
3. Hecke algebras and unitary groups

It is finally time for the unitary group G0 introduced in the first lecture to make
its appearance. Recall that our basic object is a cohomological automorphic rep-
resentation Π of GL(n, F ), satisfying several axioms that guarantee its descent to
both unitary groups G and G0. We henceforward assume that Π has cohomology
with trivial coefficients. We fix a level subgroup Kf ⊂ G0(Af ) such that π′,Kf 6= 0.
With some additional work we can even assume dimπ′,Kf = 1 in practice, but this
will not be necessary. Then the L-packet π′ has non-zero intersection with the
space of functions

M ′(Kf ,C) = C(G0(Q)\G0(A)/G0(R) ·Kf ,C) = M ′(Kf ,Z) ⊗ C

where Kf ⊂ G0(Af ) is a compact open subgroup and M ′(Kf ,Z) is the free Z-
module of integer-valued functions. Fixing the level Kf guarantees that the module
M ′(Kf ,Z) is free of finite rank. We will impose the following conditions on Kf :

(1) Kf =
∏

v Kv as v ranges over finite primes of F+.
(2) At primes that remain inert in F/F+,Kv is a hyperspecial maximal compact

subgroup.
(3) At primes that ramify in F/F+, we could assume Kv is a “very special”

maximal compact subgroup, in the terminology of Labesse. However, this
condition can be ignored, because we can always assume after a quadratic
base change that F/F+ is everywhere unramified.

(4) If v splits in F/F+, and if v /∈ S, then Kv ≃ GL(n,Ov).
(5) If v ∈ S, Kv is adapted to the situation. In practice, S = Q ∪ R where Q

are the Taylor-Wiles primes, at which

Kv = {g ∈ GL(n,Ov) | g ≡

(

∗n−1,n−1 ∗n−1,1

01,n−1 1

)

(mod mv)}.

and R are the level-raising primes, at which

Kv = {g ∈ GL(n,Ov) | g (mod mv) is upper-triangular unipotent }

We will not really be able to give a precise account of the final condition. In the
present version of the article we can always use base change to assume Kv contains
an Iwahori subgroup of GL(n,Ov), but it is unnecessarily restrictive to make this
hypothesis.

Let Π and ρ = ρΠ,ℓ be as in the previous lectures, with LΠ∞
the finite-dimensional

representation of the compact group G0,R in which Π∞ has cohomology.. For now
we work on the Π side. Henceforward we make the following simplifying assumption:

(3.1) L(Π∞) = C.

It follows that, if π0 is the G0-avatar of Π, then π0,∞ is the trivial representation of
G0(F

+
∞); moreover, the Galois representation ρℓ will ultimately be realized in the

middle-dimensional cohomology of an n− 1-dimensional Shimura variety with Qℓ-
coefficients. This hypothesis is irrelevant to the modularity theorems but it suffices
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for the applications to the Sato-Tate Conjecture, and it spares us a lot of notation.
In particular, the non-trivial Hodge-Tate numbers are all of the form hi,n−1−i = 1
with 0 ≤ i ≤ n− 1.

As is customary we begin by introducing an ℓ-adic integer ring O, with fraction field
K and residue field k, a finite extension of Fℓ. Our Hecke algebras and deformation
rings will all be O-algebras.

The subspace of the space of C-valued automorphic forms on G0 generated by
automorphic representations π0 with π0,∞ = C is just the space of automorphic
forms on G0 on which G0(R) acts trivially, namely

(3.2) S(G0,C)) = Striv(G0,C)) := C∞(G0(F
+)\G0(A)/G0(R)),C).

The space Sh(G0) = G0(F
+)\G0(A)/G0(R)) is a profinite set, in fact a zero-

dimensional Shimura variety, and the notation C∞ denotes the space of locally
constant functions. In (3.2) these functions are taken with values in C, but we
could just as well take values in O, or more generally in any O-algebra A:

(3.3) S(G0, A)) := C∞(Sh(G0), A).

This can be viewed as the cohomology in degree zero of Sh(G0), and obviously
behaves well with respect to base change: if A → B is a homomorphism of O-
algebras, then S(G0, A) ⊗O B

∼
−→ S(G0, B) under the natural map. This is not

always true for cohomology in higher degrees of more general Shimura varieties,
not to mention the locally symmetric spaces attached to GL(n), and is one of the
advantages of working with G0.

