
Hecke algebras and the Taylor-Wiles theorem

It is finally time for the unitary group G0 introduced in the first lecture to make
its appearance. Recall that our basic object is a cohomological automorphic rep-
resentation Π of GL(n, F ), satisfying several axioms that guarantee its descent to
both unitary groups G and G0. We henceforward assume that Π has cohomology
with trivial coefficients. We fix a level subgroup Kf ⊂ G0(Af ) such that π′,Kf 6= 0.
With some additional work we can even assume dimπ′,Kf = 1 in practice, but this
will not be necessary. Then the L-packet π′ has non-zero intersection with the
space of functions

M ′(Kf , C) = C(G0(Q)\G0(A)/G0(R) · Kf , C) = M ′(Kf , Z) ⊗ C

where Kf ⊂ G0(Af ) is a compact open subgroup and M ′(Kf , Z) is the free Z-
module of integer-valued functions. Fixing the level Kf guarantees that the module
M ′(Kf , Z) is free of finite rank. We will impose the following conditions on Kf :

(1) Kf =
∏

v Kv as v ranges over finite primes of F+.
(2) At primes that remain inert in F/F+, Kv is a hyperspecial maximal compact

subgroup.
(3) At primes that ramify in F/F+, we could assume Kv is a “very special”

maximal compact subgroup, in the terminology of Labesse. However, this
condition can be ignored, because we can always assume after a quadratic
base change that F/F+ is everywhere unramified.

(4) If v splits in F/F+, and if v /∈ S, then Kv ≃ GL(n,Ov).
(5) If v ∈ S, Kv is adapted to the situation. In practice, S = Q ∪ R where Q

are the Taylor-Wiles primes, at which

Kv = {g ∈ GL(n,Ov) | g ≡

(

∗n−1,n−1 ∗n−1,1

01,n−1 1

)

(mod mv)}.

and R are the level-raising primes, at which

Kv = {g ∈ GL(n,Ov) | g (mod mv) is upper-triangular unipotent }

We will not really be able to give a precise account of the final condition. In the
present version of the article we can always use base change to assume Kv contains
an Iwahori subgroup of GL(n,Ov), but it is unnecessarily restrictive to make this
hypothesis.

For v split in F/F+, v /∈ S, the Hecke algebra H(Kv) of biinvariant Z-valued func-
tions functions ϕ ∈ Cc(Kv\G0,v/Kv, Z) acts on M(Kf , Z). The double coset space
Kv\G0,v/Kv is discrete. We can define the action as follows: for f ∈ M(Kf , Z), ϕ ∈
H(Kv), we have

T (ϕ)f(h) =

∫

G0,v

f(hg′)ϕ(g′)dg′

where dg′ is the Q-valued bi-invariant Haar measure on G0,v that gives volume 1
to Kv; since the integrand is right-invariant under Kv, this is a sum of values of a
Z-valued function with Z coefficients.
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In order to relate modular forms to deformation algebras, we work systematically
with M(Kf ,O) = M(Kf , Z) ⊗ O, where O is an ℓ-adic integer ring, as in the
earlier lectures, to be specified momentarily. We let T (Kf ) denote the subalgebra
of M(Kf ,O) generated by the T (ϕ), for ϕ ∈ H(Kv), v but not in S. This is a
finite free commutative O-subalgebra of End(M(Kf ,O)). The commutativity is
a consequence of the commutativity of H(Kv) for each v, and this is part of the
theory of the Satake transform that we have already seen. Since T (Kf ) is finite
over O, it is a semi-local ring, and we let mi ⊂ T (Kf ) denote its maximal ideals,
as i runs over a finite index set.

M(Kf , C)[π′] = π′(Kf ) ∩ M(Kf , C) 6= 0. We assume that O is chosen so that
π′(Kf ) ∩ M(Kf ,O) 6= 0, i.e., that π′(Kf ) contains functions with values in O.
This can be done first with O replaced by the integers in a finite extension of
Q, and then O can be defined as an ℓ-adic completion of this integer ring. Now
M(Kf ,O)[π′], with the obvious definition, is a T (Kf )-invariant submodule, pre-
cisely because (π′)Kf is an eigenspace for all the Hecke operators, and indeed, the
action of T (Kf ) on (π′)Kf is given by a character T (Kf ) → O taking each T (ϕ)
to its eigenvalue on (π′)Kf . Since O is an integral domain, there is exactly one mi,
denote m(Π), such that

M(Kf ,O)[π′] ⊗T (Kf ) T (Kf )
m(Π) 6= 0.

