally
infinite-dimensional) module V for the universal enveloping algebra U(gC). One
assumes the action of k on V integrates to an action of R× ·SO(2) that extends to an
action of K that decomposes V as a sum of finite-dimensional isotypic components
for K. The actions of K and gC are assumed to be compatible in a natural way.
Harish-Chandra modules form an abelian category with excellent properties.

1.3.2. Holomorphic representations.
For purposes of arithmetic, we only need to consider the kinds of Harish-Chandra

modules π that arise as archimedean local components of an automorphic represen-
tation Π of GL(2, F ), where F is now a totally real number field and Π is associated
to a holomorphic Hilbert modular newform. Let k > 0 be an integer, which will
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be the weight of the modular form, and let s ∈ C. There is a unique irreducible
representation of GL(2, R) (i.e., Harish-Chandra module), denoted πk,s, that “con-
tains a holomorphic vector of weight k” (i.e., arises as the local component of the
adelic automorphic representation attached to a Hilbert modular form of weight
k) and such that the scalar t ∈ R×, t > 0, acts as ts. In the standard normaliza-
tion, we take s = 2 − k. This is compatible with the standard normalization at
nonarchimedean places in the following sense: if π is a cuspidal automorphic repre-
sentation of GL(2) (see §2 below) with π∞ = πk,2−k, corresponding to a modular
form of weight k, then the usual local Euler factor at an unramified prime p

1− app
−s + pk−1−2s)−1

is identified with the Jacquet-Langlands local Euler factor L(s− 1
2 , πp) and L(s−

1
2 , π∞) gives the usual Γ-factor for holomorphic modular forms of weight k. See
also (3) of §3.

One sometimes uses the so-called unitary normalization, in which s = 0; this
allows us to write the functional equation relating L(s, π) and L(1− s, π̄).

There is also an automorphic induction map, where notation is as in 1.2.3:

A1,C → A2,R,

and πk+1,−k is the automorphic induction of the character z 7→ z−k.
When k ≥ 2, πk,s is in the discrete series. When k = 1 πk,s is a limit of dis-

crete series representation. The distinction of terminology reflects the fact that the
Eichler-Shimura isomorphism relating cohomology of modular curves with holomor-
phic modular forms does not work for forms of weight 1.

1.3.3. Others.
All other irreducible admissible representations of GL(2, R) are either finite-

dimensional (and are classified by standard Lie theory) or irreducible principal
series, constructed just as in the non-archimedean case. There is no analogue of
supercuspidal representations for real reductive groups.

1.4. Classification of irreducible representations of D×.
In what follows, F is a local field, and D is the unique non-split quaternion

algebra over F . If F = R, D is the algebra of Hamiltonian quaternions; otherwise,
D is the four-dimensional division algebra over F that corresponds to the element
1
2 ∈ Q/Z ∼−→Br(F ). The multiplicative group D×, which we denote J , is compact
modulo its center Z

∼−→F×. It follows from Schur’s lemma and the representation
theory of compact groups that any admissible irreducible representation of J is nec-
essarily finite-dimensional. We will not dwell on the construction of representations
of J but will present the Jacquet-Langlands correspondence.

Let ND : J → F× denote the reduced norm. We can think of J as the group of
F -points of an algebraic group J over F . Then J is a twisted inner form of GL(2),
and in particular there is an isomorphism

J(F̄ ) ∼−→GL(2, F̄ ),

well-defined up to conjugation. Thus any element of J ⊂ J(F̄ ) can be considered
a 2× 2 invertible matrix with coefficients in F̄ ; in particular it has a characteristic



8 M. HARRIS, LUMINY 2007

polynomial, independent of the choice of isomorphism above, and with coefficients
in F . We say j ∈ J and g ∈ G are associated if they have the same character-
istic polynomial; this implies g is elliptic (including non-regular elliptic elements,
necessarily in the center of G).

When F = R, the derived subgroup Jder ⊂ J is isomorphic to the compact Lie
group SU(2). Any irreducible representation τ of J is determined by its restriction
to SU(2) and by its central character, and indeed by the character by which Z0 =
R×,+ ⊂ Z acts on τ . An irreducible representation of SU(2) is in turn determined
by its dimension. For k > 1 in Z and s ∈ C, let τk,s be the representation of
dimension k − 1 on which t ∈ Z0 acts by ts. Then obviously

Proposition 1.4.1. The map τk,s ↔ πk,s is a bijection between the (equivalence
classes of) irreducible representations of J and the discrete series of GL(2, R).