We fix a set T of primes of F+ which will be the primes at which our π0 (or Π, or
ρ) will be allowed to ramify. We assume

T = S(B) ∪ Sℓ ∪ S1 ∪R

where Sℓ is the set of divisors of ℓ, S1 is a non-empty set of auxiliary primes (de-
scended from the r of the original Taylor-Wiles paper) which allows us to eliminate
elliptic fixed points in Sh(G0), and R is the set of primes at which Taylor studies
possible level-raising in [T]. There will also be sets of primes disjoint from T , de-
noted QN , as N varies among positive integers; these are the Taylor-Wiles primes,
used in the patching method. We let T (QN ) = T ∪ QN . These primes have the
following properties:

3.4.1 All primes in T (QN ) split in F/F+.
3.4.2 If v ∈ S1 lies above a rational prime p then [F (ζp) : F ] > n.
3.4.3 If v ∈ R then Nv ≡ 1 (mod ℓ).
3.4.4 If v ∈ QN then Nv ≡ 1 (mod ℓN ).

Let T̃ denote a set of liftings of T to primes of F , so that T̃
∐

T̃ c is the set of all

primes of F above T ; if v ∈ T let ṽ be the corresponding element of T̃ . For any
QN we define T̃ (QN ) in the same way.

For split primes v we identify G0(F
+
v ) with GL(n, Fw) for some w dividing v (we

choose ṽ for v ∈ T ). Now choose an open compact subgroup U of G0(Af ), U =
∏

v Uv, where v runs over finite primes of F+, such that

3.5.1 If v /∈ T , or if v ∈ Sℓ, then Uv is a hyperspecial maximal compact subgroup
of G0(F

+
v ).
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3.5.2 If v ∈ R then Uv is an Iwahori subgroup.
3.5.3 If v ∈ S1 then Uv is the principal congruence subgroup of level v:

Uv = {g ∈ GL(n,OF,ṽ) | g ≡ 1 (mod mṽ)}

where mṽ is the maximal ideal of OF,ṽ.
3.5.4 If v ∈ QN then

Uv = U1,v := {g ∈ GL(n,OF,ṽ) | g ≡

(

gn−1 ∗n−1

0n−1 1

)

(mod mṽ)}

where gn−1 ∈ GL(n−1,OF,ṽ) and ∗n−1 (resp. 0n−1) is an arbitrary column
matrix of height n− 1 (resp. the zero row matrix of width n− 1).

We write Ov = OF,ṽ for simplicity, and let k(v) denote its residue field. One likewise
defines U0,v ⊃ U1,v by weaking the condition in (3.5.4) so that the lower right-hand
entry is an arbitrary element of k(v)×. For v ∈ S(B), (3.5.2) implies that Uv is
a maximal compact subgroup, the multiplicative group of a maximal order of Bv;
for v ∈ R Uv can be identified with integral matrices whose reduction modulo ṽ
is upper-triangular, which we denote Iv (Iwv in [CHT,T]). Let qv be the order of
the residue field k(v), a power of the prime pv. Let I(1)v ⊂ Iv be the pv-Sylow
subgroup, the matrices whose reduction modulo ṽ is upper-triangular unipotent;
mapping to the diagonal entries thus identifies

(3.6) Iv/I(1)v
∼
−→ (k(v)×)n

A character of Iv/I(1)v is denoted χv = (χ1,v, . . . , χn,v) where each χi,v is a char-

acter of k(v)×. A character of U0,v/U1,v
∼
−→ k(v)× is denoted ψ0

v .

Let χv be as above, for v ∈ R, and define

(3.7) S{χv}(U,A) = {f ∈ S(G0, A) | f(gu) =
∏

v∈R

χ−1
v (uv)f(g)}

for all g ∈ G0(Af ) and u =
∏

uv ∈ U . This is the module on which our Hecke
algebras act. Suppose A = C (don’t worry about its O-algebra structure); then
S{χv}(U,C) is the space of vectors in the space of automorphic forms on

G0(F
+)\G0(A)/G0(R) ·

∏

v/∈R

Uv

on which
∏

v∈R Uv acts by the indicated character. In particular, the only automor-
phic representations π0 that contribute to S{χv}(U,C) are those with non-trivial
fixed vectors under

∏

v/∈R Uv ×
∏

v∈R I(1)v Our choice of Uv for v ∈ S(B) implies
that any π0 has a base change Π to GL(n, F ) for which Πv is an abelian twist of
the Steinberg representation. In order to allow more discrete series local factors at
v ∈ S(B) (as required by condition (3)) we would need to allow representations of
Uv of dimension > 1 and consider vector-valued forms with values in these repre-
sentations, tensored over the places in S(B). This is the point of view of [CHT] and
[T]. For simplicity we prefer not to work with vector-valued forms in these notes.
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However, the reader is advised that certain steps in the proof of the Sato-Tate
conjecture require the use of such vector-valued forms.

For a place v of F+ we let Γv denote a decomposition group at v. Here is how
the conditions on primes in T (QN ) translate into conditions on the Galois repre-
sentation ρ = ρΠℓ

, which we assume takes values in GL(n,O)1 We write ρ̄ for the
reduction of ρ modulo the maximal ideal of O.