Now we write

TΠ = T (Kf )
m(Π), MΠ = M(Kf ,O) ⊗T (Kf ) TΠ.

By definition, MΠ is a TΠ-module.

Lemma. The algebra TΠ is reduced.

This follows easily from the fact that M(Kf , C) is a semisimple T (Kf )-module,
which in turn comes from the fact that T (Kf ) is hermitian with respect to the
L2-inner product (Petersson norm).

The point of this construction is that H(Kv) is the same local Hecke algebra at v
that acts on the cohomological automorphic forms on GL(n, F ) and on the middle-
dimensional cohomology Hn−1(Sh(G), Qℓ), where the avatar of Π is the L-packet
we’ve denoted {π}. We let ρ = ρℓ,π – which we can also write ρΠ – be the n-
dimensional Galois representation, and let r = r(Π) : GF+ → Gn(O) be the corre-
sponding homomorphism. We always assume

ρ̄Πisabsolutelyirreducible.

Our initial goal is to prove the existence of an isomorphism

Rr̄Π,∅
∼
−→ TΠ.

As I mentioned at the end of the last lecture, this isomorphism implies that every
lifting of r̄Π in the category DefD comes from some automorphic representation,
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not of G nor of GL(n, F ), but of the definite unitary group G0. But then by base
change we can deduce that every lifting of r̄Π in fact comes from a cohomological
automorphic representation of GL(n, F ).

Before we can construct the isomorphism R = T , as this is usually abbreviated,
we need to construct a homomorphism. Now TΠ has been constructed to have
the residue field k of O, and therefore belongs to the category CO. Thus a ho-
momorphism from the universal deformation algebra R to T is equivalent to the
existence of a lifting rT from r̄Π to Gn(T ). We in fact construct a representa-
tion with values in GL(n, T (Kf)). For any irreducible representation τ of G0 with

τKf subsetM(Kf , Qℓ), let pτ : T (Kf ) → Qℓ be the representation on τKf .

Proposition. (a) There is a representation

ρKf
: GF → GL(n, T (Kf))

with the property that, for any irreducible representation τ of G0 as above, admit-
ting base change to a cuspidal cohomological automorphic representation B(τ) of
GL(n, F ), the projection

ρτ = pτ ◦ ρKf
: ρKf

→ GL(n, Qℓ)

is an l-adic representation of geometric type, unramified outside S ∪ Sℓ), with

LS∪Sℓ)(s, ρτ) = LS∪Sℓ)(s, B(τ)).

(b) Let E(Π) be the set of τ as in (a) such that (loosely speaking) pτ factors through
TΠ ∩ T (Kf ). The projection

ρΠ = ⊕τ∈E(Π)ρτ : GF → GL(n,⊕τ∈E(Π)Qℓ)

is conjugate to a homomorphism ρTΠ
with values in the subgroup GL(n, TΠ) ⊂

GL(n,⊕τ∈E(Π)Qℓ). The reduction of ρΠ modulo the maximal ideal of TΠ is equiv-
alent to ρ̄Π.

(c) The homomorphism ρTΠ
extends to a homomorphism

rTΠ
: GF+ → Gn(T )

whose reduction modulo the maximal ideal is equivalent to r̄Π.

Assertion (a) is another way of expressing the theorem of Kottwitz and Clozel
described in the second lecture. Assertion (b) is a consequence of a very useful the-
orem of Carayol, and depends on the hypothesis that r̄Π be absolutely irreducible.
The last claim in (b) is the assertion that all the Galois representations associated
to τ ∈ E(Π) have the same reduction modulo ℓ. This is not difficult to show – it
suffices to calculate traces of Frobenius modulo ℓ, and the point is that these are
determined by the eigenvalues of the Hecke operators modulo ℓ, and completion
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at mΠ simply picks out all the τ whose Hecke eigenvalues are congruent modulo
ℓ. But it deserves to be emphasized, since this is precisely the basis of the theory
of congruences of modular forms, as developed by Serre, Mazur, Katz, and Ribet
in the 1970s, and extended in various directions by Hida, Wiles, Taylor, and now
many others. Assertion (c) makes use of the Petersson pairing.

