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Introduction

It would be quite simple and reasonably painless to write an expository account
of the recent proof of the Sato-Tate conjecture for (a large class of) elliptic curves
stressing the arithmetic and geometric aspects of the proof and treating the back-
ground from automorphic forms like the mad relative in the attic, about whom
the less said, the better. Such an approach is in any case inevitable in a one-hour
lecture, such as my talk at the Franco-Asian Summer School of July 2006, which
serves as the pretext for this article. It would moreover be faithful to the three
papers that together comprise the proof ([CHT], [HST], [T]), which contain little
if any novel information about automorphic forms.

This report nevertheless begins with an introduction to Langlands’ reciprocity
conjectures, and their arithmetic variants, in the situation most relevant to the
proof of the Sato-Tate conjecture. The reader should keep in mind that the goal is
to relate L-functions of Galois representations to automorphic representations on
GL(n), as I recall in §1, but that this relation is mediated for technical reasons
by the theory of automorphic representations of certain kinds of unitary groups.
Different unitary groups are relevant at different stages of the argument. I have
attempted to sort this out in §2. The actual steps in the proof of the Sato-Tate
conjecture are presented in §§4 and 5, following the introduction of the relevant
Hecke algebras in §3.

It remains to thank my coauthors, Laurent Clozel, Nick Shepherd-Barron, and
Richard Taylor, and to thank Richard Taylor separately for sending me the notes of
his MSRI lectures in advance of the MSRI “Hot Topics” workshop on modularity,
held in October-November 2006, in which some of this material was presented. I
also thank Jean-Benôit Bost and Jean-Marc Fontaine for inviting me to speak at the
Franco-Asian Summer School, and to submit the present article to the proceedings.

1. On global Langlands correspondences for GL(n)

Let F be a number field. One version of the global Langlands correspondence,
one of particular interest to number theorists, is the conjectural dictionary:

(1.1)


(Certain) cuspidal
automorphic
representations

Π of GL(n,AF )

 ↔



Compatible systems
ρΠ,` of `-adic
representations of

ΓF = Gal(Q/F )
of dimension n
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To say that the ρ` = ρΠ,` form a Compatible system: is to say that all the ρ` yield
the same (Artin, Hasse, Weil) L-function L(s, ρ). This is a strong version of the
assertion that L(s, ρ) has an analytic continuation and functional equation. Let
n = dim ρ, so the general Euler factor of L(s, ρ) is of degree n. The form of the
general Euler factor of L(s,Π) at unramified places is recalled in §3, below.

The word “certain” in the above dictionary is crucial. Not all cuspidal automor-
phic representations of GL(n) are of Galois type, i.e., conjecturally associated to
Galois representations. Maass forms for GL(2,Q) are the most obvious example.
They include, for example, cuspidal functions on SL(2,Z)\H which are eigenfunc-
tions for all Hecke operators and for the hyperbolic Laplacian. The collection of such
forms is large (Selberg) but, even allowing the level to increase, practically none of
them are supposed to be of Galois type. The Π of Galois type were identified by
Clozel in his article for the Ann Arbor conference; he called them “algebraic” and
characterized them as those for which the archimedean component Π∞ has infini-
tesimal character (character of the center of the enveloping algebra) corresponding
to an element of the weight lattice of the Lie algebra GL(n, F∞). Call this the
archimedean weight of Π∞; it is well-defined modulo a twisted action of the Weyl
group (product of permutation groups for the different archimedean places of F ).
This is an integrality condition and can naturally be interpreted in terms of p-adic
Hodge theory: in the complex of the Fontaine-Mazur conjectures, one expects each
ρ` in a compatible system to be geometric in the sense of Fontaine-Mazur – i.e., of
de Rham type at each prime dividing `. In particular, they are Hodge-Tate, and the
dictionary predicts the Hodge-Tate weights in terms of the infinitesimal character
of Π∞.

The construction of Galois representations for general automorphic Π of Galois
type remains completely open. All known methods only apply when Π∞ is not
only algebraic but cohomological. This means that the archimedean weight of Π∞
is a dominant weight, hence is the highest weight of the dual of an irreducible
finite-dimensional representation L(Π∞) of GL(n, F∞). The precise condition is
expressed in terms of relative Lie algebra cohomology:

(1.1.1) H•(gl(n, F∞),K∞; Π∞ ⊗ L(Π∞)∨) 6= 0.

Here K∞ is a chosen maximal compact subgroup of GL(n, F∞) (in practice it is
multiplied by the center of GL(n, F∞)); one has to make such a choice in order to
define automorphic forms in the first place.

Given additional restrictions on F , one can construct Galois representations. Let
F be either totally real or a CM field, and in either case let F+ ⊂ F be its maximal
totally real subfield, so that [F : F+] ≤ 2. Let c ∈ Gal(F/F+) be complex
conjugation; by transport of structure it acts on automorphic representations of
GL(n, F ).

Theorem 1.2 ([C], [Ko], [HT], [TY]). There is an arrow from left to right
Π 7→ {ρΠ,λ}, as λ runs through non-archimedean completions of a certain number
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field E(Π) when F is totally real or a CM field, under the following hypotheses:

(1) The factor Π∞
is cohomological

(2) Π ◦ c ∼= Π∨

(3) ∃v0,Πv0

discrete series


⇒



(a) ρ = ρΠ,` geometric,
HT regular

(b) ρ⊗ ρ ◦ c → Q`(1− n)

(c) local condition
at v0


This correspondence has the following properties:

(i) For any finite place v prime to the residue characteristic ` of λ,

ρΠ,λ |Gv= L(Πv ⊗ | • |
1−n

2
v ).

Here Gv is a decomposition group at v and L is the normalized local Lang-
lands correspondence;

(ii) The representation ρΠ,λ |Gv
is potentially semistable for any v dividing ` and

the Hodge-Tate numbers at v are explicitly determined by the archimedean
weight of Π∞.

The local Langlands correspondence is given the unitary normalization. This
means that we need to introduce twists by half-powers of the norm, so that the
functional equations always exchange values at s and 1− s.

The term “geometric” (Fontaine-Mazur) means that each ρΠ,λ looks like the
representation on (a piece of) the middle-dimensional cohomology of a smooth d-
dimensional projective variety over F ; in fact d = n − 1.1 The condition “HT
regular” (Hodge-Tate) corresponds to the hypothesis that this piece of the coho-
mology has a Hodge structure pure of weight d with Hodge numbers

(1.3) ∀p hp,d−p ≤ 1.

Fontaine’s theory assigns Hodge numbers to geometric Galois representations (Fontaine-
Messing, Faltings, Tsuji. To facilitate comparison with the archimedean theory, I
will discount all conventions and index Hodge-Tate weights by the usual Hodge
numbers so that that the dimension of the Hodge-Tate component corresponding
to Hq(Ωp), and thus to the qth power of the cyclotomic character, is denoted hp,q.

For the local condition (c), we can take the condition that the representation of
the decomposition group at v0 is indecomposable as long as v0 is prime to the residue
characteristic of λ, or equivalently that this representation of the decomposition
group at v0 corresponds to a discrete series representation of GL(n, Fv0). The
conditions on both sides of the diagram match: (1) ↔ (a), (2) ↔ (b), (3) ↔ (c).

When F = F+, condition (2) just means that Π is self-dual. In the unitary nor-
malization, this includes the case of all Hilbert modular forms with real Nebentypus
character. Thus the above theorem does not include the most general modular Ga-
lois representations even in the elliptic modular case. There are various ways to

1Taylor has recently proposed that “geometric” be replaced by “algebraic,” so that the same

term would be used on both sides of the dictionary (1.1). In this article I have chosen to conform

to the published literature, but the reader should be aware that the terminology may soon change.
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weaken the condition on the central character, which is imposed by the technique
of base change to unitary groups, but none of them seems optimal.

The Galois representations ρΠ,λ are constructed in the cohomology of Shimura
varieties, in fact of Shimura varieties attached to unitary groups. Say F is really a
CM field and V is a hermitian space of dimension n over F . We can associate to the
unitary group G(V ) of V a Shimura variety. In general this can be done in more
than one way, and the Shimura variety is really associated to the group of unitary
similitudes of V but our interest here is just to present an approximate theorem, so
we denote the Shimura variety Sh(G(V )). Any finite-dimensional representation L
of GL(n, F∞) satisfying the analogue of condition (2) of Theorem 1.2:

(1.4) L ◦ c ∼−→L∨

defines an `-adic local system L̃` on Sh(G(V )) by a standard construction.

Theorem 1.5 [HL]. Under the hypotheses of Theorem 1.2, suppose either n or
[F+ : Q] is odd or n ≡ 2 (mod 4). Then ρλ can be realized (up to dualizing and
twisting by an abelian character) in Hn−1(Sh(G(V )), L(Π∞)∨` ) (cohomology with
twisted coefficients), where V is a hermitian space of signature (n−1, 1) at one real
place τ of F+, definite at all other real places, and quasi-split at all finite places .

The proof is by stable base change. As we will see in §2, the parity hypothesis
implies that there exists a hermitian space V with the indicated local properties at
all places. Hypotheses (1) and (2) of Theorem 1.2 should then suffice to imply that
the automorphic representation Π gives rise (by functorial descent, the inverse of
base change) to a packet of automorphic representations of G(V ) that contribute to
Hn−1(Sh(G(V )), L(Π∞)∨` ). Working at finite level, this amounts to saying that the
system of eigenvalues of Hecke operators attached to the finite part Πf of Π can be
realized on a component, say H[Πf ], of the above `-adic cohomology group. Now
Gal(Q/F ) commutes with all Hecke operators, hence acts on H[Πf ], and the rela-
tion between the Galois action and the eigenvalues of Hecke operators is determined
by applying the method of Langlands and Kottwitz (“counting points”). Actually,
this method is applied, in a variant adapted to bad reduction, not to Sh(G(V ))
but to the Shimura variety attached to an inner twist G′ of G(V ), in [HT]. The
result of [HL] is proved by applying stable base change twice, once to descend from
GL(n) to G(V ), and then a second time to compare this descent with the functo-
rial transfer (generalized Jacquet-Langlands correspondence) between automorphic
forms on G(V ) and G′, to reduce to the earlier results of [HT].

Stable base change is based entirely on the theory of the stable trace formula,
which is central in the proofs of Theorems 1.2 and 1.5. The trace formula will not
be discussed at all in these notes.

1.6. Reciprocity and examples.
The arrow in diagram (1.1) is double-headed. This can be made into a precise

conjecture.

Reciprocity Conjecture (Langlands, Fontaine-Mazur). The arrow in Theo-
rem 1.2 is an equivalence; i.e., every absolutely irreducible ρ satisfying (a), (b), (c)
is automorphic of the indicated type.

Implicit in this conjecture is the preliminary conjecture that the representations
obtained in Theorem 1.2 are all absolutely irreducible. This is only known for n ≤ 3
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(in some cases for n = 4) and constitutes one of the main open questions in the
field. By Chebotarev density, ρ can be reconstructed from L(s, ρ), provided it is
semisimple, which we will always assume. In most cases we will only consider Π
for which it is known a priori that ρ` is irreducible for some ` – indeed, that ρ` is
even absolutely irreducible modulo `.

Conditions (c) and (3) should be irrelevant and remain as a reminder that the
stable trace formula for unitary groups is not yet available. Progress has been made
recently toward eliminating these conditions, however, and in these notes I will have
little to say about the relevance of condition (c).

I can think of two classes of examples that arise elsewhere than in the theory of
automorphic forms.

1.7. Let E be an elliptic curve over F+, and let ρE,` : Gal(Q/F+) → GL(2,Q`)
denote the representation on H1(EQ,Q`), i.e. the dual of the `-adic Tate module.
Suppose it is known that E is automorphic: that there exists a cuspidal automorphic
representation ΠE ofGL(2, F+) such that (up to normalization) L(s,ΠE) = L(s,E)
as Euler products. That this is the case when F+ = Q is the theorem proved in
the series of papers initiated by Wiles and Taylor-Wiles and completed by Breuil,
Conrad, Diamond, and Taylor. For n ≥ 1 let

ρn
E,` = Symn−1ρE,` : Gal(Q/F+) → GL(n,Q`).