3.8.1(a) If v /∈ T , then ρ |Γv
is unramified;

3.8.1(b) If v ∈ Sℓ, then ρ |Γv
is crystalline.

3.8.2 If v ∈ R then ρ |Γv
may be more ramified than ρ̄, and that is the issue

resolved in [T].
3.8.3 If v ∈ S1 then ρ is unramified at v and ρ̄ has no deformation to a represen-

tation ramified at v.
3.8.4 If v ∈ QN then ρ is unramified at v but ρ̄ has certain deformations to

representations ramified at v, and the point of the Taylor-Wiles method,
as generalized in [CHT] and [T], is to use these additional deformations to
bound the size of the ring of all deformations in terms of the Hecke algebra;
see §3.13 for details.

The assertions (3.8.1) and (3.8.2) can be justified on the basis of the information
presented up to now. This is not true of (3.8.3) and (3.8.4). The need to choose
sets S1 and QN with these properties requires us to impose additional hypotheses
on Im(ρ̄). That such choices are possible then follows from an argument using
Chebotarev density, as in the original article of Taylor-Wiles. This will be explained
below.

Now let A = O. Our Hecke algebra is a finite free O-algebra, given with an
explicit infinite family of generators. Each split prime v /∈ T (QN ) contributes n
generators. One can also include generators at non-split primes outside T , but these
are unnecessary, basically because the split primes of F have Dirichlet density 1
(this is not true of the primes of F+ that split in F !).

Let w be a prime of F split over F+, v its restriction to F+, so that v factors
as w · wc. Then G0(F

+
v )

∼
−→ GL(n, Fw), and π0,v

∼
−→ Πw, as we saw above. The

Hecke polynomial attached to the unramified representation Πw of GL(n, Fw) was
originally determined by Shimura and is presented in his red book on modular forms.
The coefficients of this polynomial define the n Hecke operators at v; replacing the
Hecke operators by their eigenvalues on the 1-dimensional Uv ≃ GL(n,Ow)-fixed
subspace of π0,v, and the variable by q−s

v , yields the inverse of the local Euler factor
L(s,Πw).

Explicitly, let ̟w be a uniformizer at w. The Hecke operators are double coset
operators

(3.9) T (j)
v = Uv(diag(̟wIj, In−j))Uv ⊂ G0(F

+
v ), j = 1, . . . , n,

These operators act in the usual way on S{χv}(U,A) for any A, as does (T
(n)
v )−1,

which is just translation by an element of the center. Explicitly, if f ∈ S{χv}(U,Z),

1This is true when ρ is viewed as a representation of Gal(Q/F ); ρ extends to a representation of

Gal(Q/F+) with values in the L-group of G0), as discussed above.
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we have

T (j)
v f(h) =

∫

G0,v

f(hg′)T (j)
v (g′)dg′

where dg′ is the Q-valued bi-invariant Haar measure on G0,v that gives volume 1
to Kv. Since the integrand is right-invariant under Kv, this is a sum of values of a
Z-valued function with Z coefficients.

We assume O chosen sufficiently large to include all eigenvalues of all Hecke opera-
tors introduced thus far acting on the finite-dimensional Q-vector space S{χv}(U,Q).
We denote

TT
{χv}

(U)

the O-subalgebra of End(S{χv}(U,O)) generated by the T
(j)
v , j = 1, . . . , n, together

with (T
(n)
v )−1, for all split unramified v /∈ T . For v ∈ QN we need to add addi-

tional (non-spherical) Hecke operators Vv defined in the appendix, (A.3), for the
reasons explained there (see also the discussion above Theorem 3.15.4). This is a
finite free commutative O-subalgebra of End(S{χv}(U,O)). The commutativity is

a consequence of the commutativity of the local Hecke operators T
(j)
v for each v,

and this is part of the theory of the Satake transform. Since TT
{χv}

(U) is finite over

O, it is a semi-local ring, and we let mi ⊂ TT
{χv}

(U) denote its maximal ideals, as i

runs over a finite index set.

Remark. Let G be a unitary group of signature (n− 1, 1) at one prime, definite at
other primes. The point of this construction is that TT

{χv}
(U) is the same product

of local Hecke algebras (over primes v /∈ S that split in F/F+) that acts on the
cohomological automorphic forms on GL(n, F ) and on the middle-dimensional co-
homology Hn−1(Sh(G),Qℓ), where the avatar of Π is the L-packet we’ve denoted
{π}.

The unramified local Langlands correspondence considered in §1 is normalized so
that

Pw(X) = Xn +
n

∑

j=1

(−1)jqj(j−1)/2
w T (j)

v Xn−j,

with each T
(j)
v specialized to its eigenvalue for Πw, is the characteristic polynomial

of ρΠ,ℓ(Frobw) for any ℓ, where Frobw is geometric Frobenius.