This is also the place to remark that the set of v that split in F/F+, with a finite
subset removed, suffice to determine any ℓ-adic representation of GF , because their
extensions to F have Dirichlet density 1. Practically every step of the argument
makes reference to Chebotarev’s density theorem, which in the present setting
allows us to determine an ℓ-adic representation up to equivalence by the traces of
Frobenius at primes v belonging to a set of Dirichlet density 1. This also suffices
for the surjectivity assertion in the following Corollary:

Corollary. There is a surjective homomorphism in CO:

φ∅ : Rr̄Π,∅ → TΠ.

To prove surjectivity we need to know that all the T (ϕ) are in the image of the
homomorphism for a set of generators ϕ ∈ H(Kv) for v split and not in S. Now
the structure theory of H(Kv) gives a set of generators Ti,v, i = 0, . . . n, whose
eigenvalues on τKv , τ ∈ E(Π), are precisely the coefficients of the Euler factor at v
of L(s, τ). Since τ is associated to some ρτ , these are the coefficients of the Euler
factor at v of L(s, ρτ). This means that it suffices to show that the coefficients of
the characteristic polynomial of Frobv, acting on the universal lifting of r̄Π, lie in
Rr̄Π,∅, and this is a standard fact in representation theory.

To prove this surjection is an isomorphism, one applies the method of Taylor-Wiles,
as simplified by Diamond and Fujiwara. This is where the sets of primes QN come
in. For each N , one defines an algebra TΠ,QN

acting on a module MΠ,QN
of O-

valued modular forms, and admitting a surjective homomorphism

φQN
: Rr̄Π,QN

→ TΠ,QN
.

The MΠ,QN
is defined by analogy with MΠ, but for v ∈ QN we replace Kv by K1

v ⊂
GL(n,Ov), defined to be the subgroup of matrices with final row (0, 0, . . . , 0, 1).
For each v ∈ QN , there is a subgroup Dv ⊂ R×

r̄Π,QN
isomorphic to the ℓ-torsion

subgroup of (Z/QNZ)×, which acts on MΠ,QN
as the corresponding subgroup of

K0
v/K1

v , where K0
v is defined like K1

v but with bottom row (0, . . . , 0, ∗). Let DQN
=

∏

v∈QN
Dv.

These data satisfy the following relations, each of which conceals a hypothesis on
our choice of QN that is allowed by the condition that the image of ρ̄ be “big.”

(1) The module MΠ,QN
is a free Zℓ[DQN

]-module. (This is the crucial condi-
tion).

(2) Let IQN
⊂ Zℓ[DQN

] be the augmentation ideal. Then

MΠ,QN
/IQN

MΠ,QN

∼
−→ MΠ,∅

as TΠ,QN
-modules.
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The very rough idea is that a pigeonhole principle argument allows us to extract
from the sequence of QN a subsequence such that the algebras RΠ,QN

and TΠ,QN
,

together with the modules MΠ,QN
, all patch together, and in the end one has power

series rings. The relative dimension over O of the power series ring RΠ,∞ is given by

the integer r−n
∑

v|∞
cv+1

2 from the last lecture. On the other hand, the Zℓ[DQN
]

can be seen as truncated power series rings in r variables, and the freeness of MΠ,QN

over Zℓ[DQN
] for all N implies that the limit algebra T∞ is a module over a power

series ring in r variables, contained in the image of R∞. Since the map R∞ → T∞

is surjective, this implies that all the cv = −1 and that the map is an isomorphism,
and one deduces by reducing modulo augmentation ideals that the original map
R∅ → T∅ was also an isomorphism.

The original objective of my project with Taylor, begun in 1996, was to extend
the theorem of Taylor-Wiles to automorphic forms in higher dimension, where the
Galois representations are of dimension n > 2 in general. I remind you that the
Taylor-Wiles theorem, which has been generalized in various directions by Diamond
and Fujiwara, and more recently by Genestier-Tilouine for symplectic groups, as-
serts that, in favorable circumstances, if a mod ℓ representation ρ̄ of Gal(Q̄/E)
lifts to an ℓ-adic representation which comes from automorphic forms on GL(n) of
a certain type, where E is totally real or CM field, then any lifting with minimal
additional ramification also comes from automorphic forms. By ”favorable circum-
stances” I mean, for example, that ℓ > n, so we can apply Fontaine-Laffaille (nearly
ordinary would also work) and ρ̄ should be absolutely irreducible and with image
not too small. The work of Wiles on GL(2), and later Diamone, Skinner-Wiles and
Breuil-Conrad-Diamond-Taylor, showed that the lifting theorem remained true un-
der more general ramification conditions. This is the problem of ”level raising” that
involves a different range of techniques.