The corresponding non-zero Hodge numbers are hi,n−1−i = 1, i = 0, . . . , n − 1. If
E has no complex multiplication, then ρn

E,` is irreducible by a theorem of Serre,
for all n. It is then obvious that ρn

E,` satisfies conditions (a) and (b) of Theorem
1.2. Moreover, ρn

E,` is locally indecomposable at v0 for all n (condition (c)) if and
only if E has multiplicative reduction at v0. Thus the symmetric powers of elliptic
curves over totally real fields with non-integral j-invariants all provide examples of
Galois representations on the right-hand side of the diagram in Theorem 1.2. The
main result of the three papers I discuss here is that the even-dimensional ρn

E for
such E are potentially automorphic : they become automorphic over appropriate
totally real Galois extensions of F+. This suffices for the proof of the Sato-Tate
conjecture.

Suppose f is an elliptic modular form of weight k > 2, or more generally a Hilbert
modular form whose archimedean components are in the discrete series. Let Π be
the corresponding automorphic representation of GL(2, F+). Let ρf,λ be the cor-
responding two-dimensional λ-adic representation of Gal(Q/F+). Assume f is not
obtained by automorphic induction from a Hecke character of a quadratic extension
of F+. Then the Symn−1(ρf,λ) satisfy conditions (a) and (b) of 1.2 (provided the
Nebentypus character is real), and satisfy (c) as well if there is some finite place
v0 such that Πv0 is a Steinberg representation. We have thus constructed another
class of examples for the Reciprocity Conjecture. However, it cannot honestly be
claimed that these examples arise outside the theory of automorphic forms.2

2Now that the Serre conjecture on two-dimensional modular representations of Gal(Q/Q) has

been proved in nearly all cases (Khare, Wintenberger), and the Fontaine-Mazur conjecture for
two-dimensional representations is not far behind (Kisin, Emerton), one could reformulate this

class of examples in terms of symmetric powers of general two-dimensional representations of

Gal(Q/Q) that are geometric in the Fontaine-Mazur sense).
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1.8 A family of Calabi-Yau hypersurfaces. Let Y = P1 − {µn+1,∞}. For t ∈
Y (C), consider Xt ⊂ Pn defined by

Ft,n(X0, . . . , Xn) =
n∑

i=0

Xn+1
i − (n+ 1)tX0 ·X1 · . . . ·Xn.

n ≥ 2: the Dwork pencil of Calabi-Yau hypersurfaces familiar from mirror symme-
try. It is known that Xt smooth for t ∈ Y , dim n − 1 (if n = 2, Xt is an elliptic
curve).

(P) Hn−1
ét (Xt,Q,Q`)⊗Hn−1

ét (Xt,Q,Q`) → Q`(1− n)

(Poincaré duality) preserved by Gal(Q/F+) if t ∈ F+. The finite group

H = {(ζ0, . . . , ζn) ∈ µn+1
n+1 |

∏
j

ζj = 1}/∆(µn+1),

acts on the family (multiply each Xi by ζi). Then

Vt,` = Hn−1
ét (Xt,Q,Q`)H ⊂ Hn−1

ét (Xt,Q,Q`)

is an n-dimensional, polarized (via P) representation ρt,` of Gal(Q/F+). Moreover,
ρt,` is HT regular:

hi,n−1−i = 1, 0 ≤ i ≤ n− 1, = 0 otherwise.

The complex Hodge numbers for the corresponding de Rham cohomology Vt,DR,
and the Gauss-Manin connection for the family of Vt,DR have been calculated in
the physics literature, and again in [HST], and are central in the discussion there;
one obtains the Hodge-Tate weights by applying p-adic comparison theorems (here
p = ` . . . ).

As in the previous example, the representations ρt,` satisfy conditions (a) and
(b) of Theorem 1.2. It is shown in [HST] that ρt,` satisfies condition (c) provided t
is not an integer in F+. This proof is by comparison with the complex calculation
of monodromy, and in particular makes use of the fact that the monodromy around
the point ∞ is unipotent and of maximal order of unipotence; letting γ denote a in
P1(C) around ∞, the minimal polynomial of the monodromy representation of γ is
(T − 1)n.

In particular, the Reciprocity Conjecture applies to {ρt,`} provided t ∈ F+−OF .
I conclude this section with an observation that is frequently invoked in proofs

of modularity.

Proposition 1.9. Let ρ be an n-dimensional `-adic representation of Gal(Q/F ).
Suppose F ′/F is a solvable Galois extension (also CM or totally real) and Π′

is a cuspidal automorphic representation of GL(n, F ′) that is associated to ρ′ =
ρ |Gal(Q/F ′) under the arrow of Theorem 1.2. In other words, suppose ρ becomes
automorphic, of the type considered in Theorem 1.2, after restriction to F ′. Then
ρ is already automorphic over F , i.e. there exists a cuspidal automorphic represen-
tation Π of GL(n, F ) such that L(s, ρ) = L(s,Π).
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This follows from the Arthur-Clozel theory of base change: because ρ′ extends
to a Galois representation of F , Π′ is invariant under Gal(F ′/F ), and hence can
be descended to GL(n, F ). The reader should be warned that not every Galois-
invariant representation can be so descended, and that incorrect proofs of the Artin
conjecture for solvable Galois representations, and of some cases of non-Galois
base change, can be constructed by an incautious use of descent. However, our
hypotheses guarantee that the descents for intermediate cyclic extensions are well-
behaved.

1.10. The polarization condition in the L-group formalism.
The techniques for proving modularity do not apply directly to the representation

ρ as in the statement of the Reciprocity Conjecture but rather to a version that
takes account of the polarization condition (b). Let

Gn = (GL(n)×GL(1)) oGal(F/F+)

with the element c ∈ Gal(F/F+) acting by

(1.10.1) c(g, µ)c−1 = (µ · tg−1, µ).

There is a homomorphism

ν : CalGn → GL(1); ν((g, µ)) = µ, ν(c) = −1.

This is similar to but not quite the same as the L-group of GU(n), in which an extra
inner automorphism is added to the action of c in order to preserve the splitting
data (épinglage). Condition (b) can be rephrased:

Lemma 1.10.2. (i) Let k be a field and let ρ : Gal(Q/F ) → GL(n, k) be a repre-
sentation satisfying the following version of (b):

(1.10.3) ρ ◦ c ∼−→ρ∨ ⊗ ω1−n
k ,

where ωk is the cyclotomic character over k. Suppose ρ is absolutely irreducible.
Then there is an extension of ρ to a homomorphism

(1.10.4) r : Gal(Q/F+) → Gn(k)

such that ν◦r |Gal(Q/F )= ω1−n
k and r(c) belongs to the non-trivial coset of GL(n, k)×

GL(1, k) in Gn(k). The set of such extensions, up to GL(n, k)-conjugacy, is in
bijection with k×/k×,2.

(ii) Suppose O is an `-adic integer ring with maximal ideal m. Let ρ : Gal(Q/F ) →
GL(n,O) be a representation satisfying (1.10.3) and suppose ρ̄ = ρ (mod m) is ab-
solutely irreducible. Then ρ admits an extension r : Gal(Q/F+) → Gn(O) with ν ◦r
and r(c) as above.
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2. Unitary groups and base change

Henceforward, we always assume F totally imaginary, so [F : F+] = 2 and the
Galois conjugation c is non-trivial. It’s also convenient henceforward to assume n to
be even, since this is the only case to which our potential modularity methods apply,
although the modular lifting theorems work as well for odd n. We let d = [F+ : Q].

As indicated in §1, the construction of the arrow from left to right:

(2.1)


automorphic
representations

of GL(n)

 →


Compatible systems of
n-dimensional `-adic
representations


proceeds by replacing the automorphic representation Π of GL(n) by a packet {π}
of representations of some unitary group G(V ) that contribute to the cohomology
in middle degree n − 1 of a Shimura variety we denoted Sh(G(V )). There is no
known way to construct the packet {π} directly, starting with Π. The existence
of {π}, which we can call the G(V )-avatar of Π, is deduced from the comparison
of a (stable) twisted trace formula attached to GL(n) to the stable trace formula
for G(V ), or more generally to the stable trace formula for an inner twist G′ of
G(V ) that also defines a Shimura variety of dimension n − 1. The automorphic
representation Π factors over the places of F :

Π = ⊗′vΠv

where almost all Πv are unramified, and in particular are determined by the eigen-
values of the corresponding Hecke operators. There are n basic Hecke operators for
GL(n), say T1,v, . . . , Tn,v, whose eigenvalues, suitably normalized, define the coef-
ficients of the local factor L(s,Πv) at v. For the purposes of these notes we hardly
need to know more about them than that. Compatibility with the local Langlands
correspondence implies that ρΠ,` is unramified at any prime v, v 6 ÷`, such that Πv

is unramified. The identity L(s,Πv) = Lv(s, ρΠ) (a special case of (i) of Theorem
1.2) then implies that the eigenvalues of the Ti,v on Πv determine the traces of the
Frobenius at v under ρΠ,`. As for GL(2), the compatible system of (semisimple)
`-adic representations attached to Π is thus determined up to isomorphism by the
systems of eigenvalues of these Hecke operators, and indeed by the eigenvalues of
the Ti,v for a subset of places v of F of Dirichlet density 1. For example, the Ti,v

for v split over F+ suffice.
The G(V ) and G′ avatars are no longer needed for the construction of the arrow

from right to left in (2.1). The Taylor-Wiles method depends on certain cohomology
groups being free over finite subgroups of GL(n,Ov), and this is easiest to arrange
when the cohomology is in degree 0 (or in degree 1, as in the Taylor-Wiles paper).
Thus we work with a totally definite unitary group over F+, which we call G0.
Thus

G0(F∞) = G0(F ⊗ R) ∼−→U(n)d,

where U(n) is the compact unitary group. In order for this to be of any use we
need Π to descend to a G0-avatar, i.e. a packet π0 of automorphic representations
(in practice a singleton) of G0.
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How to think about about automorphic representations of unitary groups
(avatars).

From the theoretical point of view, an automorphic representation π of a unitary
group G over F+ is supposed to be parametrized possibly up to ambiguity in its
L-packet, by a global Langlands parameter, which in the case that concerns us is a
homomorphism φ = φπ from Gal(Q/F+) to the L-group of G,

LG = GL(n,K) oGal(F/F+)

where c ∈ Gal(F/F+) acts on GL(n,K) by an appropriately normalized outer
automorphism. Here K is an algebraically closed field, often taken to be C; in this
Galois formulation we take K = Q̄`. The homomorphism should commute with
projection of both sides to Gal(F/F+), and so

φ |F : Gal(Q/F )) → GL(n, Q̄`)

is just our `-adic representation ρ. Recall that ρ was attached to an automorphic
representation Π of GL(n, F ), and plays the role of the Langlands parameter of
Π. Conditions (a) and (b) on ρ imply precisely that ρ extends to a Langlands
parameter φ with values in LG.

In practical terms. cuspidal automorphic representations of GL(n) are the atoms
of the theory of automorphic forms, from which all automorphic representations of
other groups ultimately derive, as in Langlands’ hypothetical Tannakian formalism.
They are classified by their L-functions, whose basic properties were established by
Jacquet, Shalika, and Piatetski-Shapiro on the one hand, and Shahidi on the other,
in the 1970s and 1980s. The arithmetic properties of automorphic representations
of GL(n) with n > 2 are generally accessible only indirectly, by means of operations
involving their avatars on other classical groups, usually unitary groups. By way
of analogy one might consider the tradition according to which the Bhagavad-Gita
was transmitted to Arjuna not directly by Vishnu but rather by his avatar Krishna.

In order to understand automorphic representations of unitary groups it is best
not to think of them as matrix groups but rather as abstract groups related in
a certain way to GL(n). This relation is exploited by the trace formula but is
irrelevant for the present exposition. An automorphic representation π0 of G0

should be understood in terms of its local factors π0,v for primes v of F+. This is
how the relation with Π is defined. For example, suppose v splits as w · wc in F .
Then for any hermitian space V/F , G(V )v

∼−→GL(n, Fw) ∼−→GL(n, F+
v ). Condition

(2) (polarization) implies that
Π∨w

∼−→Πwc .