We will be using

Proposition 3.10. The algebra TT
{χv}

(U) is reduced.

This follows easily from the fact that S{χv}(U,C) is a semisimple T (Kf )-module,
which in turn comes from the fact that T (Kf ) is hermitian with respect to the L2-
inner product (Petersson norm). Recall that G0 is anisotropic, so all automorphic
forms on G0 are square integrable.
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Proposition 3.11. Write T(U) = TT
{χv}

(U). (a) There is a representation

ρU,{χv} : ΓF → GL(n,T(U)) ⊗ Qℓ

with the property that, for any irreducible representation τ of G0 as above, admit-
ting base change to a cuspidal cohomological automorphic representation B(τ) of
GL(n, F ), the projection

ρτ = pτ ◦ ρU,{χv} : ΓF → GL(n,Qℓ)

is an l-adic representation of geometric type, unramified outside S ∪ Sℓ), with

LS∪Sℓ)(s, ρτ) = LS∪Sℓ)(s, B(τ)).

(b) Let E(Π) be the set of τ as in (a) such that (loosely speaking) pτ factors through
TΠ∩T(U) (TΠ is the localization at the maximal ideal m = mΠ, denoted TT

{χv}
(U)m

in the next section). The projection

ρΠ = ⊕τ∈E(Π)ρτ : GF → GL(n,⊕τ∈E(Π)Qℓ)

is conjugate to a homomorphism ρTΠ
with values in the subgroup GL(n,TΠ) ⊂

GL(n,⊕τ∈E(Π)Qℓ). The reduction of ρΠ modulo the maximal ideal of TΠ is equiv-
alent to ρ̄Π.

(c) The homomorphism ρTΠ
extends to a homomorphism

rTΠ
: GF+ → Gn(T )

whose reduction modulo the maximal ideal is equivalent to r̄Π.

Assertion (a) is another way of expressing the theorem of Kottwitz and Clozel
described in the second lecture. Assertion (b) is a consequence of a very useful the-
orem of Carayol, and depends on the hypothesis that r̄Π be absolutely irreducible.
The last claim in (b) is the assertion that all the Galois representations associated
to τ ∈ E(Π) have the same reduction modulo ℓ. This is not difficult to show – it
suffices to calculate traces of Frobenius modulo ℓ, and the point is that these are
determined by the eigenvalues of the Hecke operators modulo ℓ, and completion
at mΠ simply picks out all the τ whose Hecke eigenvalues are congruent modulo
ℓ. But it deserves to be emphasized, since this is precisely the basis of the theory
of congruences of modular forms, as developed by Serre, Mazur, Katz, and Ribet
in the 1970s, and extended in various directions by Hida, Wiles, Taylor, and now
many others. Assertion (c) makes use of the Petersson pairing.

3.12. Surjectivity of the map R → T.. Now recall the automorphic representation
Π of GL(n). We associate a maximal ideal m = mΠ ⊂ TT

{χv}
(U) to Π. First we

descend Π to π0 as in §2. The Hecke algebra acts on the U -invariants in π0 by a
character λΠ and we let m ⊂ TT

{χv}
(U) be the maximal ideal containing ker λΠ, to

which we add the elements Vv − αv for v ∈ QN with the chosen eigenvalue αv (or
any lifting of ᾱv to O). The localization S{χv}(U,O) at m consists roughly of those

forms congruent to (the U -invariants of) of π0, and form a module for TT
{χv}

(U)m.

We have already introduced the deformation ring Runiv = Rρ̄,S of the residual
representation ρ̄, with conditions at S corresponding to 3.8.1-4 above. Universality,
together with Proposition 3.11, implies there is a map Runiv to TT

{χv}
(U)m ⊗ Q.

We will assume
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Hypothesis 3.12.1. The ideal m is not Eisenstein; i.e. ρ̄ is absolutely irreducible.

This hypothesis, together with the theorem of Carayol, implies that this factors
through a map

(3.12.2) φU : Runiv → TT
{χv}

(U)m

The generators of the Hecke algebra at a (good split) prime v appear as the images
under φU of the coefficients of the characteristic polynomials of Frobv. The proof
that the image of φU also contains the operators Vv, for v ∈ QN , which depends
naturally on the decomposition of ρΠ(Frobv) discussed below (cf. (3.13.7), is a
bit more subtle and is not explained here. If we could show that (3.12.2) is an
isomorphism, then the reciprocity conjecture of (1.6) would follow for any lifting of
ρ̄ satisfying the conditions used to define Rρ̄. In fact, it is not known in general that
(3.12.2) is an isomorphism, and specifically it is not known in the cases relevant to
the Sato-Tate conjecture. But it is known that the map on irreducible components
in characteristic zero is a bijection, and this is sufficient.