The bijection above is called the Jacquet-Langlands correspondence over R. Note
that π1,s is excluded.

Now assume F is nonarchimedean, and let AD denote the set of equivalence
classes of irreducible admissible representations of J . Let Ads ⊂ A2,F be the set of
discrete series representations. The following theorem is considerably deeper than
Proposition 1.4.1.

Theorem 1.4.2. There is a natural bijection (Jacquet-Langlands correspondence)

JL : AD → Ads.

This bijection has the following natural properties
(i) JL preserves local L and ε factors in the sense of Godement-Jacquet;
(ii) Let χ be a continuous character of F× and let τχ = χ◦ND. Then JL(τχ) =

St(χ).
(iii) Let j ∈ J and g ∈ G be associated and assume g is regular. Then for any

τ ∈ AD,
χJL(τ)(g) = −Tr(τ(j)).

The last identity is proved by means of the Selberg trace formula.
Proposition 1.4.1 is exactly the real version of Theorem 1.4.2.

2. The global Jacquet-Langlands correspondence

In the present section, F is a totally real number field, and D/F is a quaternion
algebra; we let G = GL(2)F , J = GL(1, D), viewed as algebraic groups over F .
Automorphic representations of G and J have been defined in an earlier talk at
Luminy; However, this material is not available, so I include a brief discussion here
of automorphic representations of GL(2), and implicitly of GL(n).

A holomorphic modular form F of weight k is a holomorphic function on the
upper half-plane H satisfying a certain symmetry. The group SL(2, R) acts by
linear-fractional transformations on H(

a b
c d

)
(z) =

az + b

cz + d

and F is assumed to transform according to a certain rule, depending on k, for
γ ∈ Γ where Γ ⊂ SL(2, Q) ⊂ SL(2, R) is a congruence subgroup. There is also
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a growth condition near the boundary of H. I assume this is all familiar and I
mention this in order to motivate the definition of automorphic forms in general.
With little effort one extends F to a function on H

∐
H̄ (upper + lower halfplanes),

which is identified with GL(2, R)/SO(2) ·R×. A standard lifting procedure lifts F
to a C∞ function f on Γ\GL(2, R), and thence to a function

f : GL(2, Q)\GL(2,A) → C

where in each case the transformation rule itself undergoes a transformation. The
original holomorphy condition is inherited by f in another form: the C∞ function
f is a solution to a differential equation corresponding to the Cauchy-Riemann
equations on H. For purposes of generalization, it is best to think of a holomorphic
form of weight 2 as a holomorphic 1-form on the open complex curve Γ\H, and
then just as a cohomology class, possibly with some funny behavior at the missing
points. Forms of weight k > 2 define cohomology with twisted coefficients by the
Eichler-Shimura isomorphism. That is what generalizes for n > 2.

Following earlier work of Mordell, Hecke discovered the operators that bear his
name on the spaces of modular forms, and more importantly, that the simultane-
ous eigenfunctions for all these operators could be assigned Dirichlet series with
analytic continuation and functional equations. The extra adelic variables allow a
natural definition of the Hecke operators. A (discrete) automorphic representation
of GL(2, Q) is a direct summand of

L2(GL(2, Q)\GL(2,A)/R×)

which defines an irreducible representation π∗ of GL(2,A) under the right regular
representation. When one applies the lifting procedure of the previous paragraph to
one of the eigenforms Hecke considered, its right GL(2,A)-translates form an auto-
morphic representation in this sense, and all the eigenvalues of the Hecke operators
can be recovered from the structure of the abstract representation. Most discrete
automorphic representations are cuspidal, which means they decrease rapidly near
infinity, and we only consider cuspidal representations.

It is better to take the subspace π1 of π∗ consisting of functions that are C∞

in the variables in GL(2, R) and locally constant in the non-archimedean variables.
A vector v ∈ π1 is K-finite if the space generated by the translates of v by K is
finite-dimensional. Inside π1 the subspace π of K-finite vectors forms a Harish-
Chandra module, or rather is the tensor product of a Harish-Chandra module with
an irreducible representation of GL(2,Af ). It is this π that we call a (cuspidal)
automorphic representation. It is thus an irreducible object in the category of
(g,K)×GL(2,Af )-modules.