Then the avatar π0 has the property

(2.2) π0,v
∼−→Πw

where the isomorphism with Πw, rather than with Πwc , depends on some implicit
choices. At non-split places it is not so easy to write π0,v in terms of Πw; there is
a formula when Πw is unramified, or at real places, but at other places this is still
an open question. We solve this question by reducing to the situation where there
are no such places; see below.
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Any two unitary groups over F+, relative to the quadratic extension F/F+, are
inner forms of one another; in particular, their Langlands L-groups are isomorphic.
Assuming we have already descended Π to {π}, one can view π0 as a functorial
transfer of {π} corresponding to the isomorphism LG(V ) ∼−→

L
G0. Here we invoke

the following consequence of Langlands functoriality:

Vague general principle. (i) The only obstructions to transfer of L-packets be-
tween inner forms are local.

(ii) Let K be a local field, G1 a reductive group over K, G2 an inner form of G1

over K. Assume G1 is quasi-split. Then there are no local obstructions to transfer
of L-packets from G2 to G1.

(iii) Let G1 be a reductive group over R, G2 an inner form, and suppose G1 has
a discrete series (in which case so does G2). Then there is no local obstruction to
transfer of discrete series L-packets from G2 to G1.

In other words, (i) asserts that, if one can transfer πv to some irreducible admis-
sible representation π0,v of G(V0)v for every place v, then there is a global π0. This
is what happens with the Jacquet-Langlands correspondence between automorphic
representations of GL(2) and automorphic representations of division algebras. Of
course, this is a principle, not a theorem, and until there is a completely general
and explicit stable trace formula it has to be proved anew in each individual case.
For the twisted unitary groups considered in [HT], this was proved in [HT] and in
my earlier paper on p-adic uniformization; for untwisted unitary groups there are
partial results in [HL] and in Labesse’s book [L].

As for (ii), we will not encounter the quasi-split inner form of U(n) over R.
Suppose v is a place of F+ that splits in F ; then we have already seen that G(V )v

is a general linear group, which is certainly quasi-split. If v does not split in F , then
there are two non-isomorphic unitary groups over F+

v , the quasi-split one G+
v , for

which the hermitian form is anti-diagonal, and the non-quasi-split one G−v (when
n is odd every unitary group over a p-adic field is quasi-split). We set ε(G±v ) = ±1;
this is the Hasse invariant of G±v .

Finally, unitary groups over R all have discrete series, and the G(∗)-avatars of
our cohomological representation Π of GL(n, F ) are always of discrete series type
at real places, so there is never a local obstruction at ∞. The discrete series is
a local L-packet, but for definite groups it contains a single element. If we know
Π∞ =

∏
w÷∞Πw, where w runs over the (conjugate pairs of) complex prime(s) w

of F , then we can determine the corresponding π0,∞, as follows. First of all, since Π
is cuspidal, Shalika’s theorem implies that Πw is generic (has a Whittaker model)
for every prime w of F . It is known that, for each irreducible finite-dimensional
representation L of

Lie(GL(n, F∞))C =
∏

w÷∞
gl(n, Fw)× gl(n, Fwc)

satisfying Lc ∼−→L∨, there is a unique Π∞ satisfying (1.1.1) for L

(2.2.2) H•(gl(n, F∞),K∞; Π∞ ⊗ L∨) 6= 0,

such that all factors Πw are generic. (See Clozel’s Ann Arbor article for a discussion
of this.) Say

L =
∏
v

Lw ⊗ L∨w
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where if v is the restriction of w to F+ then gl(n, Fw) acts on the first factor
and gl(n, Fwc) on the second. Then the representation π0 of G0(R) =

∏
v U(n),

v running over real places of F+, is just ⊗wLw, where there is again an implicit
choice of an extension of each real v to a place w of F .

In fact, I have been concealing from you the existence of an important global
obstruction, namely the obstruction to the existence of a totally definite G0 that
is quasi-split at all finite primes, hence creates no local obstructions to transfer at
finite primes. Actually, we are not yet in a position to work with such a G0, because
the stable trace formula does not yet apply in this case. Instead, we recall the two
non-c-conjugate places v0 and v1 of Theorem 1.5, and consider only Π (resp. ρ)
that satisfy condition (3) (resp. (c)) at both v0 and v1 (hence at four places in all,
counting the complex conjugates). We will soon show that doubling condition (3)
entails no loss of generality.

Let B be a central division algebra over F of dimension n2 whose opposite algebra
isomorphic to its c-conjugate. Assume it is split outside a finite set of primes of F ,
all of which split over F+, and let S(B) be the corresponding set of primes of F+.
We assume the divisors of S(B) include v0, c(v0), v1, c(v1) and at each prime of F
dividing a prime of S(B) B is a division algebra. The hyothesis on Bop implies that
the local Hasse invariants of B at the two primes of F above any v ∈ S(B), so in
particular such a B exists. Now let ‡ be an involution of B of the second kind, i.e.
‡ restricts to complex conjugation c on F . Let G0 (denoted G in [CHT] and [T])
be the reductive algebraic group over F+ such that, for any F+-algebra R,

(2.3) G0(R) = {g ∈ (B ⊗F+ R)× | g‡⊗1 · g = 1}.

At non-split primes v of F+ (or F ) Bv is a matrix algebra, ‡ is a c-antilinear
automorphism of Bv, and by the classification of such anti-automorphisms G0(F+

v )
can be identified to the unitary group of some hermitian form on Fn

v . The general
classification of unitary groups (outer forms of GL(n)) (see [C], §2) yields

Fact 2.4. Suppose d = [F+ : Q] is even. Then ‡ can be chosen so that G0(F+
v ) is

quasi-split at every finite prime of F+ not in S(B), and such that G0(F+ ⊗Q R)
is compact, and isomorphic to the product of d copies of the compact unitary group
U(n).

By invoking Proposition 1.9, we see that, in order to prove modularity of an
n-dimensional representation ρ of Gal(Q/F ) satisfying hypotheses (a), (b), (c) we
can always reduce to the case in which

(2.4.1) d is even;
(2.4.2) ρ satisfies local hypothesis (c) at two places not conjugate under c;
(2.4.3) F/F+ is unramified at all finite places;
(2.4.4) Every prime v at which ρ ramifies (including primes of residue characteristic

`) splits in F/F+.

Indeed, we can replace F+ by a totally real quadratic extension F+
1 and F by

F1 = F ·F+
1 ); we can assume v0 splits in F1; we can let F+

1 absorb all the ramification
of F/F+ and split F/F+ at every prime at which ρ ramifies. By using more
general solvable extensions, we can eliminate most of the remaining ramification;
only unipotent ramification cannot be absorbed by an appropriately chosen finite
solvable extension.
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Let Π be a cuspidal automorphic representation ofGL(n, F ) satisfying conditions
(1), (2), and (3) of Theorem 1.2. By replacing F+ by F+

1 as above one can arrange
that Π satisfies a set of hypotheses strictly analogous to (2.4.1)-(2.4.4), and we do
so henceforward, even though only (2.4.2) is really necessary, in light of Fact 2.4
(on the other hand, (2.4.3) and (2.4.4) do appear to be very helpful if one removes
condition (3)).

Theorem 2.5. Under these hypotheses, Π has a G0-avatar, i.e. descends to an
automorphic representation π0 of G0.

This is due to Clozel and Labesse [CL] for the group G0 introduced above. One
way of comparing π0 to Π is by means of their L-functions. An automorphic repre-
sentation π of a unitary group G has so-called standard L-function L(s, π), associ-
ated to the standard 2n-dimensional representation of the L-group of G, introduced
above. In Langlands’ formalism it is then tautological that L(s, π) = L(s,Π), at
least at unramified places (and under the analogue of (2.4.4) this can be arranged
at all places). Both the Langlands-Shahidi method and the doubling method of
Piatetski-Shapiro and Rallis (studied in more detail by Shimura, and more gen-
erally by Lapid and Rallis) can be used to prove that L(s, π) admits an analytic
continuation and a functional equation of the expected type, without reference to
its relation to the standard L-function of an automorphic representation of GL(n).

Our simplifying hypotheses determine π0 up to isomorphism as a representation
ofG0(A). This is because compact groups over R have no non-trivial L-packets, and
(2.4.3) and (2.4.4) have removed the potential for L-indistinguishability at finite
primes. It’s almost certain that Labesse’s methods show that π0 is also unique as an
automorphic representation, that is, that the abstract representation occurs with
multiplicity one in the automorphic spectrum of G0. A multiplicity one theorem
would improve certain results but is unnecessary for our main applications.

Up to now we have encountered automorphic forms only in the plural, as elements
of automorphic representations. In the following section we work with modules of
actual automorphic forms on over Hecke algebras of mixed characteristic. This
theory is available for GL(n) as well as for the various unitary groups we have
introduced, but it works best over the totally definite unitary group G0.

3. Hecke algebras and unitary groups

Let Π and ρ be as in the previous sections. For now we work on the Π side.
Henceforward we make the following simplifying assumption:

(3.1) L(Π∞) = C.

It follows that, if π0 is the G0-avatar of Π, then π0,∞ is the trivial representation of
G0(F+

∞); moreover, the Galois representation ρ` will ultimately be realized in the
middle-dimensional cohomology of an n− 1-dimensional Shimura variety with Q`-
coefficients. This hypothesis is irrelevant to the modularity theorems but it suffices
for the applications to the Sato-Tate Conjecture, and it spares us a lot of notation.
In particular, the non-trivial Hodge-Tate numbers are all of the form hi,n−1−i = 1
with 0 ≤ i ≤ n− 1.

As is customary we begin by introducing an `-adic integer ring O, with frac-
tion field K and residue field k, a finite extension of F`. Our Hecke algebras and
deformation rings will all be O-algebras.
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The subspace of the space of C-valued automorphic forms on G0 generated by
automorphic representations π0 with π0,∞ = C is just the space of automorphic
forms on G0 on which G0(R) acts trivially, namely

(3.2) S(G0,C)) = Striv(G0,C)) := C∞(G0(F+)\G0(A)/G0(R)),C).

The space Sh(G0) = G0(F+)\G0(A)/G0(R)) is a profinite set, in fact a zero-
dimensional Shimura variety, and the notation C∞ denotes the space of locally
constant functions. In (3.2) these functions are taken with values in C, but we
could just as well take values in O, or more generally in any O-algebra A:

(3.3) S(G0, A)) := C∞(Sh(G0), A).

This can be viewed as the cohomology in degree zero of Sh(G0), and obviously
behaves well with respect to base change: if A → B is a homomorphism of O-
algebras, then S(G0, A) ⊗O B

∼−→S(G0, B) under the natural map. This is not
always true for cohomology in higher degrees of more general Shimura varieties,
not to mention the locally symmetric spaces attached to GL(n), and is one of the
advantages of working with G0.

We fix a set T of primes of F+ which will be the primes at which our π0 (or Π,
or ρ) will be allowed to ramify. We assume

T = S(B) ∪ S` ∪ S1 ∪R

where S` is the set of divisors of `, S1 is a non-empty set of auxiliary primes (de-
scended from the r of the original Taylor-Wiles paper) which allows us to eliminate
elliptic fixed points in Sh(G0), and R is the set of primes at which Taylor studies
possible level-raising in [T]. There will also be sets of primes disjoint from T , de-
noted QN , as N varies among positive integers; these are the Taylor-Wiles primes,
used in the patching method. We let T (QN ) = T ∪ QN . These primes have the
following properties:

3.4.1 All primes in T (QN ) split in F/F+.
3.4.2 If v ∈ S1 lies above a rational prime p then [F (ζp) : F ] > n.
3.4.3 If v ∈ R then Nv ≡ 1 (mod `).
3.4.4 If v ∈ QN then Nv ≡ 1 (mod `N ).

Let T̃ denote a set of liftings of T to primes of F , so that T̃
∐
T̃ c is the set of all

primes of F above T ; if v ∈ T let ṽ be the corresponding element of T̃ . For any
QN we define T̃ (QN ) in the same way.