We write Rr̄Π
(or Rρ̄Π

) for Runiv, TΠ (or TΠ̄) for TT
{χv}

(U)m.

This is the place to remark that the set of v that split in F/F+, with a finite
subset removed, suffice to determine any ℓ-adic representation of ΓF , because their
extensions to F have Dirichlet density 1. Practically every step of the argument
makes reference to Chebotarev’s density theorem, which in the present setting
allows us to determine an ℓ-adic representation up to equivalence by the traces of
Frobenius at primes v belonging to a set of Dirichlet density 1. This also suffices
for the surjectivity assertion in the following Corollary:

Corollary. There is a surjective homomorphism in ĈO:

φ∅ : Rr̄Π,∅ → TΠ.

The ∅ has been appended to the subscript in anticipation of the introduction of
Taylor-Wiles primes. To prove this surjection is an isomorphism, one applies the
method of Taylor-Wiles, as simplified by Diamond and Fujiwara (see notes on
patching).

3.13. The Taylor-Wiles primes QN .

As indicated in 3.8.4, the primes v ∈ QN are chosen so that ρ is unramified at v.
It is assumed more pertinently that

(3.13.1) ρ̄ | Γv = ᾱv ⊕ s̄v

where ᾱv is an unramified character that does not occur as a subquotient of
s̄v. Since Nv ≡ 1 (mod ℓ), this means in particular that
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3.13.2. There are no non-trivial Γv-extensions between ᾱv and s̄v.

The proof is by calculating Galois cohomology. Choose a prime ṽ of F dividing v.
We consider
(3.13.3)
H1(Γṽ, adρ̄) = H1(Γṽ, k) ⊕H1(Γṽ, ᾱv ⊗ (̄s)∨v ) ⊕H1(Γṽ, ᾱ

−1
v ⊗ s̄v) ⊕H1(Γṽ, ads̄v).

The first factor corresponds to the trivial representation αv⊗α
−1
v . This is calculated

by the inflation restriction sequence. Since ρ̄ is unramified at v, we have the short
exact sequence

0 → H1(Γṽ/Iṽ, adρ̄) → H1(Γṽ, adρ̄) → H1(Iṽ, adρ̄)
Γṽ/Iṽ → 0

where the final 0 is H2(Γṽ/Iṽ, adρ̄) which vanishes because Gal(k̄(ṽ)/k(ṽ)) is pro-
cyclic. We rewrite this

(3.13.4) 0 → H1
unr(Γṽ,M) → H1(Γṽ,M) → HomΓṽ/Iṽ

(Iṽ/I
ℓ
ṽ,M) → 0

where M is either adρ̄ or any of the four summands that appears in the right hand
side of (3.13.3). Now the condition Nv ≡ 1 (mod ℓ) is exactly the condition that
Iṽ/I

ℓ
ṽ is the trivial < Frobv >-module Fℓ. Thus (3.13.2) implies that

(3.13.5) HomΓṽ/Iṽ
(Iṽ/I

ℓ
ṽ, ᾱv ⊗ s̄∨v ) = HomFrobv

(Fℓ, ᾱv ⊗ s̄∨v ) = 0

and likewise with ᾱ−1
v ⊗ s̄v. On the other hand, the usual short exact sequence

0 → H0(Γṽ,M) → M
Frobv−1
−→ M → H1(Γṽ/Iṽ,M) → 0,

together with (3.13.2), shows that H1
unr(Γṽ,M) = 0 when M is one of the two

middle terms in (3.13.3). Thus (3.13.3) can be rewritten

(3.13.6) H1(Γṽ, adρ̄) = H1(Γṽ, k) ⊕H1(Γṽ, ads̄v).

For v ∈ QN , we set
Lv = H1(Γṽ, k) ⊕H1

unr(Γṽ, ads̄v).

One verifies easily that this choice of Lv corresponds to the following condition on
a deformation ρ of ρ̄:

(3.13.7) ρ |Γv

∼
−→ αv ⊕ sv

where sv is unramified (but αv is arbitrary). One also needs to verify that (3.13.7)
defines a deformation condition, in other words that this property is relatively
representable; this is routine.

The short exact sequence (3.13.4) applied to M = k shows that

dimLv = 2 + dimH1
unr(Γṽ, ads̄v) = 1 + dimH0(Γṽ, adρ̄),
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hence χv,S = 1 for all v ∈ QN . Let S(QN ) = S∪QN , where S is the set of ramified
primes, including all primes in Sℓ. In our simplified setup, S = Sℓ or, in the
setting of framed deformations, S = Sℓ ∪R. Let S(QN ) denote the corresponding
deformation problem. We return to the Riemann-Roch formula. Recall that adρ̄
is isomorphic to its linear dual, so that adρ̄∗ is the Tate twist adρ̄(1). Letting
ǫ∞ = n

∑

v∈S∞

1+cv

2 (the error at archimedean primes, which will be proved to
vanish) we find
(3.13.8)

h1
S(QN )(ΓF+ , adρ̄)

= h1
S(QN )∗(ΓF+ , adρ̄(1)) + h0(ΓF+ , adρ̄) − h0(ΓF+ , adρ̄(1)) + |QN | − ǫ∞

= h1
S(QN )∗(ΓF+ , adρ̄(1)) − h0(ΓF+ , adρ̄(1)) + |QN | − ǫ∞.

