
AUTOMORPHIC REPRESENTATIONS OF GL(n)

1. Local theory of representations of GL(n)

GL(n, F ), F nonarchimedean.
In contrast to the case n = 2, there is no point in isolating three classes of

representations at this stage. I will have more to say in later lectures, but for now
I will be satisfied with a coarse classification. Let O ⊂ F be the ring of integers.

1.1.1 Principal series. Let B ⊂ GL(n) be the upper-triangular Borel subgroup,
B(F ) = AN , with A = F×,n the diagonal subgroup, with maximal compact sub-
group Ao = O×,n The n-tuple {α1, . . . , αn} defines a character χ : A = F×,n → C×.
Then χ lifts to a homomorphism B → C× and we let π(χ) = Ind

GL(n,F )
B(F ) χ, where

the induction is normalized (as for n = 2 to make this generically independent of
the order of the αi. In most cases π(χ) is an irreducible representation, the ex-
ceptions generalizing the construction of the Steinberg (special) representation for
n = 2.

Suppose each αi is unramified. We identify A/Ao = (F×/O×)n ∼−→Zn; then χ
sends the i-th generator ei of Zn (an orientation is provided by the absolute value)
to αi. In this case

dim π(χ)GL(n,O) = 1

as one checks directly; a basis is given by the function f0(k) = 1 for all k ∈
GL(n,O). When π(χ) is irreducible, it is then called a spherical principal series;
in general, a spherical representation is the unique irreducible subquotient of π(χ)
with non-trivial GL(n,O)-fixed subspace. More generally, representations of the
form π(χ) for unramified χ are called unramified principal series; they have finite
composition series.

Proposition 1.1.1.1. (The character χ is not assumed unramified.) (a) I(χ) is
irreducible unless αi/αj = | • |±1 for some i 6= j. (b) If αi/αj 6= | • |±1 for all i, j
then I(χ) ∼−→ I(w(χ)) as irreducible admissible representations of GL(n, F ) for
any permutation w of the αi.

One can define a spherical Hecke algebra for GL(n) with coefficients in a ring
A: it is the convolution algebra of compactly supported A-valued functions on
GL(n, F ) bi-invariant under GL(n,O), and is isomorphic to the polynomial

A[T1, . . . , Tn, T−1
n ]

if A is a Q-algebra. For any A, we will define the operators Ti as above and let
HA(G, K) be the polynomial algebra on the Ti and T−1

n . Explicit normalizations
will be introduced later. Let $ be a uniformizing element in O.
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2 AUTOMORPHIC REPRESENTATIONS OF GL(N)

Proposition 1.1.1.2. The set of spherical representations is in bijection (Satake
isomorphism) with unordered n-tuples of non-zero complex numbers

π ↔ {α1($), . . . , αn($)}

and we can define a local Euler factor

L(s, π) =
n∏

i=1

(1− αi($)Nv−s)−1

where Nv is the order of O/($).

1.1.2 Induced representations.
M ore generally, if n =

∑r
i=1 ni is a partition, with r > 1, let P ⊂ GL(n) be the

parabolic subgroup with Levi factor
∏

i GL(ni). To any r-tuple of irreducible
admissible representations σi of GL(ni, F ) one can define Ind

GL(n,F )
P (F ) σ1⊗· · ·⊗σr

(normalized induction). This induced representation has finite length as a repre-
sentation of GL(n, F ). The irreducible representations of GL(n, Ev) that do not
occur in any such composition series are called supercuspidal. They are again in
the discrete series, as for n = 2, and the remaining discrete series can be clas-
sified but the classification is more complicated.. Supercuspidal representations
do not exist for archimedean v but they do exist for all finite v.