For split primes v we identify G0(F+
v ) with GL(n, Fw) for some w dividing v

(we choose ṽ for v ∈ T ). Now choose an open compact subgroup U of G0(Af ),
U =

∏
v Uv, where v runs over finite primes of F+, such that

3.5.1 If v /∈ T , or if v ∈ S`, then Uv is a hyperspecial maximal compact subgroup
of G0(F+

v ).
3.5.2 If v ∈ S(B) ∪R then Uv is an Iwahori subgroup.
3.5.3 If v ∈ S1 then Uv is the principal congruence subgroup of level v:

Uv = {g ∈ GL(n,OF,ṽ | g ≡ 1 (mod mṽ)}

where mṽ is the maximal ideal of OF,ṽ.
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3.5.4 If v ∈ QN then

Uv = U1,v := {g ∈ GL(n,OF,ṽ) | g ≡
(
gn−1 ∗n−1

0n−1 1

)
(mod mṽ)}

where gn−1 ∈ GL(n−1,OF,ṽ) and ∗n−1 (resp. 0n−1) is an arbitrary column
matrix of height n− 1 (resp. the zero row matrix of width n− 1).

We write Ov = OF,ṽ for simplicity, and let k(v) denote its residue field. One
likewise defines U0,v ⊃ U1,v by weaking the condition in (3.5.4) so that the lower
right-hand entry is an arbitrary element of k(v)×. For v ∈ S(B), (3.5.2) implies
that Uv is a maximal compact subgroup, the multiplicative group of a maximal
order of Bv; for v ∈ R Uv can be identified with integral matrices whose reduction
modulo ṽ is upper-triangular, which we denote Iv (Iwv in [CHT,T]). Let qv be
the order of the residue field k(v), a power of the prime pv. Let I(1)v ⊂ Iv be
the pv-Sylow subgroup, the matrices whose reduction modulo ṽ is upper-triangular
unipotent; mapping to the diagonal entries thus identifies

(3.6) Iv/I(1)v
∼−→(k(v)×)n

A character of Iv/I(1)v is denoted χv = (χ1,v, . . . , χn,v) where each χi,v is a char-
acter of k(v)×. A character of U0,v/U1,v

∼−→k(v)× is denoted ψ0
v .

Let χv be as above, for v ∈ R, and define

(3.7) S{χv}(U,A) = {f ∈ S(G0, A) | f(gu) =
∏
v∈R

χ−1
v (uv)f(g)}

for all g ∈ G0(Af ) and u =
∏
uv ∈ U . This is the module on which our Hecke

algebras act. Suppose A = C (don’t worry about its O-algebra structure); then
S{χv}(U,C) is the space of vectors in the space of automorphic forms on

G0(F+)\G0(A)/G0(R) ·
∏
v/∈R

Uv

on which
∏

v∈R Uv acts by the indicated character. In particular, the only automor-
phic representations π0 that contribute to S{χv}(U,C) are those with non-trivial
fixed vectors under

∏
v/∈R Uv ×

∏
v∈R I(1)v Our choice of Uv for v ∈ S(B) implies

that any π0 has a base change Π to GL(n, F ) for which Πv is an abelian twist of
the Steinberg representation. In order to allow more discrete series local factors at
v ∈ S(B) (as required by condition (3)) we would need to allow representations of
Uv of dimension > 1 and consider vector-valued forms with values in these repre-
sentations, tensored over the places in S(B). This is the point of view of [CHT] and
[T]. For simplicity we prefer not to work with vector-valued forms in these notes.
However, the reader is advised that certain steps in the proof of the Sato-Tate
conjecture require the use of such vector-valued forms; we will point this out when
appropriate.

For a place v of F+ we let Γv denote a decomposition group at v. Here is
how the conditions on primes in T (QN ) translate into conditions on the Galois
representation ρ = ρΠ`

, which we assume takes values in GL(n,O)3 We write ρ̄ for
the reduction of ρ modulo the maximal ideal of O.

3.8.1(a) If v /∈ T , then ρ |Γv
is unramified;

3This is true when ρ is viewed as a representation of Gal(Q/F ); ρ extends to a representation

of Gal(Q/F+) with values in the L-group of G0), as discussed above.



THE SATO-TATE CONJECTURE: INTRODUCTION TO THE PROOF 15

3.8.1(b) If v ∈ S`, then ρ |Γv
is crystalline.

3.8.2(a) If v ∈ S(B) then the image of ρ |Γv contains a unipotent matrix τ such
that τ − 1 is nilpotent of maximal rank; i.e. (τ − 1)n) = 0, (τ − 1)n−1 6= 0.

3.8.2(b) If v ∈ R then ρ |Γv
may be more ramified than ρ̄, and that is the issue

resolved in [T].
3.8.3 If v ∈ S1 then ρ is unramified at v and ρ̄ has no deformation to a represen-

tation ramified at v.
3.8.4 If v ∈ QN then ρ is unramified at v but ρ̄ has certain deformations to

representations ramified at v, and the point of the Taylor-Wiles method,
as generalized in [CHT] and [T], is to use these additional deformations to
bound the size of the ring of all deformations in terms of the Hecke algebra;
see §3.13 for details.

The assertions (3.8.1) and (3.8.2) can be justified on the basis of the information
presented up to now. This is not true of (3.8.3) and (3.8.4). The need to choose
sets S1 and QN with these properties requires us to impose additional hypotheses
on Im(ρ̄). That such choices are possible then follows from an argument using
Chebotarev density, as in the original article of Taylor-Wiles. This will be explained
below.

Now let A = O. Our Hecke algebra is a finite free O-algebra, given with an
explicit infinite family of generators. Each split prime v /∈ T (QN ) contributes n
generators. One can also include generators at non-split primes outside T , but these
are unnecessary, basically because the split primes of F have Dirichlet density 1
(this is not true of the primes of F+ that split in F !).

Let w be a prime of F split over F+, v its restriction to F+, so that v factors
as w · wc. Then G0(F+

v ) ∼−→GL(n, Fw), and π0,v
∼−→Πw, as we saw above. The

Hecke polynomial attached to the unramified representation Πw of GL(n, Fw) was
originally determined by Shimura and is presented in his red book on modular forms.
The coefficients of this polynomial define the n Hecke operators at v; replacing the
Hecke operators by their eigenvalues on the 1-dimensional Uv ' GL(n,Ow)-fixed
subspace of π0,v, and the variable by q−s

v , yields the inverse of the local Euler factor
L(s,Πw).

Expliticly, let $w be a uniformizer at w. The Hecke operators are double coset
operators

(3.9) T (j)
v = Uv(diag($wIj , In−j))Uv ⊂ G0(F+

v ), j = 1, . . . , n,

These operators act in the usual way on S{χv}(U,A) for any A, as does (T (n)
v )−1,

which is just translation by an element of the center. We denote

TT
{χv}(U)

the O-subalgebra of End(S{χv}(U,O)) generated by the T (j)
v , j = 1, . . . , n, together

with (T (n)
v )−1, for all split unramified v /∈ T . The unramified local Langlands

correspondence considered in §1 is normalized so that

(3.10) Pw(X) = Xn +
n∑

j=1

(−1)jqj(j−1)/2
w T (j)

v Xn−j ,

with each T (j)
v specialized to its eigenvalue for Πw, is the characteristic polynomial

of ρΠ,`(Frobw) for any `, where Frobw is geometric Frobenius.
We will be using
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Proposition 3.11. The algebra TT
{χv}(U) is reduced.

This follows in the usual way from the semisimplicity of the space of automorphic
forms over C as an admissible G0(Af )-module; recall that G0 is anisotropic.

3.12. Surjectivity of the map R → T.. Now recall the automorphic representa-
tion Π of GL(n). As in the earlier lectures on modularity, we associate a maximal
ideal m = mΠ ⊂ TT

{χv}(U) to Π: first we descend Π to π0 as in §2. The Hecke
algebra acts on the U -invariants in π0 by a character λΠ and we let m ⊂ TT

{χv}(U)
be the maximal ideal containing ker λΠ. The localization S{χv}(U,O) at m consists
roughly of those forms congruent to (the U -invariants of) of π0, and form a module
for TT

{χv}(U)m. In the next section we introduce the deformation ring Runiv = Rρ̄

of the residual representation ρ̄. Theorem 1.2 implies there is a map Runiv to
TT
{χv}(U)m ⊗Q. We will assume

Hypothesis 3.12.1. The ideal m is not Eisenstein; i.e. ρ̄ is absolutely irreducible.

This hypothesis, together with a result of Carayol, implies that this factors
through a map

(3.12.2) Runiv → TT
{χv}(U)m

and the information contained in the previous paragraph implies that (3.12.2) is
surjective. The arguments are identical to the familiar case of n = 2. If we could
show that (3.12.2) is an isomorphism, then the reciprocity conjecture of (1.6) would
follow for any lifting of ρ̄ satisfying the conditions used to define Rρ̄. In fact, it
is not known in general that (3.12.2) is an isomorphism, and specifically it is not
known in the cases relevant to the Sato-Tate conjecture. But it is known that
the map on irreducible components in characteristic zero is a bijection, and this is
sufficient.

3.13. The Taylor-Wiles primes QN .
As indicated in 3.8.4, the primes v ∈ QN are chosen so that ρ is unramified at

v. It is assumed more pertinently that

(3.13.1) ρ̄ | Γv = ψ̄v ⊕ s̄v

where ψ̄v is an unramified character that does not occur as a subquotient of
s̄v. Since Nv ≡ 1 (mod `), this means in particular that

3.13.2. There are no non-trivial Γv-extensions between ψ̄v and s̄v.

This is one of the conditions that makes the Taylor-Wiles method work. The
existence of sets QN with these properties as well as the properties of trivializing
the dual Selmer group depends on the size of the image of ρ̄, and will be briefly
discussed in §4.

4. The Taylor-Wiles-Kisin method

4.0. The Taylor-Wiles-Kisin twelve-step program to modularity.
Our goal is to prove that, for any elliptic curve E over Q with non-integral j-

invariant, and any even integer n, the representation ρn
E,` becomes modular over

some totally real Galois extension F+/Q. In §5 we will explain how to prove that,
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for appropriate `, ρ̄n
E,` is (residually) modular over F+, assuming one has a good

enough modular lifting theorem over F+.
In what follows, we always assume ` > n and ` is unramified in F+. To go further

– indeed, to prove the Sato-Tate conjecture for modular forms of weight > 2 – we
will probably have to relax at least the second assumption, but for now the modular
lifting theorems we consider only apply in this situation. Here is an outline of the
main steps of the method introduced in the Taylor-Wiles paper, enhanced by Kisin,
and then generalized by Taylor.

(1) Definition of a deformation problem
(2) Verification of local liftability and global representability (and non-obstruction,

if relevant)
(3) Framed deformations, Galois-cohomological identification of cotangent space
(4) Local lifting conditions at easy primes (including crystalline lifting), local

cohomology computations
(5) Local lifting conditions at difficult primes and framed deformations; dimen-

sions and irreducible components of local lifting spaces.
(6) Wiles global duality argument and dimension count
(7) Local conditions for Taylor-Wiles systems
(8) Modules of modular forms, Hecke algebras, proof that R→ T is surjective
(9) Verification of global Taylor-Wiles axioms for modular forms (free over di-

amond operators, identification of coinvariants under diamond operators)
(10) Axioms on size of image of residual representation, Chebotarev arguments,

auxiliary prime r (now called S1)
(11) Base change to eliminate problematic primes
(12) Patching argument (standard, but there are complications if one doesn’t

use level-raising).
These steps are only an outline of the program. Each implementation emphasizes

different problems, and the steps do not have to be followed in order. In this case
it is most judicious to start with Step 5, for the following reason.

We have a representation ρ̄ which we know is modular over F , a quadratic CM
extension of F+, specifically that it comes from an automorphic representation Π
of GL(n, F ), satisfying the usual three conditions. We want to show that every
lifting ρ̃ of ρ̄, satisfying the axioms of the deformation problem introduced in Step
1, is again modular. This will be applied in the end to ρn

E,`, whose behavior we
know at all places, but there is an intermediate step involving a residually monomial
representation, in which ρ̃ may be more ramified than ρ̄ at an unspecified set of
places R. The methods we use do not allow us to control this ramification, and so
we either have to prove a level-raising theorem – this was the approach anticipated
in [CHT], which depended on a conjecture called Ihara’s Lemma – or to find a way
to avoid level-raising altogether, as Taylor was ultimately successful in doing in [T].
By the base change principle (Proposition 1.9) we can assume the set R consists
of places split in F/F+, and that the initial representation Π such that ρ̄ = ρ̄Π

satisfies conditions (4.5.1) and (4.5.2), below.