Let me remind you of the Fontaine-Mazur version of Langlands’ conjectures. Let F
(resp. E) be a number field, which we will assume totally real (resp. CM). For the
moment we stick with F . Let Sℓ denote the set of primes of F dividing ℓ. Following
Fontaine and Mazur, we say an n-dimensional ℓ-adic representation ρ of Gal(F̄ /F )
is of geometric type if it is unramified outside the finite set S

∐

Sℓ of primes of F ,
where S ∩Sℓ = ∅; and if at every v ∈ Sℓ it has Fontaine’s de Rham property, which
means in particular that it allows us to associate a set of Hodge-Tate numbers hp(ρ)
to ρ, with n =

∑

hp(ρ) (varying with v in general).

Following Clozel, we define an automorphic representation π of GL(n, Q) if π∞

has integral infinitesimal character – which means it can be associated to a Hodge
structure.

Conjecture. (a) Let ρ be an irreducible n-dimensional ℓ-adic representation of
GF of geometric type. Then there is a cuspidal automorphic representation of
GL(n, Q) πρ of algebraic type associated to ρ, in the sense that L(s, πρ) = L(s, ρ)
where the former is the L-function associated by automorphic theory. In particular,
L(s, ρ) has an analytic continuation to an entire function satisfying the usual sort
of functional equation.

(b) Conversely, if π is an automorphic representation of GL(n, Q) of algebraic type,
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then there exists an ℓ-adic representation ρπ of geometric type associated to π.

A theorem of Taylor-Wiles type is the following:

Prototype of generalized Taylor-Wiles theorem. Suppose ρ is as in (a), and
suppose πρ exists. Let ρ′ be a second n-dimensional p-adic representation, with
ρ′ ≡ ρ (mod p). Suppose moreover that

(i) ρ′ satisfies a minimality condition, typically that ρ′ is no more ramified than
ρ̄ := ρ (mod ℓ) at primes in S or otherwise, apart from primes in Sℓ.

(ii) Some more precise condition on the restriction of ρ′ to Gal(Kρ,q/Qq), for
q ∈ S−Sℓ e.g. that ρ′ and ρ have isomorphic restrictions to Gal(Kρ′,q/Qq).

(iii) A specific Fontaine-type condition on the restriction of ρ′ to Gal(Kρ′,v/Fv)
for v ∈ Sℓ; in practice, ρ and ρ′ are assumed crystalline and have the same
Hodge-Tate numbers).

(iv) Additional conditions, e.g.
(a) ρ (mod ℓ) is irreducible, even after restriction to F (ζℓ)

+ and has big image,
(b) ℓ > n and is unramified in F .

Then ρ′ also satisfies the Fontaine-Mazur conjecture (a).

The original Taylor-Wiles theorem applies to n = 2 and for specific conditions
(ii-iv). The generalization due to Wiles, and Taylor and his collaborators more
generally,in the case n = 2 removes condition (i). I note that we always assume
that all primes in S split completely in E/F .

Theorem A. (MH-Taylor). (F totally real.) Let K be a finite extension of
Qℓ, with residue field k. Suppose Vℓ is an n-dimensional K-vector space and ρ :
Gal(Q/F ) → GL(n, K) is as in (a), and suppose πρ exists and is cohomological at
infinity (this will be automatic). Suppose moreover that

(1) Polarized of weight n − 1: there is a Galois-invariant bilinear form

Vℓ ⊗ Vℓ → Q(1 − n)

, of parity (−1)n−1;

(2) Regular: hp(ρ) ≤ 1 for all (p), and hp = hn−1−p (in practice ρ will be pure of
weight n − 1 by construction)

(3) At some finite place v0 of F πρ is either supercuspidal or Steinberg. In the
supercuspidal case this implies that ρ |Gv0

is irreducible, and we assume this is still
true of ρ̄. In the Steinberg case there is a way around this.