1.1.3 Steinberg representations. We also need to consider the Steinberg represen-
tations St(n, α), where α is a character of F× (not necessarily unramified). These
are discrete series and can be defined in various ways. The simplest is to consider
that the one-dimensional representation α◦det of GL(n, F ) can be written uniquely
as a quotient of a certain principal series. The Steinberg representation St(n, α)
is then the unique irreducible subrepresentation (not subquotient!) of this induced
representation. The Steinberg representations are the only constituents of principal
series that belong to the discrete series.

1.1.4 Distribution characters. The theory is valid as for GL(2).

1.2. Langlands parametrization.
The most conceptually useful parametrization of A. Let G = Gn,F denote the set

of equivalence classes of (Frobenius-semisimple) two-dimensional representations of
the Weil-Deligne group WDF . Let

rF : (WDF )ab ∼−→F×

be the (normalized) reciprocity isomorphism.

1.2.1. Local Langlands correspondence. There is a bijection

L : An,F → Gn,F

with the following natural properties, among others;
(i) If I(χ) is irreducible, then

L(I(χ)) = ⊕n
i=1αi ◦ rF

(ii) π is supercuspidal if and only if L(π) is irreducible.
(iii) L preserves local L and ε factors of pairs of representations, where the

local factors for A are those defined by Jacquet-Piatetski-Shapiro-Shalika or
Shahidi.

(iv) detL(π)) = rF ◦ ξπ, where ξπ is the central character of π.
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1.2.2. Local base change and automorphic induction.
Let F ′/F be a finite extension. The inclusion WDF ′ ⊂ WDF defines a natural

restriction map
Gn,F → Gn,F ′ ,

hence by the local Langlands parametrization a natural base change map

BC = BCF ′/F : An,F → An,F ′ .

When F ′/F is a cyclic Galois extension of prime degree, the map BCF ′/F coin-
cides with the Arthur-Clozel construction and is determined by an explicit relation
between χπ and χBCπ.

Let F ′/F be of degree d. Induction of finite-dimensional representations defines
a natural map

Gm,F ′ → Gmd,F ,

hence by the local Langlands parametrization a natural map called (local) auto-
morphic induction:

AIF ′/F : Am,F ′ → Amd,F .

This can also determined by an explicit relation of distribution characters (Henniart-
Herb).

Let α be an unramified character of F× The Steinberg representation St(n, α)
corresponds under L to a Weil-Deligne representation Sp(n, α) in Gn,F . A repre-
sentation π of GL(n, F ) is called monodromic if L(π) = ⊕r

i=1Sp(ni, αi) for some
unramified characters αi and some partition n = n1 + · · · + nr. Since the Galois
group of any finite extension of F is solvable, it follows that

Proposition 1.2.3. Any π ∈ An,F becomes monodromic after a finite series of
cyclic base changes.

This is very important in applications of the Taylor-Wiles technique.

1.2.4. Other realizations.
The Bushnell-Kutzko theory of types is complete for GL(n). Supercuspidal rep-

resentations of GL(n, F ) can be constructed by rigid geometry in two ways, one
contained in my 1997 article in Inventiones, the other in my book with Richard
Taylor. Faltings (and Fargues) have proved that the two constructions are equiva-
lent.

1.3. Classification of irreducible representations of GL(n, R) and GL(n, C)..
For the purposes of this lecture, we will fix a single Harish-Chandra module

π for GL(n, F ) when F = R or C. It is a cohomological representation, which
means it has an explicit relation to cohomology of locally symmetric spaces, and
indeed to the cohomology with constant coefficients. It is the generalization of
the representation π2,0 of GL(2), corresponding to holomorphic modular forms of
weight 2 on the upper half-plane.