4.5. Step 5: Local deformation rings in the degenerate classical limit.
When Mumford wrote an introduction to his approach to moduli via geometric

invariant theory in 1970 [MS], his first example to show the importance of his
stability criterion was the classification of endomorphisms of vector spaces; the
presence of unipotents implies that no coarse moduli space exists. For the same
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reason, the functor of deformations of `-adic representations of ΓK := Gal(K̄/K),
where K is a q-adic field, q 6= `, is in general not representable. The worst case is
the one that arises in the problem of level raising. We consider an upper-triangular
representation

β : ΓK → GL(n,O); g 7→


χ1(g) ∗ . . . . . . ∗

0 χ2(g) . . . ∗
0 0 . . . . . . ∗
0 0 0 . . . χn(g)


for some `-adic integer ring O. The diagonal entries are O×-valued characters
of ΓK , whose reductions modulo m are denoted χ̄i, i = 1, . . . , n. N.B.: The de-
formation problem (introduced in (4.1)) imposes a restriction only on the inertial
representation β |IK

We will be assuming K = F+
v , for some v ∈ R, so in particular (3.4.3) implies

(4.5.1) q = qv := Nv ≡ 1 (mod `).

We call (4.5.1) plus the running assumption ` > n, the classical limit mod `. After
a finite cyclic extension – which makes no difference to the modularity problem, by
Proposition 1. 9 – we can assume

(4.5.2) χ̄i = 1, 1, . . . , n;

this is the degenerate case. By hypothesis β is tamely ramified, and hence is
determined up to isomorphism by an upper-triangular representation βI of the
tame inertia group Itame

K and an upper-triangular invertible Frobenius element
Φ = β(FrobK), satisfying

ΦβI(x)Φ−1 = βI(xq),∀x ∈ Itame
K

Again, one can assume (after a finite solvable extension) that tame inertia is purely
`-adic, and letting x0 ∈ Itame

K denote a generator of `-adic tame inertia, Σ = βI(x0),
the above equality becomes

(4.5.3) ΦΣΦ−1 = Σq.

We are thus led to consider the moduli space of pairs of matrices (Φ,Σ) satisfying
(4.5.3). More precisely, for any monic polynomial P ∈ O[X] of degree n, we let
M(P, q) be the affine scheme over O representing pairs (Φ,Σ) as above, with Φ
invertible, such that Σ has characteristic polynomial P . Note that (4.5.3) implies
that, if M(P, q) is non-empty, P is invariant under the q − th power operation
applied to its roots. The following lemma is clear:

Lemma 4.5.4. Suppose q ≡ 1 (mod `) and P =
∏n

i=1(X − ζi), where the ζi are
`th roots of unity in O. Then

• M(P, q) 'M(P, 1)
• M(P, q)× Spec(k) ∼−→M((X − 1)n, q)× Spec(k).
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Note that M(P, 1) just parametrizes pairs of commuting matrices, one of which
has fixed characteristic polynomial. The moduli problem makes sense over (µn

` )Z
but only becomes interesting over Spec(Z`), where µ` becomes connected over the
closed point. The observation behind [T] is that the most degenerate case P =
(X−1)n deforms to the least degenerate case P =

∏n
i=1(X−ζi) with all ζi distinct.

The affine algebra of M(P, q) is the ring of local liftings at v ∈ R used in Kisin’s
version of the Taylor-Wiles method. To describe its geometric properties, we relate
it to a Lie algebra variant. Let N (q) denote the moduli space of pairs of matrices
(Φ, N), with Φ invertible, N nilpotent (characteristic polynomial Xn) and

(4.5.5.) ΦNΦ−1 = qN

Lemma 4.5.6. Assume ` > n. Then
(i) N (q)red is a union of reduced irreducible components parametrized by nilpo-

tent conjugacy classes in Lie(GL(n)); i.e. by partitions of n (Jordan block decom-
position).

(ii) Each reduced irreducible component Z of N (q) is equidimensional of dimen-
sion n2 + 1, Zk is irreducible of dimension n2 and generically reduced, and each
irreducible component of N (q)× Spec(k) is contained in a unique irreducible com-
ponent of N (q) which is not purely of characteristic `.

(iii) The logarithm and exponential (applied to Σ) identify

M((X − 1)n, q)red ∼−→N (q)red.

In particular, the reduced irreducible components of M((X − 1)n, q)red have the
properties (ii).

At the other extreme:

Lemma 4.5.7. Let P =
∏n

i=1(X − ζi) with all ζi distinct. Then M(P, 1) × K

is smooth and irreducible of dimension n2, whereas M(P, 1)× k
∼−→N (1)× k, and

hence has components indexed by partitions of n as in the previous lemma.
Moreover, the completion of the affine ring of M(P, 1) at the closed point of the

special fiber corresponding to Σ = 1 and Φ = 1 has a unique minimal prime.

In the second statement we just send Σ to Σ− 1, which is why there is no need
to consider reduced components.

The ζi are the eigenvalues of β(x0). We can identify Syl`(k×v ) (`-Sylow subgroup)
with the subgroup of Gal(Kab/K) generated by x0, and so we define χi to be the
character of k×v of `-power order whose image on x0 is ζi. We let

Rloc
v,χ

be the affine O-algebra of M(Pχ, 1), where Pχ =
∏n

i=1(X − ζi) as above. Thus χ
and ζ are alternative notation for the same thing; we have already seen χ in the
discussion of R in §3 in connection with Hecke algebras. The notation Rloc will be
explained in the following section.

4.1: Step 1: Definition of a deformation problem.
In this section we recast the conditions already used to define the Hecke algebra

TT
{χv}(U)⊗Q in Galois-theoretic terms, defining a deformation problem. Write ΓF
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and ΓF+ for Gal(Q/F ) and Gal(Q/F+), respectively. We start with a represen-
tation ρ : ΓF → GL(n,O), satisfying condition (b) of Theorem 1.2. We always
assume ρ̄ = ρ (mod m) is absolutely irreducible. Then Lemma 1.10.2 implies that
ρ extends to a homomorphism r : ΓF+ → Gn(O), with r(c) not in the identity
component of Gn. Let r̄ = r (mod m). Our deformation problem concerns lifts of
r̄ to homomorphisms r̃ : ΓF+ → G(A), where A runs over the category C of finitely
generated local O-algebras with residue field k. These liftings satisfy the following
local properties at places v of F+, indexed for comparison with (3.8.?). We write
ρ̃ for the restriction of r̃ to a homomorphism ΓF → GL(n,A), r̃v for r̃ |Γv , and
define ρ̃v analogously. .

4.1.1(a) If v /∈ T , then r̃v is unramified;
4.1.1(b) If v ∈ S`, then ρ̃v is crystalline, in the sense of being in the essential image

of the Fontaine-Laffaille functor. Moreover, ρ̃v has Hodge-Tate weights such
that hi,n−1−i = 1 for 0 ≤ i ≤ n− 1.

4.1.2(a) If v ∈ S(B) then ρ̃v fixes a flag of a certain form (condition to which we
allude in §4.4).

4.1.2(b χ) If v ∈ R then ρ̃v |Iv satisfies the condition χ described at the end of §4.5,
see below.

4.1.3 If v ∈ S1 then there is no restriction on r̃v (but none is necessary).
4.1.4 If v ∈ QN then ρ̃v breaks up as a direct sum ψ ⊕ s where ψ lifts ψ̄v and s

is an unramified lifting of s̄v. (The possible additional tame ramification of
ψ adds one degree of freedom, as required.)

Condition (4.1.2(b χ)) is interpreted by considering the moduli space of all lift-
ings of ρ̃v, which is represented by the ring of coefficients of matrices subject to
certain relations determined by r̄, and only allowing the liftings in a certain closed
subset (the characteristic polynomial of the element Σ defined in §4.5) determined
by χ. This closed subset is the spectrum of Rloc

v,χ.

4.2: Step 2: Verification of local liftability and global representability.
A deformation of r̄ of type (4.1.?) is a lifting satisfying conditions (4.1.1-4.1.4),

considered up to conjugation by a matrix in 1 + mAM(n,A).

Proposition 4.2.1. Assume ρ̄ is absolutely irreducible. Then the functor of defor-
mations is representable in C by a ring Runiv

χ,N , and there is a universal deformation

runiv : ΓF+ → Gn(Runiv
χ,N ).

If QN is empty we just write Runiv
χ .

The notation Runiv
χ,N should really be Runiv

χ,QN
, but the QN will be understood.

Because condition (4.1.2)(b χ) is not liftable, the usual Galois cohomological tech-
niques do not allow us to calculate the number of generators of the maximal ideal
of Runiv

χ,N . Instead, one needs to consider framed deformations.

4.3. Step 3: Framed deformations, Galois-cohomological identification
of cotangent space.

A framed deformation of r̄ to a ring A in C, of type χ, is a lifting r̃ of type χ as
in (4.1.1-4.1.4), together with a local representation rv of Γv of type (4.1.2 (b) χ),
and isomorphisms (local framings)

αv : r̃ |Γv

∼−→rv,
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for all v ∈ R, all taken up to 1 + mAM(n,A)-conjugacy.
There is a universal framed deformation of r̄ of type χ over an object R�

χ,N of
C. Forgetting the framings defines a map Runiv

χ,N → R�
χ,N . We drop the subscript N

for the remainder of this section.
On the other hand, let

Rloc
χ = ⊗̂v∈RR

loc
v,χ

(denoted RR in [T]):

TR = O[[Xv,i,j | v ∈ R , i, j = 1, . . . , n]]

(matrix coefficients of liftings for each v to parametrize rv). If runiv is the universal
deformation of r̄, choose a lifting that represents it (i.e. in its equivalence class).
Such a choice of matrix coordinates gives rise to maps

Rloc
χ → R�

χ,N ; TR → R�
χ,N

(the latter defined by setting αv = In + (Xv,i,j) in the given matrix coordinates)
and one has the fundamental

Lemma 4.3.1. Smoothing lemma for framings.

Runiv
χ,N ⊗̂TR

∼−→R�
χ,N .

Now we are in a position to calculate the embedding dimension of R�
χ as an

Rloc
χ -algebra

Lemma 4.3.2. R�
χ can be topologically generated over Rloc

χ by

dimk H
1
(4.1.•)(ΓF+ , adr̄) +

∑
v∈R

dimk H
0(Γv, adr̄)

elements.

The proof in [T] is analogous to the usual calculations of

dim mR�
χ,N

/(m2
R�

χ,N

+ mRloc
χ
R�

χ,N ),

which are deformations over k[ε](ε)2 with the R-data fixed (equal to r̄ |Γv
at v).

4.4. Step 4: Local lifting conditions at easy primes (including crystalline
lifting), local cohomology computations.

The ”easy” primes in question are those in S` and archimedean primes on the
one hand, and S(B) on the other. In Richard Taylor’s lectures at MSRI in October
2006, he incorporated local data about S` and ∞ into the singular coefficient ring
Rloc

? . Moreover, by relying on base change, he implicitly eliminated the distinction
between the primes in S(B) and the primes in R. Thus all local cohomology
computations at ramified primes are placed on the same footing and incorporated
into an appropriate Rloc. The article [T] appears to have solved all problems
concerning primes other than those in S`, the archimedean primes being genuinely
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easy to understand in all situations. I will say no more about this here except to
mention that

(a) Under hypotheses (4.1.1)(b), whether we incorporate local data at ` into
Rloc or whether we make (4.1.1)(b) a condition defining a Selmer group, as
in [CHT] and [T], this step is based on calculations in the Fontaine-Laffaille
theory that have been known for years, and are considered standard;

(b) the calculation at ∞ depends on the parity of the polarization of ρ̄Π for
an automorphic representation satisfying conditions (1)-(3), defined by the
action of c and the pairing given by condition (b). Basically, the image
r(c) ∈ Gn(k) acts by conjugation on the Lie algebra of GL(n) and one needs
to determine its signature. This must be in Langlands’ general conjectures
on zeta functions of Shimura varieties, but it does not appear to be accessible
to available techniques. So the calculations in [CHT] and [T] drag along an
unknown term denoted 1+χv(c)

2 for each real place v. At the end it turns
out that they all vanish, which completes the local reciprocity calculation
at archimedean primes; we know no other way to carry out this calculation.