Suppose ρ′ is as above and satisfies conditions (i)-(iv) and is polarized ((2) and (3)
are automatic). Then πρ′ also exists.

For E CM rather than totally real, we replace condition (1) by the hypothesis that

V ∨
ℓ

∼
−→ V c

ℓ (1−n). The weight condition can be relaxed somewhat but I prefer not
to go into it. In fact, we only consider CM fields of the form E = F · K where K is
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imaginary quadratic, though it should be possible to treat more general cases by a
descent argument.

The theorem is not proved by working with automorphic forms on GL(n) but rather
with definite unitary groups attached to division algebras over E (= F · K if neces-
sary). These are like the groups that occur in our book, except they are positive-
definite everywhere, which allows us to construct Taylor-Wiles systems without
difficulty, because the Hecke algebra modules in question are in 0-dimensional coho-
mology. Conditions (1) and (2) are unavoidable for cohomological representations.
Indeed, there are reasons to believe representations of this type are generic, in the
sense that they fit into the largest ℓ-adic analytic families (in the sense of Hida,
Coleman, Mazur, etc.) with dense subsets of representations of geometric type.
On the other hand, (3) is a symptom of our dependence on the current state of
the stable trace formula, and is likely to be unnecessary in the near future. This
turns out to be unfortunate, for reasons I can’t explain. Note that (1) and (2) are
conditions on ρ′ whereas (3) is a condition on πρ′ , but by the results of my book
with Taylor (3) is in fact a condition on ρ′.

From now on I will work with E CM rather than F .

Theorem B. Suppose ρ and πρ are as in the previous theorem and satisfy (1)-
(3). Suppose ρ′ is as in the Fontaine-Mazur conjecture, is polarized, and satisfies
conditions (ii)-(iv) (i) is optional). Then πρ′ also exists.

Here is an unenlightening definition of “big image”. Let O = OK . The polarization
condition implies that ρ extends to a homomorphism

ρ̃ : Gal(Q/F ) → Gn(O) := [GL(n,O) × GL(1,O)] ⋉ {1, c}

where c(g, µ) = (µtg−1, µ) (more than one extension is in principle possible...) Let
ρ̄̃ := ρ̃ (mod ℓ), H = Im(ρ̄̃) ∩ Gal(Q/Q(ζℓ)

+). We say H is “big” if

(i) H0(H, ad(ρ̄)) = H1(H, ad(ρ̄)) = 0;
(ii) For any irreducible submodule W ⊂ A(ρ̄) there exists h ∈ H∩GL(n, k) and

α ∈ k such that the α-generalized eigenspace Vh,α of h is of dimension 1 and
πh,α ◦ W ◦ ih,α 6= 0 where πh,α and ih,α are respectively the h-equivariant
projection on Vh,α and the inclusion.

Surprisingly, this condition is not very restrictive. Of course if H ⊂ GL(n, k) this
is automatic, but it is also true when the image of H is relatively small.

The proof of Theorem B follows the pattern of the proof of Wiles’ theorem and
those that have followed. First one proves Theorem A by constructing appropriate
Taylor-Wiles systems. One then relaxes the minimality hypothesis. Our approach
uses a trick invented by Skinner-Wiles (when n = 2) to avoid the difficult level-
lowering argument of Ribet.

More precisely, we let R∅ = R∅(ρ̄, F ) denote the deformation ring associated to
the deformation problem implicit in conditions (i), (ii), (iii) (and the polarization
condition (1)). In other words, we follow Mazur, Wiles, Ramakrishna, etc. and
define a functor from Artinian O-algebras A with residue field k to sets, classifying
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equivalence classes of liftings of ρ̄̃ to maps Gal(Q/F ) → Gn(O) satisfying conditions
(i), (ii), (iii). (For (iii) we use the Fontaine-Laffaille condition, which is one reason
we need ℓ > n and unramified in F . At places q ∈ S we introduce a new minimality
condition when πρ,q is Steinberg.). One proves this functor is representable, hence
we have R∅.