1.4 Automorphic representations.
I reproduce the paragraph from the notes on GL(2), in modified form:
We let G = GL(n)F . The theory of representations of G(Fv) is as above. For v

non-archimedean it is roughly analogous to the case already considered of GL(2).
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On the other hand, for v archimedean there is no natural collection of (gC,K)-
modules comparable to the holomorphic representations. Here K =

∏
v|∞ Kv is

a maximal compact subgroup of G∞ =
∏

v|∞ G(Fv), so Kv is either isomorphic
to R× · O(n) (v real) or C× · U(n), (v complex). If π is an (irreducible cuspidal)
automorphic representation of G, then it factors

π = ⊗′vπv

(restricted tensor product over places v of F ), where for each v, πv is an admissible
irreducible representation of G(Fv) in the sense described in §1. For almost all v
πv is necessarily spherical, which allows us to define the restricted tensor product.
The function L(s, π) =

∏
v 6|∞ L(s, πv) converges in a right half plane and extends

to an entire function with functional equation (Godement-Jacquet).

2. Associated global Galois representations

For the remainder of these notes I insert the notes of a talk I gave in Montreal
two years ago. For the case n = 2 this overlaps with the other notes for this week,
but gives more details. The book project has advanced considerably over the last
two years, as I will explain during the course.

Review of the case n = 2

I begin with the situation with which I assume you are all familiar. Let f be
an elliptic modular normalized newform of weight k ≥ 2. Equivalently, let π be
the corresponding cuspidal automorphic representation of GL(2,A); the weight k
condition corresponds by the Shimura isomorphism to the condition I will label

(i) (Regularity) The archimedean component π∞ of π is the discrete series
representation πk of GL(2, R) which has cohomology with coefficients in
the irreducible representation Symk−2R2.

The L-function L(s, f) in the usual normalization is absolutely convergent for
Re(s) > k+1

2 (Ramanujan-Petersson; otherwise k + 22) and satisfies a functional
equation relating L(s, f) to L(k − s, f). We adopt the unitary normalization iden-
tifying L(s, f) = L(s, π), where the abcissa of convergence is at Re(s) = 1 and the
functional equation relates L(s, π) to L(1 − s, π), and we do so without comment
in the rest of the talk. The L-functions of compatible systems of λ-adic Galois
representations are also given the unitary normalization.

The theorem is the following:

Theorem I. (Eichler, Shimura, Deligne, Langlands, Carayol,T. Saito). Let
E(π) = E(f) be the field generated by the Fourier coefficients of f . There is a
compatible system of λ-adic representations (of geometric type), as λ runs through
non-archimedean completions of E(π): ρλ,π = ρλ,f : Gal(Q/Q) → GL(2, E(π)λ)
that is associated to π in the sense that, for every ` and every place v of Q prime
to the residue characteristic ` of λ,

(1) ρλ,f |Gv
= L(πv)

where L is the (motivically normalized) local Langlands correspondence.
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Moreover, the representation ρλ,f |G`
is potentially semistable, the Hodge-Tate

numbers of ρλ,f at ` are 0 and k − 1, with multiplicity one, and

(2) D(ρλ,f |G`
) = L(π`)

where D is the Fontaine functor associating to any potentially semistable represen-
tation of G` a representation of the Weil-Deligne group of Q`.

This is about as complete a result as one could wish. I have only omitted Scholl’s
theorem that the compatible system ρλ,π is actually associated to a Grothendieck
motive. This guarantees, for example, the validity of the Katz-Messing theorem,
that the characteristic polynomial of crystalline Frobenius at p coincides with the
characteristic polynomial of Frobenius at p acting on `-adic cohomology. The ana-
logue of Scholl’s theorem cannot be proved in full generality in other situations,
This is already the case for Hilbert modular forms. Let now F be a totally real
field, and π a cuspidal automorphic representation of GL(2,AF ). We consider the
analogue of condition (i) above:

(i) (Regularity) The local component πsigma of π, as σ runs over archimedean
places of F is the discrete series representation πk(σ) of GL(2, R); moreover,
all the k(σ) are congruent modulo 2.

We also add an optional condition:
(iii) local monodromy For some finite prime v of F , πv is square integrable.