Here the first h0 term vanishes because ρ̄ is absolutely irreducible and complex
conjugation acts as −1 on the scalars, as we have already seen.

3.14. The Taylor-Wiles primes, part II.. We also want to impose the following
conditions on |QN |.

(1) (3.14.1) If v ∈ QN then Nv ≡ 1 (mod ℓN ). (this was (3.4.4)
(2) (3.14.2) ρ̄ | Γv satisfies conditions (3.13.1) and (3.13.2).
(3) (3.14.3) There is a number r such that |QN | = r for all N .
(4) (3.14.4) h1

S(QN )∗(ΓF+ , adρ̄(1)) = 0 for all N .

The existence of QN is proved by using the Chebotarev density theorem and cal-
culations of global Galois cohomology similar to but more elaborate than those in
(3.13). These are contained in a separate set of notes. The number r in (3.14.3) is
just the dimension of the obstruction space h1

S∗(ΓF+ , adρ̄(1)), and one constructs
the set QN by adding elements satisfying (3.14.1) and (3.14.2), one at a time, so
that in the short exact sequence

0 → H1
S(QN )∗(ΓF+ , adρ̄(1)) → H1

S∗(ΓF+ , adρ̄(1)) → ⊕v∈QN

β
→ H1

unr(Γṽ, adρ̄(1))/L⊥
v

the last arrow β is injective. That QN satisfying all four conditions exist depends
on the hypothesis, described in the notes on the Chebotarev density argument,
that im(ρ̄) is “big.” This hypothesis is always satisfied in the applications (though
it has to be checked), and it also implies the vanishing of the remaining global term
h0(ΓF+ , adρ̄(1)) in (3.13.7).

Proposition 3.14.5. Suppose im(ρ̄) is “big.” Then for each N > 1, one can find a
set QN satisfying (3.14.1)-(3.14.4) and such that the following dimension formula
holds:

h1
S(QN )(ΓF+ , adρ̄) = |QN | − ǫ∞ = r − ǫ∞.

For the general deformation problem, one needs to calculate the relative h1 as the
dimension of the tangent space of the framed deformation problem modulo the
dimension of the tangent space of Rloc. More on this later.
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3.15 Taylor-Wiles patching in the minimal case.

To apply the above calculations to obtain the situation described in the notes on
patching, we replace n by r and m by N . The modules Hm are what we have called
S{χv}(U(QN ),O)m above, where U(QN ) is the open compact subgroup satisfying
condition (3.5.4) at primes in QN . We write HQN

for Hm Ignore the χv for the
time being, since the set R of non-minimal primes of (3.5.2) is here assumed empty.
The ring Rm of Diamond’s Corollary 1.6 is our ring Rρ̄,S(QN ) which we write more
simply Rr̄Π,QN

. The ring Tm is just the image of Rr̄Π,QN
in End(HQN

), and this
is just TT

{χv}
(U(QN ))m, which we denote Tr̄Π,QN

for consistency. Indeed, the only

way Runiv acts on modular forms is through its (surjective) homomorphism to the
corresponding Hecke algebra.

We have not yet constructed the maps involving A and B. Recall that A and
B are power series ring in r variables, denoted Si and Xi, respectively. It follows
from Proposition 3.14.5 that each Rr̄Π,QN

is generated over O by r−n
∑

v∈S∞

1+cv

2
.

elements, hence is a quotient of a power series ring in r variables. One can therefore
construct the maps B → Rr̄Π,QN

ad hoc.

The maps A → Rm are more intrinsic. For each v ∈ QN let ∆v be the quotient of
order ℓN of k(v)×. By (3.14.1) there is such a quotient. Let

U0,v = U1,v := {g ∈ GL(n,OF,ṽ) | g ≡

(

gn−1 ∗n−1

0n−1 ∗

)

(mod mṽ)}

by analogy to (3.5.4), so that U0,v/U1,v
∼
−→ k(v)×. Let U+

1,v ⊂ U0,v be the subgroup
containing U1,v such that

U0,v/U
+
1,v

∼
−→ ∆v

∼
−→ Z/ℓNZ

We modify our modular formsHQN
and consider only the submodule of

∏

v∈QN
U+

1,v-

fixed vectors, but we do not change notation. Let ∆QN
=

∏

v∈QN
∆v. This group

acts on HQN
, and we have the important

(not quite true) Principle 3.15.1. For any N , the module HQN
is free over

O[∆QN
].