The same definition holds when Q is replaced by any number field F and when
2 is replaced by any n. We let G = GL(n)F . I will describe the theory of repre-
sentations of G(Fv) below. For v non-archimedean it is roughly analogous to the
case already considered of GL(2). On the other hand, for v archimedean there is no
natural collection of (gC,K)-modules comparable to the holomorphic representa-
tions.1 Here K =

∏
v|∞Kv is a maximal compact subgroup of G∞ =

∏
v|∞G(Fv),

1Indeed, there is no theory of holomorphic modular forms related to automorphic representa-

tions of GL(n) for n > 2; one gets around this problem by working with unitary groups, as we

will see later.
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so Kv is either isomorphic to R× ·O(n) (v real) or C× · U(n), (v complex). If π is
an (irreducible cuspidal) automorphic representation of G, then it factors

π = ⊗′vπv

(restricted tensor product over places v of F ), where for each v, πv is an admissible
irreducible representation of G(Fv) in the sense described in §1. Likewise for J .
The function L(s, π) =

∏
v 6|∞ L(s, πv) converges in a right half plane and extends

to an entire function with functional equation (Godement-Jacquet).
I return to the case n = 2. Let Σ(D) be the set of places of F where D ramifies,

i.e. where Dv 6' GL(2, Fv). Recall that Σ(D) has an even number of elements.
Conversely, if Σ is any finite set of even cardinality, there is a quaternion algebra
D, unique up to isomorphism, such that Σ = Σ(D).

Theorem 2.1 (Jacquet-Langlands correspondence). Let τ = ⊗′vτv be a cus-
pidal automorphic representation of J . For v /∈ Σ(D), τv is an irreducible ad-
missible representation of GL(2, Fv), which we denote πv; its equivalence class is
well-defined. For v ∈ Σ(D), set πv = JL(τv). Let π = ⊗′vπv. Then π is isomorphic
to a cuspidal automorphic representation of G, and we write π = JL(τ).

Conversely, let π be a cuspidal automorphic representation of G. Suppose that
for all v ∈ Σ(D), πv ∈ Ads. In particular, for each v ∈ Σ(D), there is τv ∈ ADv

such that πv = JL(τv). For v /∈ Σ(D) we set τv = πv as above. Then τ =
⊗′vτv is isomorphic to a cuspidal automorphic representation of J , and π = JL(τ).
Moreover, τ has multiplicity one in the space of all automorphic forms on J .

The bijection JL identifies L(s, π) = L(s, τ) as well as the functional equations.

In other words, JL defines a bijection between the cuspidal automorphic repre-
sentations of J and the set of cuspidal automorphic representations π of G such
that πv is in the discrete series for all v ∈ Σ(D).

The proof of the Jacquet-Langlands correspondence is now considered the sim-
plest non-trivial application of the Selberg trace formula to Langlands functoriality.
It is only directly relevant when n = 2 but is the model for the functoriality between
inner forms of unitary groups to be discussed below.

2.2. Remark. The Jacquet-Langlands correspondence was constructed in many
cases by Shimizu, using the Weil representation, which concretely means theta
functions for orthogonal groups in four variables. Following the work of Jacquet-
Langlands, Shimizu showed that the Jacquet-Langlands correspondence can be ob-
tained in all cases by means of theta functions. However, proof of the properties of
the bijection seems to require the trace formula.

Suppose Σ(D) contains all but one of the archimedean places of F . Then J is
the algebraic group associated to a Shimura curve. Most of the global Galois repre-
sentations discussed in the following section are realized in the `-adic cohomology
of such Shimura curves with twisted coefficients.

3. Associated global Galois representations

Notation is as in the previous section. Henceforward we will only consider cus-
pidal automorphic representations π of GL(2, F ) such that πv is a holomorphic
representation, i.e. a πk,s, for all archimedean v. Such π are (naturally) called
holomorphic. To a holomorphic π we can associate a number field E(π) with the
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property that πf := ⊗′v 6|∞πv has an E(π)-rational model as abstract representation.
If π is associated to the elliptic modular normalized newform f , then E(π) = E(f)
is the extension of Q generated by the Fourier coefficients of f .

If v is a finite place of F , let Gv denote a decomposition group in Gal(Q/F ).

Theorem (Eichler, Shimura, Deligne, Langlands, Carayol, Scholl, T.
Saito,??; Deligne-Serre, Rogawski, Tunnell, Ohta). Assume πv = πk,2−k

for all archimedean v. There is a compatible system of λ-adic representations (of
geometric type), as λ runs through non-archimedean completions of E(π):

ρλ,π : Gal(Q/F ) → GL(2, E(π)λ)
that is associated to π in the sense that, for every ` and every place v of F prime
to the residue characteristic ` of λ,
(1) ρλ,π |Gv= L∗(πv)
where L∗ is the (motivically normalized) local Langlands correspondence.