The reason for this numbering will be apparent when I treat n > 2. The square-
integrable representations of GL(2, Fv) are the Steinberg representations, parametrized
by characters of F×

v , and the supercuspidal representations. The analogue of the
Eichler-Shimura et al. theorem is divided into several steps. We can define E(π)
to be the field generated by the eigenvalues of Hecke operators, acting in the clas-
sical space of Hilbert modular forms, or to be the field of definition of the non-
archimedean representation πf of GL(2,Af

F ). It is not difficult to see that E(π)
is always a number field, in fact a CM field or a totally real field, though it is less
trivial than for elliptic modular forms. Let d = [F : Q], GF = Gal(Q/F ).

Theorem II (Rogawski-Tunnell, Ohta, Carayol, T. Saito). Suppose either
d is odd or π satisfies condition (iii). Then there is a compatible system of λ-adic
representations (of geometric type), as λ runs through non-archimedean completions
of E(π): ρλ = ρλ,π : GF → GL(2, E(π)λ) satisfying the analogue of (1) above at
primes v of F not dividing `. Moreover, the Hodge-Tate numbers of ρλ at primes
dividing ` are explicitly determined by the weights kσ (by a formula that depends on
comparing real and `-adic embeddings of F ), and ρλ satisfies the analogue of (2)
above.

Note that I have chosen to ignore Hilbert modular forms and to express the result
directly in terms of the representation π. The most important remark concerning
the proof is that one cannot work directly with the automorphic representation
π of GL(2). The classical Hilbert modular form is a holomorphic function on a
product of d copies of the upper half plane, and contributes to cohomology of
the Hilbert modular variety, a Shimura variety of dimension d. More precisely,
it contributes to intersection cohomology of the Baily-Borel compactification with
twisted coefficients, provided the parity property is satisfied. Brylinski and Labesse
decomposed this cohomology into Hecke eigencomponents. The result associates to



6 AUTOMORPHIC REPRESENTATIONS OF GL(N)

π a representation of Gal(Q/Q) of dimension 2d which arises a posteriori as the
tensor product of the 2-dimensional representations corresponding to different real
embeddings τ : F → R.

We assume d > 1, since the case d = 1 is the subject of the earlier theorem. If
d > 1 is odd, then for each fixed choice of real embedding τ , there is a quaternion
algebra Bτ unramified at τ and at all finite primes, and ramified at the remaining
real places. This is an additional parity condition imposed by the theory of algebraic
groups over number fields: a quaternion algebra over a number field has to be
ramified at exactly an even number of places. The multiplicative group Jτ of
Bτ is an algebraic group over Q which defines an (adelic) Shimura curve Sτ each
connected component of which is a compact quotient of a single copy of the upper
half plane. The set of weights kσ defines `-adic local systems L(kσ),` on Sτ and the
ρλ are defined as

HomJτ (Af )(πf ,H1(Sτ , L(kσ),`)

These are already the `-adic realizations of a Grothendieck motive (with coeffi-
cients in E(π). Note that Jτ (Af ) = GL(2,Af ), so the Hom makes sense. The
fact that this space is 2-dimensional (rather than 0-dimensional) expresses a rela-
tion between automorphic representations of GL(2) and of Jτ , which is the global
Jacquet-Langlands correspondence. It is proved by means of the Selberg trace
formula, which is the main technique for relating automorphic representations of
different groups.

There is a minor point: πf is a complex representation, so one needs to replace
it by an `-adic version in order to define the Hom space. This becomes more
problematic when working with p-adic Banach spaces!

If d is even, but π satisfies (iii), we consider Bv
τ which is ramified at real primes

other than τ , and at the finite prime v, but unramified elsewhere. One constructs
Jv

τ and Sv
τ as before, and then ρλ is then

HomJτ (Af )(π
∗
f ,H1(Sτ , L(kσ),`)

Since Jτ (Af ) and GL(2,Af ) differ at the prime v, we need to define a π∗f . The def-
inition is provided by the local Jacquet-Langlands correspondence, which requires
hypothesis (iii).