(c) In the end, the calculation depends on a certain numerical coincidence in
which the contributions of primes in S` and of archimedean primes balance
each other. We return to this point in (4.7.2). The spurious terms 1+χv(c)

2
mentioned in (b) does not disturb this balance; on the contrary, the vanish-
ing of these terms follows from an a priori global inequality (roughly, that
the dimension of local ring is bounded below by 0).

In [CHT] and [T], the local condition at S(B) is expressed in terms of filtra-
tions, as indicated in (4.1.2)(a). As mentioned above, Taylor now thinks this is
unnecessary, so I omit the details.

4.6. Step 6: Local conditions at QN ..
This is contained in (4.1.4). The extra degree of freedom reappears in the fol-

lowing step.

4.7. Step 7: Wiles global duality argument and dimension count.
As in Wiles’ original paper, one applies Poitou-Tate duality and the local Euler

characteristic formula at the primes considered in Steps 4-6 to rewrite the formula
in Lemma 4.3.2 as follows:

Proposition 4.7.1. R�
χ,N can be topologically generated over Rloc

χ by

|QN |+ dimk H
1
(4.1.•)⊥(ΓF+ , adr̄(1))− δF+ − n

∑
v÷ ∞

δv,

elements where (1) denotes Tate twist and for real v, δv = 1+χv(c)
2 as discussed in

Step 4 (b), and
δF+ = dimk H

0(ΓF+ , ad(r̄)(1)).

The global term will vanish by our hypothesis on im(ρ̄), and the archimedean
terms will be dragged along until the end, as mentioned above.

4.7.2. Explanation. The subscript in H1
(4.1.•)⊥(ΓF+ , •) is a reference to the no-

tation of Wiles and Taylor-Wiles. The conditions (4.1.1-4.1.4) translate, for each
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v ∈ T , to a Selmer condition on the global Galois cohomology group defined by a
subspace Lv ⊂ H1(Γv, ad(r̄)). By Tate local duality there is a dual subspace

L⊥v ⊂⊂ H1(Γv, ad(r̄)(1))

which is used to define the global H1 term appearing in (4.7.1)
A few words: [CHT] and [T] follow the original approach of Wiles, and the

duality argument, together with the local Euler characteristic formula, introduces
local terms at S` and∞ which almost cancel, leaving the spurious term n

∑
v÷ ∞ δv.

This numerical coincidence is crucial to the success of the method. If we worked
over F instead of F+ there would be no cancellation, and the deformation ring
would be too big relative to the Hecke algebra, another reason we are forced to
assume the polarization hypothesis (b).

In the approach followed in Taylor’s MSRI lectures, the numerical coincidence
is absent from the application of global duality but reappears in the calculation
of the relative dimensions (over O) of the Rloc. The coincidence is that the extra
dimensions one obtains for Rloc (at the primes in S`, ∞, and R) is exactly the
relative dimension of R�

χ over Runiv
χ , as in the Smoothing Lemma 4.3.1. This is

what makes the patching argument work at the end.

4.8. Step 8: Modules of modular forms, Hecke algebras, proof that
R→ T is surjective.

To emphasize the role of the set QN of Taylor-Wiles primes we henceforward
write U = U(QN ) for the level subgroup, and write U for the level subgroup with
QN = ∅. The modules of modular forms and their Hecke algebras were discussed
in §3, as was the surjectivity of

Runiv
χ,N → TT

χv
(U(QN ))m.

For the purposes of the Taylor-Wiles argument there are too many forms locally
at v ∈ QN . Recall that at such v we let ψ0

v denote a character of U0,v/U1,v
∼−→k(v)×.

We drop the index v for the moment and let K be a non-archimedean local field.

Lemma 4.8.1. Let π be a principal series representation I(ψ) of GL(n,K) induced
by an n-tuple ψ = (ψ1, . . . , ψn) of characters of K×. Suppose ψi is unramified for
i > 1 and ψ1 is at most tamely ramified. Let ψ0

1 be the restriction to O×K , or
equivalently to k(v)×. Then dimHomU0(ψ

0
1 , π) = n if ψ0

1 is trivial, = 1 otherwise.

The above Lemma is independent of the coefficients; it remains valid for (smooth)
principal series representations with coefficients in F̄`. Since we are in the classical
limit, the representation theory over F̄` is particularly simple: Vignéras proved in
[V] that every (mod `) principal series representation is completely reducible, and
the factors are the same as the factors of the corresponding module over the Hecke
algebra, which are easy to identify. In particular, for appropriate ψ, the (mod `)
Steinberg is a direct summand of I(ψ). These facts are used in what follows.

The Taylor-Wiles method involves patching spaces of modular forms of level
U(QN ), localized at the ideal m of TT

χv
(QN ), for a set of QN with N → ∞. The

starting point is forms of level U , which are unramified at QN . For each N , we
need to compare Sχv

(U,O)m with Sχv
(U(QN ),O)m as T-modules. Write U0(QN ) ⊃

U(QN ) the level subgroup with U1,v replaced by U0,v for all v ∈ QN .
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There are actually two comparisons made. The first is between Sχv
(U(QN ),O)m

and Sχv (U0(QN ),O)m. The former contains global π with πv tamely ramified at
v ∈ QN – and with only one degree of freedom for the ramification – whereas the
latter contains only those global π with πU0,v

v 6= 0.

Lemma 4.8.2. With QN as in 3.13, Sχv
(U0(QN ),O)m consists only of π with πv

unramified at all v ∈ QN .

One actually uses something stronger: that each πv is an unramified principal
series that is residually irreducible as far as the character ψ̄v is concerned (cf.
(3.13.1)). In other words, any reducibility comes from reducibility of the unramified
principal series of GL(n− 1) corresponding to the summand s̄v. I will not attempt
to make this more precise. Assume for simplicity that πv (mod `) is an irreducible
unramified principal series. Then we have seen that dim(π̄U0,v

v ) = n, whereas the
tamely ramified constituents of Sχv

(U(QN ),O)m have only a one-dimensional U0,v-
invariant subspace. We use a Hecke operator for U0,v, or for U1,v, to cut out a
1-dimensional subspace of dim(π̄U0,v

v ) = n. Namely, there is a Hecke operator

(4.8.3) Vv = U?,v(diag(In−1, $v))U?,v, ? = 0, 1

that acts on the U0,v-fixed subspace and decomposes it as a sum of generalized
eigenspaces with eigenvalues equal to the ψi,v($v)), i = 1, . . . , n. Our assumption
that πv (mod `) is basically equivalent (in the classical limit) to the hypothesis that
the Vv-eigenvalues are multiplicity free (ψi,v 6= ψj,v if i 6= j).

Let H1,QN
denote the O-submodule of Sχv

(U(QN ),O)m on which Vv acts as
ψ1,v($v), and define H0,QN

⊂ S{χv}(U0(QN ),O)m likewise. One has to be careful
in making sense of this: ψ1,v varies with the different automorphic representations
π contributing to S{χv}(U(QN ),O)m, but they are all congruent modulo m, by
construction. This comes down to showing that the characteristic polynomial of Vv

over T has a linear factor. One sees similarly that H1 and H0 are direct factors of
the appropriate Sχv

. The comparison between H1 and H0 is the subject of Step 9.
The second comparison is between the T-modules H0 and H := S{χv}(U,O)m.

There is a subtle point, because the former is a module over TT (QN )
m , whereas the

latter is a module over TT
m. In principle TT

m contains extra Hecke operators for the
places in QN , but a density argument using the surjectivity Runiv → Tm shows
that the map TT (QN )

m → TT (QN )
m (“forget the level at QN”) is surjective.

Now the T isomorphism

(4.8.4) H → H0

is given by an explicit level-raising operator constructed as a polynomial in the Vv.
The construction of such an operator is again ultimately based on Vignéras’ classi-
fication [V] of irreducible spherical representations of GL(n) in the classical limit,
as well as some standard constructions from the theory of types in representations
of p-adic groups.

N.B. Level-raising works at the primes in QN because they are chosen for that
purpose. The existence of such primes is guaranteed by the Chebotarev arguments
in Step 10. The primes in R, by contrast, are part of the initial data; we cannot
control them.
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4.9. Step 9: Verification of global Taylor-Wiles axioms for modular
forms.

The sets QN will all be chosen to have u elements, where

(4.9.1) u = dimk H
1
(4.1.1−3)⊥(ΓF+ , adr̄(1)).

N.B. This dimension is the integer we encountered in Proposition 4.7.1
when QN = ∅. Let

∆QN
=

∏
v∈QN

Syl`(k(v)×) ' (Z/`NZ)u.

(This last ' is a bit of poetic license. In general there is a surjective map from
Syl`(k(v)×) to Z/`NZ for each v ∈ QN , and we use this map to define the diamond
operators ∆QN

.) The deformation ring Runiv
χ,N is an O[∆N ]-algebra through the

action on the liftings ψv of ψ̄v. The map (3.12.2) makes H1,QN
into an O[∆N ]-

module. Property (i) of the global Langlands correspondence of Theorem 1.2 (local-
global compatibility), combined with the properties of base change discussed (or
not discussed) in §2, imply that

Taylor-Wiles property 4.9.2. This is exactly the same as the natural action on
H1,QN

of
∆N ⊂

∏
v∈QN

U0,v/U1,v

Taylor-Wiles property 4.9.3. H1,QN
is a (finite) free O[∆N ]-module.

Actually we show that S{χv}(U(QN ),O) is a (finite) free O[∆N ]-module because
it is just the module of O-valued functions on a space on which ∆N acts freely. It
is here that we use the auxiliary set S1, specifically properties (3.4.2) and (3.5.3),
which imply that the level U(QN ) is always sufficiently small that ∆N acts without
fixed points. Since H1,QN

is an O[∆N ]-direct factor of S{χv}(U(QN ),O), it is also
free.

In the approach of [T], as in Kisin’s work, one does not apply the Taylor-Wiles
method directly to H1,QN

but rather to an artifically enhanced version:

H�
N = H1,QN

⊗Runiv
χ,N

R�
χ,N .

Let TR,N = TR⊗O[∆N ], with TR as in the smoothing lemma 4.3.1. Combining the
smoothing lemma with (4.9.3), we find that

Corollary 4.9.4. For any N , H�
N is a finite free TR,N -module.

In [T] TR,N is called S∞/aN . Note that the action of TR,N factors through the
action of R�

χ,N (the action of ∆N is already contained in Runiv
χ,N ).

There is an augmentation

(4.9.5) TR,N → O

defined by sending all the variables Xv,i,j to 0 and all the elements of ∆N to 1. Let
a denote the kernel of this augmentation.
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Taylor-Wiles property 4.9.6. There are natural isomorphisms

TR,N/a⊗TR,N
H�

N
∼−→H0,QN

∼−→H,

where the second isomorphism is the inverse of (4.8.4).

This is an easy consequence of (4.9.2) and (4.8.4).

4.10. Step 10: Axioms on size of image of residual representation, Cheb-
otarev arguments, auxiliary prime r (now called S1).

As in the original Wiles and Taylor-Wiles articles, the theorems of [CHT] and
[T] require that the image of the residual representation be “big” in order to apply
Chebotarev-type arguments to guarantee the existence of the QN and S1 satisfying
the requirements of the earlier steps. There is no optimal definition of “big,” but
the following axioms suffice.

(4.10.1) The extension of F+ fixed by ker ad(r̄) does not contain Q(µ`);
(4.10.2) Hi(Gal(Q/F+(µ`), ad0r̄) = 0, i = 0, 1;
(4.10.3) Let W ⊂ adr̄ be an irreducible Gal(Q/F+(µ`)-submodule. Then there

exists h ∈ Gal(Q/F+(µ`) and α ∈ k with the following properties: (1) The
α-generalized eigenspace Vh,α of h in r̄ is 1-dimensional; (2) If πh,α : r̄ →
Vh,α, resp. ih,α : Vh,α → r̄, is the h-equivariant projection (resp. injection),
then πh,α ◦W ◦ ih,α 6= 0.