Moreover, let v be a prime of F dividing `. Then the representation ρλ,π |Gv is
potentially semistable, the Hodge-Tate numbers of ρλ,π at v are 0 and k − 1, with
multiplicity one, and
(2) D(ρλ,π |Gv ) = L∗(πv)
where D is the Fontaine functor associating to any potentially semistable represen-
tation of Gv a representation of the Weil-Deligne group of Fv.

For the final step for Hilbert modular forms, there still seem to be some missing
cases.

The motivically normalized local Langlands correspondence involves a half-integral
shift, so that

(3) L(s,L(πv)) = L(s− 1
2
, πv).

This guarantees that the λ-adic representations are realized over completions of
a fixed E(π) and not over the (infinite) extension of E(π) obtained by adjoining
square roots of ` for all `.

A representation of the form ρλ,π, or its reduction ρ̄λ,π to characteristic `, is
called modular, or sometimes automorphic. The goal of modularity theorems is to
start with a Galois representation ρλ or ρ̄λ and to show that it arises from some π
by the construction in the theorem.

When k = 1, ρλ,π is an Artin representation, whose construction is by the method
of Deligne-Serre.

4. Base change and global automorphic induction

4.1 Base change.
Now suppose F ′/F is a cyclic Galois extension of totally real fields, of prime

degree. Let G′ = GL(2)F ′ . Let π ' ⊗′vπv be a cuspidal automorphic representation
of G, which we assume holomorphic of parallel weight k (though this is irrelevant).
We construct a holomorphic automorphic representation π′ ' ⊗′wπ′w of G′ by base
change, where w runs over places of F ′, as follows:

(a) Suppose v is a place of F that splits (completely) in F ′. Then for any divisor
w of v, G′(F ′

w) ' G(Fv). We let π′w = πv. This includes all real places.
(b) Suppose v does not split, and let w be the unique place of F ′ dividing v.

We let π′w = BCF ′
w/Fv

(πv), defined as above.
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Theorem 4.1.1 (Saito-Shintani, Langlands). (a) The representation π′ =
BCF ′/F (π) is an automorphic representation of G′. If σ is a generator of Gal(F ′/F ),
then π′ ◦ σ

∼−→π′, where Gal(F ′/F ) acts on the equivalence class of π′ by acting on
the underlying adele group.

(b) Conversely, suppose π′ is a cuspidal automorphic representation of G′ such
that π′ ◦σ

∼−→π′. Then π′ is of the form BCF ′/F (π) for some cuspidal automorphic
representation π of G.

(c) Suppose [F ′ : F ] = 2 and let η be the quadratic character of the idèles of F
associated to the extension F ′. Suppose π⊗ η ◦det ' π as abstract representations.
Then there is a Hecke character χ of the idèles of F ′ such that π is obtained from
χ by automorphic induction (see §4.4 below). In particular, k = 1.

(d) Suppose we are not in case (b). Then π′ is a cuspidal automorphic represen-
tation of G′ that is holomorphic of parallel weight k. Moreover, E(π′) = E(π), and
for every finite place λ of E(π),

ρλ,π′ = ρλ,π |Gal(Q/F ′) .

The fact that (c) can only arise when k = 1 can be seen by analyzing the
condition π ⊗ η ◦ det ' π locally at archimedean primes.

By induction, one can construct BCF ′/F (π) for any solvable extension F ′/F .
The condition that the base change remain cuspidal is more subtle in general but can
be deduced from Theorem 4.1.1. It is clear that the equivalence class of BCF ′/F (π)
is invariant under the natural action of Gal(F ′/F ). If BCF ′/F (π) is cuspidal, it
follows from (d) and the characterization of ρλ,π that ρλ,BCF ′/F (π) is invariant under
Gal(F ′/F ). Conversely,

Theorem 4.1.2. Let F ′/F be a solvable extension, and let π′ be a cuspidal auto-
morphic representation of G′ = GL(2)F ′ of parallel weight k ≥ 2. Suppose ρλ,π′

extends to a representation of Gal(Q/F ). Then there is a cuspidal automorphic
representation π of G = GL(2)F , of parallel weight k, such that π′ = BCF ′/F (π).