I ignore the construction of `-adic representations in weight 1. These are no
longer associated to discrete series representations at archimedean places, and other
techniques (Deligne-Serre, etc.) are needed.

Hypothesis (iii) can be eliminated in two ways. The first, due to Taylor, is
to construct the individual ρλ independently by constructing increasingly close
(mod `i) approximations of π by πi, with the same weights as π, which do satisfy
(iii), then pasting together the resulting residual representations by the method
of pseudorepresentations. A related earlier method of Wiles used ordinary Hida
families and applied only at primes λ where the Hilbert modular form associated to
π is ordinary; here the weight varies. The starting point for Taylor’s construction is
the Jacquet-Langlands correspondence from GL(2) to forms on the multiplicative
group J∅ of the quaternion algebra unramified at all finite places but definite at
all archimedean places – this is possible because d is even. The group J∅ defines a
zero-dimensional Shimura variety which has no interesting cohomology, but which
can be used to define interesting modules over the Hecke algebra, whose congruence
properties can be studied. We return to the analogues of J∅ when considering n > 2.
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The second method, which provides more information when it works, is due to
Blasius and Rogawski, and relies on the results in Rogawski’s book and the Montreal
conference. I will concentrate on this method here and return to the method of
congruences after considering the general case. In the Blasius-Rogawski method,
the missing two-dimensional representations are a byproduct of the construction
of compatible families of three-dimensional representations, using the cohomology
of Picard modular surfaces, which are Shimura varieties of dimension 2. Generally
speaking, let F be a totally real field of degree d, E/F a totally imaginary quadratic
extension c ∈ Gal(E/F ) complex conjugation. Let V be an n-dimensional vector
space over E with a non-degenerate hermitian form (∗, ∗), and define the unitary
similitude group

GU(V ) = {g ∈ GL(V ) | (gv, gv′) = ν(g)(v, v′),∀v, v′ ∈ V }

where ν(g) is a scalar. The map g 7→ ν(g) is a homomorphism GU(V ) → Gm with
kernel U(V ), the usual unitary group. These are naturally reductive groups over F
but they can also be considered reductive algebraic groups over Q.

The same definition is valid for hermitian spaces over local fields. When v is a
place of F that splits in E, say v = w ·wc, then U(V )(Fv) ∼−→GL(V ⊗E Ew). If σ is
a real place of F , U(V )(Fσ) is determined by the signature of the hermitian form
on V ⊗Eσ (as groups, U(a, b) ∼−→U(b, a), so the choice of prime of E above σ isn’t
important. Suppose for every place v of F we have a unitary group (or similitude
group) Gv of dimension n. If n is odd, there is exactly one Gv, up to isomorphism,
for finite places v, and there is a unitary group G over F which localizes to Gv at
each v. If n is even, one assigns to each Gv a Hasse invariant εv ∈ {±1}, which is
automatically 1 if v splits. If almost all εv = 1 and if

∏
v εv = 1 then there is a

global G localizing to the given Gv everywhere; if not, there is no such global G.
When n = 2 this just comes down to the condition that a quaternion algebra has
to be ramified at an even set of places.

For n = 3 we have seen that Gv is unique for finite v; for v = τ we take
Gv = U(2, 1), and Gσ = U(3) (compact unitary group) for real places σ 6= τ . The
global G is associated to a Shimura variety Sh(G), a Picard modular surface, whose
cohomology (with twisted coefficients L) is computed in terms of automorphic forms
on G. Assume d > 1. Then Sh(G) is projective, and the cohomology H∗(Sh(G), L)
is a sum of three kinds of contributions:

(a) Non-tempered cohomology.. I will ignore these, though these can be used to
construct elements in Selmer groups;

(b) Stable (tempered) cohomology. Consider cuspidal automorphic representa-
tions Π of GL(3)E which satisfy the following two hypotheses:

(i) (Regularity) The local component Πsigma of Π, as σ runs over archimedean
places of F (or of E) is (tempered and) of cohomological type; i.e., there
is a finite dimensional representation Wσ of GL(3, Eσ) such that Wσ and
Πsigma have the same infinitesimal character.