We also need a Hecke algebra T∅(ρ̄, F ) = T∅ and a O-module of automorphic forms
M∅ on which T∅ acts. The module M∅ is contained in a module M of O-valued
modular forms on the definite unitary group U(B) of the central division algebra
B/E of dimension n2 with involution of the second kind (i.e., restricting to c on the
center E). Since this is a definite unitary group over the field F we can just take
the module of functions U(B)(F )\U(B)(Af)/C. Here C = C∅,S is a compact open
subgroup of U(B)(Af) defined appropriately for ρ and S; it is hyperspecial locally
at primes not in S (including Sℓ). The theory of base change, plus the theory
developed by Clozel and Kottwitz, and in our book, shows that automorphic forms
of this type give rise to n-dimensional ℓ-adic representations of Gal(Q/E) satisfying
(1) and (2), with Hodge-Tate weights 0, 1, . . . , n−1, each with multiplicity one; and
usually satisfying (3) as well (this is an additional condition we impose). These
Galois representations arise in the cohomology of a Shimura variety attached to a
different unitary group, but this is a story that doesn’t concern us here. One can
also obtain different regular polarized representations, but this requires additional
notation.

At places of F that split in E we have U(B)(Fw) is either GL(n, Fw) or, for a
finite set, the multiplicative group of a division algebra over Fw (an extra techni-
cal hypothesis). The Hecke algebra T is defined as the O-subalgebra of End(M)
generated by the usual Hecke operators for GL(n, Fw) at split places. The repre-
sentation ρ̄ corresponds to a maximal ideal m ⊂ T, and we let M∅ and T∅ denote
the localizations at m.

As in Wiles’ theory, there is a map R∅ → T∅ which is automatically surjective. In
particular, M∅ becomes naturally an R∅-module. The subscript ∅ refers to the fact
that the liftings are minimal. The Taylor-Wiles method, as improved by Diamond
and Fujiwara, replaces R∅ by certain deformation rings RQ in which the mini-
mality condition is slightly relaxed, and likewise replaces C∅,S by slightly smaller
compact open subgroups, and hence replaces M∅ by the slightly bigger MQ. The
remarkable fact is that the action of certain finite ℓ-groups guarantees that the MQ

grow rapidly, whereas a local Euler characteristic calculation in Galois cohomology
guarantees that the RQ grow no more rapidly than the MQ, and using standard

results in commutative algebra Diamond and Fujiwara conclude that R∅
∼
−→ T∅ is

an isomorphism of complete intersections and M∅ is a free R∅-module.

To obtain Theorem B from Theorem A Wiles’ original approach was to eliminate
condition (i), specifically to allow unrestricted ramification at primes in S∪R, where
R is now the set of places where ρ′ is ramified (not including primes dividing ℓ)
together with the set of places where the ramification in πρ is not accounted for by
ρ̄. (This is not exactly right, but I can’t go into this.) This seems too hard in gen-
eral. However, by replacing E/F by E′/F ′ where F ′/F is an appropriate solvable
extension, and E′ = E · F ′, one can arrange that πρ has the following property: at



9

any v in R, πρ,v has a vector fixed by the Iwahori subgroup of GL(n, F ′
v). In other

words, πρ,v is the (unique) generic subquotient of some tamely ramified principal
series representation. Moreover, we can also assume that all primes v ∈ R sat-
isfy qv ≡ 1 (mod ℓ). Our generalization of the Skinner-Wiles trick is the following
lemma:

Lemma. Over E′, we may replace πρ by πρ1
with ρ̄1 = ρ̄ but with ρ1(Iv) a finite

group for all v ∈ R.

In other words, the local monodromy logarithms at v ∈ R vanish for ρ1; this cer-
tainly need not have been true before. Enlarging F ′ even more, we may then assume
that ρ1 is unramified principal series at all v ∈ R. Now we can define a deformation
ring RR – for representations of Gal(Q/F ′) with residual representation equal to
ρ̄ – which allows unrestricted ramification at v ∈ R. This is now really a case of
level-raising, because we know that there is at least one lifting, namely ρ1, which
is unramified at v ∈ R. The difficulty is now to define MR (and therefore TR).
We begin by taking M∗

R to be the module of all modular forms defined as before
but with the local factor Cv of C at v ∈ R equal to U1(v

n) (define). There are
operators Ui,v, i = 1, . . . , n, generalizing the classical U -operators at v, and we let
MR = M∗

R,m,n where

n = (Ui,v, v ∈ R, 1 ≤ i ≤ n − 1).