The first two are fairly familiar, and (4.10.2) in particular includes the hypothesis
that certain global terms in the dimension formula vanish. All that can be said of
(4.10.3) is that it can frequently be verified, in particular when the image of r̄
contains Symn−1(SL(2, k)) or when r̄ is a monomial representation induced from
a sufficiently regular character of a cyclic extension of F+ of degree n. All three
axioms are satisfied by ρn

E,` for almost all `.
There is a more problematic notion of “big” representation that enters into

the application of a generalization of Ramakrishna’s level-raising theorem to make
sure that some of the auxiliary Galois representations satisfy condition (c); this is
perhaps the most technical point of [CHT] and I will say no more about it.

4.11. Step 11: Base change to eliminate problematic primes.
We have been doing this all along. All I want to add here is that we also use

the Skinner-Wiles trick of successive cyclic base changes to avoid dealing with the
problem of level-lowering as in Ribet’s paper on the level in Serre’s conjecture.

4.12. Step 12: Patching argument.
I will be brief and refer the reader to the original articles. One simultaneously

patches for the problems R�
χ and R�

1 , where χ is generic, as in Lemma 4.5.7. Lemma
4.5.7, plus the dimension calculation and the Auslander-Buchsbaum theorem, im-
plies that H�

χ,∞ is a nearly faithful R�
χ,∞-module. Since

R�
χ,∞/λ ' R�

1,∞/λ

and likewise for the H’s, this implies that H�
1,∞/λ is a nearly faithful R�

1,∞/λ-
module. But then the comparison of irreducible components in characteristic zero
and characteristic ` (Lemma 4.5.6) implies that H�

1,∞ is a nearly faithful R�
1,∞-

module, hence (by 4.3.1 and 4.9.6) that H is a nearly faithful Runiv
1 -module, hence

that
(Runiv

1 )red → T1

is an isomorphism.
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4.13 Conclusion.
Here is the modular lifting theorem proved in [CHT] and [T] for representations

of ΓF+ . There is a similar theorem for Gal(Q/F ). Conditions (a)-(c) are as in
Theorem 1.2.

Modular lifting theorem. Let ` > n be a prime unramified in F+ and let

r : ΓF+ → GL(n, Q̄`)

be a continuous irreducible representation satisfying the following properties:
(a) r ramifies at only finitely many primes, is crystalline at all primes dividing

`, and is Hodge-Tate regular
(b) r ' r∨(1−n) ·χ where (1−n) is the Tate twist and χ is a character whose

value is constant on all complex conjugations;
(c) At some finite place v not dividing ` rv corresponds to a square-integrable

representation of GL(n, F+
v ) under the local Langlands correspondence.

In addition, we assume that r̄
(d) has “big” image in the sense of (4.10) above;
(e) is absolutely irreducible;
(f) is of the form ¯ρΠ,` for some cuspidal automorphic representation Π of

GL(n, F+) satisfying conditions (i)-(iii) of Theorem 1.2.

Hodge-Tate regularity is as explained in §1. I repeat that condition (c), which
causes most of the headaches in [CHT] and [HST], can probably be removed once
there is a sufficiently explicit version of the stable trace formula for cohomological
representations of unitary groups. The method really breaks down if we don’t
know condition (d), although it must be irrelevant; the approach of Skinner-Wiles
to residually reducible representations looks very hard for n > 2; as for (f), one
could hope to formulate a generalization of the Serre conjecture. Meanwhile, in the
following section, I will explain how to remove this hypothesis if one is willing to
settle for potential modularity, which suffices for the Sato-Tate conjecture.

5. Potential modularity of even-dimensional symmetric powers

The Langlands functoriality conjectures, applied to GL(n), include the following
prediction.

Conjecture 5.1. Let

τ : GL(n1)×GL(n2)× . . . GL(nr) −→ GL(N)

be an irreducible algebraic representation. Let F be a number field and let π1, . . . , πr

be cuspidal automorphic representations of GL(ni, F ), i = 1, . . . , r. Then there is
an automorphic representation (functorial transfer) τ(π1�π2�· · ·�πr) of GL(N,F )
such that, at almost all (all?) places v,

L(τ(π1 � π2 � · · ·� πr)v = τ ◦ (L(π1,v ⊗ · · · ⊗ πr,v),

where L(πi,v) is the ni-dimensional representation of the Weil group at v given by
the local Langlands correspondence.
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There are of course predictions of functoriality for more general homomorphisms
of L-groups. I’m not sure what question to ask about the exceptional places; one
might ask that the transfer under τ be isobaric in Langlands’ sense.

Whether or not the transfer is cuspidal depends both on τ and on the original
πi, and the answer does not admit a simple description. However, when r =
1, one expects that its transfer will be cuspidal provided π = π1 is sufficiently
general; then the standard L-function L(s, τ(•)) is entire and satisfies the functional
equation for GL(n). In the case of automorphic representations of GL(2) attached
to elliptic curves “ sufficiently general” excludes only elliptic curves with complex
multiplication.

The case r = 2, with N = n1 · n2 and τ the standard tensor product repre-
sentation, may be considered the main open question in automorphic forms. The
following list exhausts all the cases I know (excluding the trivial cases, where some
of the ni = 1):

(1) r = 1, n(= n1) = 2, N = 3 (symmetric square): Gelbart-Jacquet.
(2) r = 1, n(= n1) = 2, N = 4, 5 (symmetric cube and fourth power) Kim-

Shahidi, Kim.
(3) r = 2, n1 = n2 = 2, τ the tensor product: Ramakrishnan.
(4) r = 2, n1 = 2, n2 = 3, τ the tensor product: Kim.

These results are unconditional and apply to all automorphic representations
over all number fields. The articles [CHT], [HST], and [T] together prove a weak
version of what is expected when F is totally real, r = 1, n = 2, and N is even.
They apply only to representations of discrete series type at archimedean places,
and indeed only to holomorphic Hilbert modular forms of weight (2, . . . , 2). There is
moreover a local condition (Steinberg at one finite place) that it should be possible
to remove. Most importantly, the functorial transfer is not constructed over F itself
but rather over an unknown Galois extension of F .

5.1. Potential modularity theorems and the Sato-Tate conjecture.
We return to the notation of (1.7). Let E be an elliptic curve over F+, and

assume it is known to be modular (e.g., F+ = Q); let ΠE be the correspond-
ing automorphic representation of GL(2, E), so that L(s,ΠE) = L(s,E), with
the L-function normalized to have center of symmetry at s = 1

2 . We let ρn
E,` =

Symn−1ρE,` as before. For almost all p, the local factor ΠE,p is unramified; let
αp, βp be the Satake parameters with unitary normalization.

Eichler-Shimura (“Ramanujan conjecture”).

|αp| = |βp| = 1.

Up to permutation have αp = eiθp , βp = e−iθp , say, with 0 ≤ θp ≤ π.

Sato-Tate Conjecture. Assume E has no complex multiplication. Then the θp

are equidistributed in [0, π] with respect to the measure dST (θ) := 2
π sin

2θ dθ.

(The Sato-Tate measure is the push-forward of the Haar measure on SU(2) to
a measure on the set of conjugacy classes in SU(2), which can be identified with
[0, π].)
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Theorem. Suppose E is an elliptic curve over Q (or any totally real field) with
multiplicative reduction at some prime; i.e. j(E) is not integral. Then the Sato-
Tate Conjecture holds for E.

A simple argument involving Shahidi’s theorem on non-vanishing of Rankin-
Selberg L-functions on the line Re(s) = 1, together with an application of Brauer’s
theorem on induced characters, as in Taylor’s original article on potential modu-
larity [T02], shows it suffices to prove

Theorem 5.1.1. For every even n, there exists a totally real Galois extension
Fn/F

+ such that ρm
E |Gal(Q/Fn) is automorphic over Fn – there exists a cuspidal

automorphic representation Πm
E of GL(m,Fn), with L(s,Πm

E ) = L(s, (ρm
E )Fn

) for
all even m ≤ n.

In particular, for all n (even or odd), L(s, ρn
E) (over the original F+) has a

meromorphic continuation and functional equation and is non-vanishing for Re s ≥
1.

In other words, all the even-dimensional ρm
E with m ≤ n are potentially modular

and have modular realizations over the same totally real field.
The remainder of this section describes the steps of the proof contained in [HST],

but the application of the results of [HST] depend on the modular lifting theorems
proved in [CST] and [T]. The same techniques apply to special n-dimensional rep-
resentations discussed in (1.8):

Theorem 5.1.2. Let t ∈ P1(F+), t /∈ {µn+1,∞}, and let ρt,` be the corresponding
n-dimensional polarized representation arising in the middle-dimensional cohomol-
ogy of the Calabi-Yau hypersurface Xt (1.8). Assume t /∈ OF+ . Then ρt,` is
potentially modular: there exists a totally real Galois extension F ′/F+ and a cusp-
idal automorphic representation Πt of GL(n, F ′) with L(s, ρt,` |ΓF ′ ) = L(s,Πt). In
particular, L(s, ρt,`) admits a meromorphic continuation and the usual functional
equation.

Henceforward we place ourselves in the situation of Theorem 5.1.1. The proof
of Theorem 5.1.2 is different in that it requires a separate argument, based on a
theorem of Larsen and Pink, to prove that for a set of ` with Dirichlet density 1,
the residual representations ρ̄t,` have “big” image, which permits application of the
modular lifting theorems of §4.

5.1.3. The condition j(E) /∈ Z.
Recall condition (3) on Π:

(3) ∃ v0, Πv0 discrete series

⇔

(c) ρΠ satisfies a local condition at v0

Restriction to condition (c) explains why we need to assume E has multiplicative
reduction for Sato-Tate. If ρv is a 2-dimensional (Frobenius semi-simple) represen-
tation of a local Weil-Deligne group such that Symn−1ρv is indecomposable for all
n > 1, then ρv = L(St), where St is some Steinberg representation of the local
GL(2). A similar consideration explains why t /∈ OF+ in the Calabi-Yau case:
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Lemma 5.1.4. At a place v dividing the denominator of t, if ` is prime to v, then
ρt,`(Γv) contains a unipotent element of maximal rank.

This Lemma is proved in [HST] by comparing the local monodromy with the
transcendental monodromy. The latter is the subject of the B-model of interest in
mirror symmetry; more importantly, its calculation (due to physicists?) is essential
in the proof of the Sato-Tate conjecture, as we see below.

5.2. The idea of potential modularity.
How to prove reciprocity?

In Wiles’ proof. the prime ` = 3 plays a particularly important role.

The starting point of Wiles’ approach: reduce ρ modulo ` to obtain a represen-
tation

ρ̄ = ρ (mod `) : Gal(Q/Q) → GL(n,F`) (or F̄`)

(For Wiles n = 2.) Deformation theory provides a first-order classification of pos-
sible liftings of ρ̄ to characteristic zero in terms of Galois cohomology.

Key Definition. ρ is residually automorphic if ρ̄ admits one reasonable lifting,
say

ρ̃ : Gal(Q/Q) → GL(n,O),

O an `-adic integer ring with residue field F`, such that ρ̃ “comes from” modular
forms.

Wiles (following Serre): when ` = 3, there is always at least one automorphic
lifting ρ̃. Thus an appropriate modular lifting theorem implies every lifting is
automorphic, notably the original ρ. Apart from one potential complication at the
end, this completes the argument.

Three steps.

(1) (Taylor-Wiles) Modular Lifting Theorem for “minimal” liftings.
(2) (Wiles level-raising) Modular Lifting Theorem for all liftings.
(3) Trick at ` = 3 to get started.

For n > 2:

(1) Generalized in [CHT]
(2) An alternative provided in [T]
(3) Impossible to generalize; a substitute in [HST]

Wiles’ trick is peculiar to ` = 3, n = 2, forms of weight 2. For n = 2, Taylor
(2002, 2004) found a way to construct an automorphic lifting of any odd (mod `)
representation for general ` > 2 but at the cost of extending the ground field to an
unspecified totally real field. This applies to modular forms of higher weight and
Hilbert modular forms.. The article [HST] generalizes this to all even n.

Idea: One class of n-dimensional Galois representations is always modular. Let
M/Q be an abelian (cyclotomic) extension of degree n, totally imaginary (so n is
even).

χ : M×
A/M

× → C×
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an algebraic Hecke character which is trivial on the idèles of the totally real subfield
M+ ⊂M ; thus χ is actually a character of the group U(1) relative to M/M+. Then
by Weil (the case n = 1 of Theorem 1.2!) we get a compatible system of characters

χ` : ΓM → Q̄×
` .