(ii) Polarization Π∨ = Π ◦ c, where vee is contragredient
One way to obtain (i) and (ii) is to start with a cuspidal cohomological automorphic
representation Π1 of GL(3)F and apply Arthur-Clozel base change to define Π =
Π1,E . If Π1 is self-dual, then Π satisfies (ii).

Since Π is cohomological, it turns out we can define a number field E(Π) as
before. One of the main theorems of the Montreal volume is
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Theorem III (collective). Let Π satisfy (i) and (ii). There is a compatible sys-
tem of λ-adic representations (of geometric type), as λ runs through non-archimedean
completions of E(Π):

ρλ = ρλ,π : GE → GL(3, E(Π)λ)

satisfying the analogue of (1) above at primes v of F not dividing `. Moreover

ρ∨λ
∼−→ρλ ◦ c⊗ ξ

where ξ is an explicit Hecke character depending on choices I have not mentioned.
(Usually, ξ is the −2 power of the cyclotomic character.) Finally, the Hodge-
Tate numbers of ρλ at primes dividing ` are explicitly determined by the finite-
dimensional representations Wσ.

Blasius and Rogawski actually proved the ρλ are irreducible.

(c) Endoscopic (tempered) cohomology.
The representations in (b) occur in H2(Sh(G), L), where the coefficients L are

defined in terms of the Wσ (basically, they are dual to Wσ). But they do not exhaust
H2(Sh(G), L). One can summarize the information provided by the stable trace
formula as a decomposition of the set of cohomological automorphic representations
of G:

(E) Coh(G) = Coh(G)nt ⊕ Coh(G)GL(3) ⊕ Coh(G)GL(2)×GL(1)

corresponding to the three cases (a), (b), (c). The missing pieces come from pairs
of representations (Π2, η), where Π2 is a representation of GL(2)E satisying an
analogue of the polarization condition (ii), and η is a Hecke character of GL(1)E that
factors through the antinorm x 7→ x/xc. To the pair (Π2, η), Rogawski associates
a collection (L-packet) of automorphic representations (πi, i ∈ I) of the unitary
(similitude) group G; this packet is called the endoscopic transfer of (Π2, η). We
make a simplifying assumption

Hypothesis A. (a) E/F is unramified at all finite places. (b) Πv is spherical
(unramified) at all non-split non-archimedean places v of E.

Condition (a) looks restrictive – it’s never satisfied with F = Q – but in fact one
can always use quadratic base change to reduce to Hypothesis A.

Under Hypothesis A, there is a unique representation πf of G(Af ) such that
πi = π∞ ⊗ πf for all i ∈ I. Moreover, I is a finite set and one can define a system
of `-adic coefficients L`, for all `, such that

dimQ`
HomG(Af )(πf ,H2(Sh(G), L)⊗Q`) = |I|.

and is an |I|-dimensional representation of Gal(Q/E). In fact, if Π2 is fixed then,
depending on the choice of η, the Galois representation is of dimension either 1
or 2. Manipulating this construction, Blasius and Rogawski proved the following
theorem.
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Theorem IV (Blasius-Rogawski). Let π be a cuspidal automorphic representa-
tion of GL(2,AF ), F totally real. Suppose π satisfies (i) and kσ > 2 for at least one
σ. Then there exists a compatible system ρλ,π of two-dimensional representations
as in the earlier theorem. Moreover, up to twisting by an appropriate Hecke char-
acter, ρλ,π are the λ-adic realizations of a Grothendieck motive (with coefficients
in E(π)).

The complete local-global compatibility for these representations was only re-
cently proved by Blasius. The condition kσ > 2 for some σ is needed in order to
guarantee the possibility of choosing an η for which |I| = 2 and not 1; it was missing
in their first paper.