This principle is almost true because the S{χv}(U(QN),O) are spaces of functions
on finite sets on which the group ∆QN

acts almost freely, and the localization that
produces HQN

does not affect the condition of being free over the group algebra.
Since we don’t know that ∆QN

acts freely, we follow Taylor and Wiles and introduce
an additional prime of potential ramification, denoted S1 above. Adding S1 to the
level makes the action of ∆QN

free, and S1 is chosen so that no constituent of the
localization at m is actually ramified at S1, so the Riemann-Roch calculation is
unchanged. The existence of an appropriate S1 is another condition guaranteed by
the hypothesis that the image of ρ̄ is “big.” I will not dwell on this point.

On the other hand, for v ∈ QN , consider the action of inertia Iṽ on the universal
deformation runiv of type S(QN ) of r̄Π. We can restrict our attention to the homo-
morphism ρuniv : ΓF → GL(n,Rr̄Π,QN

. Then in an appropriate basis, ρuniv |Iṽ
can
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be written as the sum of a trivial n− 1-dimensional representation (lifting s̄v) and
a one-dimensional character ξv : Iṽ → R×

r̄Π,QN
on the lifting of the αv-eigenspace.

The character ξv is well-defined and independent of the choice of basis, and is tame,
hence factors through the tame inertia group k(ṽ)×. Moreover, we have

Principle 3.15.2. The character ξv factors through the quotient ∆v of k(ṽ)×, and
the action of ∆v on HQN

induced by the composition of ξv with the homomorphism
Rr̄Π,QN

→ End(HQN
) is the natural group-theoretic action described above.

Both parts of this principle follow from the compatibility of the local and global
Langlands correspondences for the representation ρΠ, proved in my book with Tay-
lor.

Let AN = A/JN . Choose a generator δv ∈ ∆v for each v ∈ QN . The variables
Si in A = O[S1, . . . Sr] are indexed by the elements v ∈ QN for some ordering of
the latter – say we write i = i(v), i = 1, . . . , r – and we identify AN = O[∆N ] by
identifying δv with the image of 1 + Si(v) in AN . In this way, there is a natural
map

A → AN → R×
r̄Π,QN

where the second arrow is the product of the ξv of 3.15.2. In this way HN becomes
an A-module for each N , and Diamond’s condition (d) is satisfied:

3.15.3. AnnA(HN ) = JN and HN is a free AN -module for each N ..

To simplify the notation further, we write RN and TN instead of Rr̄Π,QN
and

Tr̄Π,QN
We have already seen Diamond’s condition (a) (surjectivity of the maps

RN → TN ). Condition (b) is not quite true as stated. We have chosen ad hoc
maps B → RN and we can lift the maps A → RN to maps cN : A → B in such
a way that the map B → RN factors through BN = B/cN (JN ). In (b) we can
replace RN by BN , as Diamond did, and then (b) remains true.

Condition (c) is a subtle point. It is not hard to see that HN/J0HN
∼
−→ H0 which

is the localization at m of the automorphic forms invariant under the group U0(QN ),
which are fixed by

∏

v∈QN
U0,v, in the above notation. But condition (c) requires

an identification of H0 with HΠ,∅. There are two independent points, one global,
one local, discussed in the appendix.

The global point – see Lemma A.2 of the appendix – is that the condition at m

guarantees that any representation Π′ of type S(QN ), with ρ̄Π′

∼
−→ ρ̄Π, and with

(Π′)U0(QN ) 6= 0, is necessarily unramified at QN . This is the group-theoretic equiv-
alent of the Galois-theoretic condition (3.13.6) that says that any deformation of ρ̄Π

of type S(QN ) necessarily breaks up as a sum of the unramified n− 1-dimensional
piece and the potentially ramified one-dimensional piece. This heuristic argument
can be made rigorous by considering the classification of admissible representations
of GL(n, Fṽ) with U0,v-fixed vectors.

The second point is that H0 is naturally a space of U0,QN
-invariant automorphic

forms in the space of automorphic forms unramified at QN . For each v, the space
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of U0,v-invariant forms in Πṽ is of dimension n, and one needs to pick out a sub-
module of rank one over R∅ and construct an isomorphism with the module of
∏

v GL(n,Oṽ)-invariant forms. It is for this reason that we need the additional
operators Vv for v ∈ QN and to include Vv − αv in the ideal m. This can be done
by means of Hensel’s lemma, but the construction depends on an analysis of the
reduction modulo mO of principal series representations of GL(n, Fṽ) when Nv− 1
is divisible by ℓ. This was considered by Vignéras and the results are described in
part in the notes entitled modularprincipalseries.pdf.