In other words, if ρ is a two-dimensional λ-adic representation of Gal(Q/F ) that
becomes modular over a solvable totally real extension, then ρ is already modular
over F . I think as stated in Theorem 4.1.2, the condition that k 6= 1 is superfluous.
However, it is definitely not known in general that an Artin representation that
becomes modular over a solvable extension is necessarily modular; otherwise the
Artin conjecture would be known for all solvable Galois representations. Quite a
few famous mathematicians have allowed themselves to be tricked on this point.

The problem is that the characterization of π such that BCF ′/F (π) = π′, in
terms of π′, is given by a local relation of characters between πv and π′v for all
v. Global descent is determined up to twist by a global character of the cyclic
extension, but locally there is a separate local character (and usually two) at each
non-split place in F ′/F . This has the following consequence. Suppose F ′ ⊃ F ⊃ E
is a triple of number fields, with F ′/E Galois and solvable, and F ′/F and F/E both
cyclic of prime order. Let π′ be a cuspidal automorphic representation of GL(2, F ′)
that is invariant under Gal(F ′/E). Then π′ descends to a cuspidal automorphic
representation π of GL(2, F ). Now if σ ∈ Gal(F/E), the most we know is that

πv ◦ σ ' πv ⊗ αv ◦ det
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for all primes v, where αv is a local Galois character, and this does not suffice for
descent; indeed, one doesn’t even know a priori that the αv fit together to form a
global character of Gal(F/E).

However, if one already knows that π is associated to a global (irreducible) Galois
representation – because π∞ is a holomorphic representation, for example – then it
is easy to see that π can be chosen invariant under Gal(F/E), so that descent can
continue. (This simple observation may have been applied for the first time in my
proof of the local Langlands conjecture in the tame case.)

4.2 Global automorphic induction of Hecke characters, imaginary qua-
dratic case.

The following construction works with Q replaced by any base field. Let E/Q be
a quadratic field, and let σ ∈ Gal(E/Q) be the non-trivial automorphism. Let χ :
E×

A/E× → C× be a Hecke character. Define the representation π(χ) = ⊗vπv(χv)
as follows:

(a) Suppose v is a place of Q that splits in E, v = w · wσ. Let πv(χv) be the
principal series I(χw, χwc).

(b) Suppose v does not split, and let w be the unique place of E dividing v. We
let πv = AIEw/Qv

(χw), defined as above.

Theorem 4.2.1 (Hecke, Maass, Jacquet-Langlands). (a) The representation
AIE/Q(χ) = π(χ) is an automorphic representation of G′. If ηE is the quadratic
character of the idèles of Q associated to the extension E, then

π(χ)⊗ ηE ◦ det ' π(χ).

(b) Conversely, suppose π is a cuspidal automorphic representation of GL(2)Q
such that π(χ) ⊗ ηE ◦ det ' π(χ). Then π is of the form π(χ) for some Hecke
character χ of E.

(c) The automorphic representation π(χ) is cuspidal if and only if χ 6= χ ◦ σ, or
equivalently if and only if χ does not factor through the norm down to the idèles of
Q.

As indicated, these automorphic representations, or rather their corresponding
modular forms (resp. Maass forms) were constructed by other means by Hecke
(resp. Maass). They were also constructed by the converse theorem in various
cases by Weil, Shimura, and Jacquet-Langlands.

We consider the imaginary and real quadratic cases separately.

Theorem 4.2.2. Suppose E is imaginary quadratic, and suppose χ∞(z) = z1−k

for some k > 0. (In particular, χ never factors through the norm if k > 1.)
Then π(χ) is holomorphic of weight k, and is always cuspidal if k > 1. Moreover,
E(π(χ)) is contained in the number field E(χ) generated by the values of χ on the
finite idèles, and for all places λ of E(χ), ρλ,π(χ) is induced to Gal(Q/Q) from the
λ-adic character Gal(Q/E) → E(χ)×λ .

Theorem 4.2.3. Suppose E is real quadratic, and let v, v′ be the two real places of
E. Suppose χv is the trivial character and χ′v is the sign character; in particular,
χ 6= χ ◦ σ. Then π(χ) is cuspidal holomorphic of weight 1. Moreover, for all
λ, ρλ,π(χ) is an Artin representation induced from the (finite) Galois character of
Gal(Q/E) associated to χ.
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Theorems 4.2.2 and 4.2.3, together with the theorem of Serre and Henniart on
locally algebraic `-adic representations, imply that every two-dimensional λ-adic
representation of Gal(Q/Q) that is Hodge-Tate and monomial (induced from a
one-dimensional character of the Galois group of a quadratic extension) is modular.