What remains is the case kσ = 2 for all σ, d even, when π fails to satisfy (iii).
This case, which conjecturally includes the Hilbert modular forms associated to
elliptic curves over F with good reduction everywhere, was treated by Taylor. One
of the biggest open questions in number theory is to construct the ellliptic curves
over F associated to such π.

Modularity.
The methods inaugurated by Wiles are well adapted to the representations of

Theorems I and II and prove under various sets of hypotheses that if a mod `
Galois representation admits one modular lifting, then all its liftings are modular.
As far as I know, no one has tried to apply these techniques to the three-dimensional
representations of Theorem III nor to the 2-dimensional representations of Theorem
IV. For the latter it is surely unnecessary, since one can use Taylor’s construction.
I mention this here because one of the goals of the book project is to proving
whatever is necessary to apply the Wiles techniques in higher dimensions.

n > 2

For n odd, the model is Theorem III; for n even the model is Theorem IV. As
matters stand, we have the analogue of Theorem II. Let E/F be as before, and for
simplicity we always assume Hypothesis A; in particular, d > 1. Consider a cuspidal
automorphic representation Π of GL(n)E . First assume Π satisfies Hypotheses
(i), (ii), and (iii), which can be stated just as before; Regularity means having
cohomology with respect to a specific finite-dimensional representation W (Π∞).

Theorem V. Assume Π satisfies (i)-(iii)
(a) (Clozel, Kottwitz, H-Taylor, Taylor-Yoshida) There is a compatible system

of λ-adic representations (of geometric type):

ρλ = ρλ,Π : GE → GL(n, E(Π)λ)

satisfying the analogue of (1) above at primes v of F not dividing `. Moreover

ρ∨λ
∼−→ρλ ◦ c⊗ χ1−n

where χ is the cyclotomic character. The Hodge-Tate numbers of ρλ at primes
dividing ` are explicitly determined by the highest weights of the finite-dimensional
representations W (Π∞), and occur with multiplicity ≤ 1.

(b) (H-Labesse) The ρλ can be realized in Hn−1(Sh(GU(V ), L(Π∞) (cohomology
with twisted coefficients), where V is a hermitian space of signature (n − 1, 1) at
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one real place τ of F , definite at all other real places, and quasi-split at all finite
places other than possibly the place v where Πv is square integrable.

In (a), there was a Shimura variety attached to a twisted unitary group. The
proof of (b) is a reduction by generalized Jacquet-Langlands transfer to the twisted
case, and to the analysis of bad reduction in [HT].

The goal of the book project is to dispense with hypothesis (iii). Henceforward
n = 2m + 1 is odd, and V is a hermitian space of signature (n − 1, 1) at τ and
definite at other real places. Our starting point is the following recent theorem of
Arthur.

Theorem (Arthur, plus Labesse base change). Assume two fundamental lem-
mas for the group G = GU(V ): the standard fundamental lemma for endoscopy,
and the fundamental lemma for weighted orbital integrals. Then there is an endo-
scopic decomposition of the space of cohomological cuspidal automorphic forms on
G, analogous to the case n = 3:

(E) Coh(G) = Coh(G)nt ⊕⊕i=0mCoh(G)GL(n−i)×GL(i)

Restricting to representations satisfying (iii), the theorem is known uncondition-
ally (H-Labesse, using the fundamental work of Kottwitz) and the only non-trivial
factor corresponds to i = 0.

The first fundamental lemma in Arthur’s theorem has been proved by Laumon
and Ngô. Arthur’s proof involves a complicated double induction on the two sides of
the trace formula that requires the second fundamental lemma, still unproved. The
expectation of the book project is that the Laumon-Ngô fundamental lemma suffices
to obtain a version of (E) adequate for deduction of the analogues of Theorems
III and IV. The odd- (resp. even-) dimensional Galois representations will be in
the part corresponding to i = 0 (resp. i = 1), as for n = 3. The remaining
(tempered) components will involve no new Galois representations but presumably
have applications no one has yet considered. Arthur’s conjectures on the structure
of non-tempered contribution have been analyzed by Bellaiche and Chenevier.