Admitting this last step, we have completed the verification of Diamond’s conditions
(or Fujiwara’s equivalent conditions). We may therefore conclude as in Taylor-
Wiles:

Theorem 3.15.4. The map

φ∅ : Rr̄Π,∅ → TΠ

is an isomorphism of complete intersections, and HΠ is a free module over TΠ. In
particular, any deformation of r̄Π of minimal type S is of the form rΠ′ for some
automorphic representation Π′ of GL(n) of cohomological unitary type.

Finally, the error term ǫ∞ = n
∑

v∈S∞

1+cv

2 necessarily vanishes. In other words,
cv = −1 for all v ∈ S∞.

The generalization to the non-minimal case, where the set R is not necessarily
empty, follows broadly the same lines, but all calculations are relative to an algebra
Rloc. The details will be added to the notes at a later time.

Appendix

Lemma A.1. Let π be a principal series representation I(ψ) of GL(n,K) induced

by an n-tuple ψ = (ψ1, . . . , ψn) of characters of K×. Suppose ψi is unramified

for i > 1 and ψ1 is at most tamely ramified. Let ψ0
1 be the restriction to O×

K , or
equivalently to k(v)×. Then dimHomU0

(ψ0
1 , π) = n if ψ0

1 is trivial, = 1 otherwise.

The above Lemma is independent of the coefficients; it remains valid for (smooth)
principal series representations with coefficients in Fℓ. Since Nv ≡ 1 (mod ℓ),
the representation theory over Fℓ is particularly simple: Vignéras proved in [V]
that every (mod ℓ) principal series representation is completely reducible, and the
factors are the same as the factors of the corresponding module over the Hecke
algebra, which are easy to identify. In particular, for appropriate ψ, the (mod ℓ)
Steinberg is a direct summand of I(ψ). These facts are used in what follows; see
also the notes modularprincipalseries.pdf.

The Taylor-Wiles method involves patching spaces of modular forms of level U =
U(QN ), localized at a maximal ideal m of TT

χv
(QN ), for a set of QN with N → ∞.

The starting point is forms of level U(∅), which are unramified at QN . For each
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N , we need to compare Sχv
(U,O)m with Sχv

(U(QN ),O)m as T-modules. Write
U0(QN ) ⊃ U(QN ) the level subgroup with U1,v replaced by U0,v for all v ∈ QN .

There are actually two comparisons made. The first is between Sχv
(U(QN ),O)m

and Sχv
(U0(QN ),O)m. The former contains global π with πv tamely ramified at

v ∈ QN – and with only one degree of freedom for the ramification – whereas the

latter contains only those global π with π
U0,v
v 6= 0.

Lemma A.2. With QN as in 3.13, Sχv
(U0(QN ),O)m consists only of π with πv

unramified at all v ∈ QN .

One actually uses something stronger: that each πv is an unramified principal
series that is residually irreducible as far as the character ᾱv is concerned (cf.
(3.13.1)). In other words, any reducibility comes from reducibility of the unramified
principal series of GL(n− 1) corresponding to the summand s̄v. I will not attempt
to make this more precise. Assume for simplicity that πv (mod ℓ) is an irreducible

unramified principal series. Then we have seen that dim(π̄
U0,v
v ) = n, whereas the

tamely ramified constituents of Sχv
(U(QN),O)m have only a one-dimensional U0,v-

invariant subspace. We use a Hecke operator for U0,v, or for U1,v, to cut out a

1-dimensional subspace of dim(π̄
U0,v
v ) = n. Namely, there is a Hecke operator

(A.3) Vv = U?,v(diag(In−1, ̟v))U?,v, ? = 0, 1

that acts on the U0,v-fixed subspace and decomposes it as a sum of generalized
eigenspaces with eigenvalues equal to the eigenvalues of ρ̄(Frobv). Our assumption
that πv (mod ℓ) is irreducible is basically equivalent (in the classical limit) to the
hypothesis that the Vv-eigenvalues are multiplicity free (ψi,v 6= ψj,v if i 6= j), which
is stronger than the hypothesis of (3.13.1).

LetH1,QN
denote the O-submodule of Sχv

(U(QN),O)m on which Vv acts as ψ1,v(̟v),
and define H0,QN

⊂ S{χv}(U0(QN ),O)m likewise. One has to be careful in making
sense of this: ψ1,v varies with the different automorphic representations π contribut-
ing to S{χv}(U(QN),O)m, but they are all congruent modulo m, by construction.
This comes down to showing that the characteristic polynomial of Vv over T has a
linear factor. One sees similarly thatH1 andH0 are direct factors of the appropriate
Sχv

.

[V] M.-F. Vignéras, Induced R-representations of p-adic reductive groups, Selecta
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