Book I is devoted to the stable trace formula. We depart from Arthur and
from the mainstream of work on the stable trace formula by writing our endoscopic
decomposition in terms of anisotropic (partially definite) unitary groups rather than
quasi-split endoscopic groups, hoping that this can replace the fundamental lemma
for weighted orbital integrals. A year of work on Book I has reduced the goal to
five explicit questions primarily about the archimedean local terms in the geometric
and spectral sides of the trace formula, and I hope these will be resolved by the
spring.

Book II will be devoted to the `-adic cohomology of the Shimura varieties
Sh(GU(V )). The new element, which we hope to address this year, is the de-
termination of the local Galois representations at all finite places. With our choice
of signatures the analysis of bad reduction should be identical to that in my book
with Taylor. However, we were able to avoid problems of endoscopy, whereas in the
present situation endoscopy is central. Kottwitz determined the local representa-
tion at (most) unramified places, assuming the fundamental lemma which has now
been proved, but we didn’t see how to adapt his approach to bad reduction, and
the main new contribution of Book II will be to reconcile the two approaches.
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At the end of Book II, we then expect to have the complete analogues of The-
orems III and IV for all n. Corresponding to the condition k(σ) > 2 will be a
condition like

Hypothesis B. Let W (Π∞) = ⊗σW (Πσ) where W (Πσ) is an irreducible finite-
dimensional representation of GL(n + 1, C). The highest weight of W (Πτ ) is reg-
ular.

This condition may be too strong, but it should suffice.
Up to now, I expect the ρλ.Π to have all the properties necessary for applica-

tion of the methods of my paper with Clozel and Taylor, in particular residual
modularity of a minimal representation (together with technical hypotheses about
the size of the image and the residue characteristic) should imply modularity. The
goal of Book III, of which Eric Urban has agreed be the main editor, is to de-
velop the theory of p-adic families of automorphic representations of GU(V ) and
the associated Galois representations. I hope this will suffice to allow construction
of Galois representations even in the absence of Hypothesis B. Chenevier’s thesis
constructed eigenvarieties under the local monodromy condition (iii), but I don’t
see why it shouldn’t work in the more general setting, and specialization at points
where Hypothesis B fails should provide p-adic representations that can be shown
to be associated to the cohomological Π on GL(n), in the sense that they are com-
patible with the local Langlands correspondence at primes of residue characteristic
6= p. It is known that in general specializations of families of p-adic representations
in low weight can fail to be Hodge-Tate. However, specializations corresponding to
cohomological cuspidal automorphic representations of GL(n)E that just happen
not to transfer to Shimura varieties should nevertheless be potentially semistable at
primes dividing p. This is known (in most cases?) for n = 2, thanks to work of Tay-
lor, Breuil, and Kisin. In general only even n pose a problem, for the simple reason
that when d and n are even there is no unitary group G that is quasi-split at all
finite primes and of signature (n− 1, 1) at τ and definite at remaining archimedean
primes. However, one can find a unitary group G′ that is quasi-split at all fi-
nite primes and of signature (n− 2, 2) at τ and definite at remaining archimedean
primes. After stabilization of the trace formula, we should find that, up to an
abelian twist, the exterior square of the Galois representation associated to any
cohomological Π on GL(n) can be realized in the cohomology of the Shimura vari-
ety associated to G′. In particular, the exterior square of the p-adic representation
ρλ,Π is potentially semistable at all primes dividing p. The original representation
ρλ,Π will correspond to specialization of an analytic family at a point where the
Sen weights are integral It then follows from work of Bellaiche-Chenevier and from
a general theorem of Wintenberger that ρλ,Π is itself potentially semistable. See
http://www.institut.math.jussieu.fr/projets/fa/bp0.html (the second article by M.
Harris).