Induction up to ΓQ yields the monomial representation

I(χ`) : ΓQ → GL(n, Q̄`).

Because χ comes from U(1), and 1 is odd, one actually needs to twist χ by
a half-integral power of the norm, in order to obtain the Galois characters χ`.
With the appropriate choice of χ∞, we find that I(χ`) has Hodge-Tate numbers
corresponding to hi,n−1−i = 1 for 0 ≤ i ≤ n− 1, as we have been assuming.

Proposition 5.2.1 (Reciprocity for I(χ`)). The representation I(χ`) is modu-
lar. Moreover, it is attached to a representation Π(χ) satisfying the local discrete
series condition (3) at some place v0, provided v0 is inert in K and χ |Γv0

is distinct
from all its conjugates under Gal(K/Q).

Indeed, for n = 2, χ defines a modular form (binary theta function) Θ(χ), and
I(χ`) is naturally associated to Θ(χ). For general n, use automorphic induction
(Kazhdan, Arthur-Clozel) to obtain a self-dual automorphic representation Π(χ) of
GL(n,Q), which is associated to I(χ`) for all `. These automorphic representations
satisfy an important property that is unknown for any other kind of cohomological
automorphic representation: they admit base change to any Galois extension (not
only solvable extensions). No substitute is known, and this is why so far we can
only prove modularity of even-dimensional symmetric powers.

5.2.2. Deformation to monomial representations.
Suppose you have a compatible system {ρ`} and suppose there is an `′ such that,

for some χ and K as above,

(Mo) ρ`′ ≡ I(χ`′) (mod `′)

Thus ρ̄`′ = ρ`′ (mod `′) admits at least one modular lifting. Then under the usual
restrictions (big residual image, ` > n, etc.) we can apply [CHT] and [T] to conclude
that every lifting, in particular ρ`′ is modular. Since the system is compatible, ρ`

is also modular.
The situation (Mo) is rare and unpredictable.
Taylor’s idea: one can often find something weaker: ∃F/Q, a compatible family

of Galois representations
σ` : ΓF → GL(n, Q̄`),

and two primes ` and `′, such that

(AF ) σ` ≡ ρ` |ΓF
(mod `).

(BF ) σ`′ ≡ I(χ`′) |ΓF
(mod `′).
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Or written solely in terms of the residual representations:

(AF ) σ̄` = ρ̄` |ΓF
.

(BF ) σ̄`′ = Ī(χ`′) |ΓF
.

Now suppose Taylor-Wiles-Kisin applies to n-dim representations of ΓF .
(1) (BF ) + previous discussion ⇒ σ`′ is modular – over F !.
(2) σ is a compatible family ⇒ σ` is also modular (over F ),
(3) (AF ) + Wiles/Taylor-Wiles ⇒ ρ` is residually automorphic over F , hence

ρ` is modular over F .
As mentioned above, an argument based on Brauer’s theorem then implies that
L(s, ρ) has at least a meromorphic continuation and functional equation.

The articles [CHT] and [T] develop the Taylor-Wiles-Kisin argument over F ,
provided

(α) F is totally real, and
(β) ` and `′ are unramified in F .
Undoubtedly (β) will eventually be removed, but this presumably requires new

insight into the p-adic (`-adic?) local Langlands correspondence.

5.3 How to find σ`?.
The only obvious source of compatible families is in the `-adic cohomology of an

algebraic variety over F .

{σ} ↔
{
F -Rational points on a moduli space M
for some F satisfying (α), (β)

}
M parametrizes a certain family of algebraic varieties.

Note that we are deforming in three directions: vertically (lifting from mod `
to `-adic representations), horizontally (by varying `) and geometrically (over the
moduli space M).

Conditions (α) and (β) are local.

5.3.1. Rumely’s local-global principle. If M is geometrically irreducible and
has points locally over R and over unramified extensions of Q` and Q`′ , then it has
points over global F satisfying (α) and (β).

Taylor used a precise version due to Moret-Bailly [MB], though there are versions
due to Green-Pop-Roquette and others.

Now recall conditions (a), (b), (c) from the beginning of the talk. We need a M
parametrizing varieties whose cohomology satisfies (a)-(c).

Actually, we will look forM as a moduli space for motives: collections of pieces of
cohomology in various theories (topological, de Rham, Hodge, crystalline, `-adic)
with comparison maps. We only really want families of `-adic étale cohomology
groups, equipped with Galois representations, but with a trace of the other theories
(for example, need Hodge-Tate numbers, so regularity can be defined).

By general principles (Griffiths transversality), one can’t expect to find contin-
uous families of motives with regular Hodge-Tate numbers if these are too spread
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out. I only know of one family of motives whose associated `-adic representa-
tions are regular has attracted much attention, namely the Calabi-Yau family of
Vt,` ⊂ Hn−1(Xt,Q`)H , parametrized by Y = P1 − {µn+1,∞}.

As a first approximation to M: for M ≥ 1, t ∈ Y , n even, let

V [M ](Xt) := Hn−1(Xt,Z/MZ)H

and let YM be the covering of Y parametrizing polarized level N -structures:

YM = {λ : (Z/MZ)n ∼−→V [M ](Xt), t ∈ Y }

where λ is a symplectic isomorphism. This is étale over Y , in fact over Z[ 1
M(n+1) ].

Theorem 5.3.2. There is an integer N0 such that, if every prime factor of M
is larger than N0, then YM (C) is an irreducible étale cover of Y (C) with covering
group Sp(n,Z/MZ).

This theorem was explained to us by Nick Katz, who gave us the references to
his book [Ka]. In [HST] it is derived as a consequence of

(1) the explicit determination of the monodromy of the Gauss-Manin connec-
tion for Hn−1(Y,C)H (cf. physics literature). The result is an explicit
hypergeometric differential equation of degree n.

(2) Beukers-Heckman: the differential Galois group of this hypergeometric equa-
tion is Sp(n).

(3) Matthews, Vaserstein, and Weisfeiler: the monodromy mod ` is full for
almost all ` (also proved by M. Nori).

However, Katz has more recently explained to us that one can replace the final
step (which in the version of Matthews, Vaserstein, and Weisfeiler depends on
the classification of finite groups) by a more elementary argument. The Beukers-
Heckman result implies that the image of monodromy – i.e., the image of the
fundamental group of Y in the monodromy representation on the solutions to the
Gauss-Manin connection – is Zariski dense in Sp(n). The problem is thus to show
that the image of a Zariski dense subgroup upon reduction mod ` contains Sp(n,F`)
for sufficiently large `. But we know more than the Zariski density of monodromy.
The calculation of the hypergeometric equation is based on the fact that the image
of monodromy contains a principal unipotent element of Sp(n), i.e., a unipotent
matrix with minimal polynomial (T − 1)n. It follows that the image of the Lie
algebra of monodromy mod ` contains a principal nilpotent element for almost all
`. Now the result follows easily Zariski density of monodromy.

Let `, `′ be two primes larger than N0. Fix a CM field M cyclic of degree n over
Q, an algebraic Hecke character χ of A×

M/M×, and I(χ`′) as defined above

= ind
ΓQ
ΓM
χ`′ → GL(n, Q̄`′).

Consider

M`,`′ =
{ C-Y hypersurfaces X in the Dwork pencil

with polarization-preserving isomorphisms

}
V [`](X) ∼−→ρn

E,`; V [`′](X) ∼−→Ī(χ`′).

By Theorem 5.3.2 M`,`′ is geometrically irreducible.
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Theorem 5.3.3. Local-global principle (cf. [MB]). Let S = S1

∐
S2 be a

finite set of places of Q, with ∞ ∈ S1. Let M/Q be geometrically irreducible, and
assume

(*) For all v ∈ S1 (resp. w ∈ S2) the set M(Qv) (resp. M(Qunr
w )) is non-

empty.
Then there is a finite Galois extension F1/Q in which all v ∈ S1 split completely –
in particular, F1 is totally real – and which is unramified at all w ∈ S2, such that
M(F1) 6= ∅. Moreover, if L is any fixed finite extension of Q, we can assume F1

and L are linearly disjoint over Q.

Recall Wiles’ three steps:
(1) (Taylor-Wiles) Modular Lifting Theorem for “minimal” liftings.
(2) (Wiles level-raising) Modular Lifting Theorem for all liftings.
(3) Trick at ` = 3 to get started.
If we can verify condition (*) for appropriate sets S1 and S2, we will find a point

t1 ∈ M`,`′(F1) for which V [`′](Xt1) is monomial. This is our substitute for Wiles’
trick at ` = 3.

Then we can argue exactly as for n = 2. Our point t1 ∈ M`,`′(F1) provides a
compatible family

σq : ΓF1 → GSp(n,Qq)

with

(AF1) σ̄` = ρ̄n
E,` |ΓF1

.

(BF1) σ̄`′ = Ī(χ`′) |ΓF1
.

Assume we have generalized modular lifting theorems under the conditions al-
ready seen for n = 2.

(α) F is totally real, and
(β) ` and `′ are unramified in F .
We need ∞ ∈ S1 for condition (α), `, `′ ∈ S2 for condition (β). In the absence

of these two conditions, nothing is known. Then as before
(1) (BF1) + modular lifting thm. ⇒ σ`′ is automorphic – over F1.
(2) σ is a compatible family ⇒ σ` is also modular (over F1),
(3) (AF1) + modular lifting thm. ⇒ ρn

E,` is residually automorphic over F1,
hence ρn

E,` is automorphic over F1.

As mentioned before, proof of (3) for all even n suffices for meromorphic contin-
uation of all symmetric powers, and for the Sato-Tate conjecture.

5.4. The fine print.
The existence of points of M`,`′ over unramified extensions of Q` and Q`′ is

non-trivial, and it is also insufficient to complete the proof.

5.4.1. Existence at `, `′, and ∞ is insufficient – there are other primes. I start
with the latter point, which has to do with the condition (c) that has been plaguing
us since the beginning. Remember that when we introduced the Hecke character χ
we guaranteed condition (c) by requiring that I(χ`) be irreducible locally at a place
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v0 inert in M . In order to guarantee that I(χ`) remains not only modular over F1

but also modular and satisfying condition (c), we require v0 to split completely in
F1.

So far, so good. However, σ̄`′ has to be isomorphic to some V [`](Xt), and there is
no reason to expect V [`](Xt), which is the cohomology of a specific kind of variety,
to have local representations with the required kind of ramification at v0. So in
order to preserve condition (BF1), we would have to allow v0 to be highly ramified
in F1 – but then we lose condition (c).

In the (not so) long run, we should be able to scrap condition (c). In the
meantime, [CHT] proves the existence of `′ (enough of them) for which Ī(χ`) admits
a lift of Steinberg type at some place q′. This argument uses a generalization of
Ramakrishna’s level-raising theorem, and is the most technical point in [CHT].
Together with a descent and base change argument, this implies a quite general
modular lifting theorem for Ī(χ`) that remains in the framework of condition (3) –
but only for very large ` (on the order of (2n)n/2).

5.4.2. Existence at ` and `′ is non-trivial. I’ll consider the problem for `, that
for `′ being somewhat similar. Our condition is

(AF1) V [`](Xt) |I`

∼−→ρ̄n
E,` |I`

.

where I` is the inertia subgroup of Gal(Q̄`/Q`). Now E can either be supersingu-
lar or ordinary at `. I don’t know whether or not it is impossible for the Z/`Z-
cohomology of some Xt, with t ∈ Y (Q`

unr), to contain an n-dimensional piece that
looks like a symmetric power of a supersingular elliptic curve, but it’s more prudent
to assume ` is an ordinary prime for E. This is a fateful assumption: it is known
that the set of ordinary primes of an elliptic curve over a number field has Dirichlet
density one, but nothing of the kind is known for modular forms of weight k > 2,
and this limits the application of our method to forms of weight 2 for the moment.

If E[`] is ordinary, then the action of I` on E[`] is upper triangular, so ρ̄n
E,` is

concentrated along the diagonal and first superdiagonal:
1 • 0 0 . . . 0 0
0 ω−1

` • 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . ω2−n

` •
0 0 0 0 . . . 0 ω1−n

`


If Xt is an ordinary hypersurface, which we can assume for the sake of argument,
then the action of I` on V [`](Xt) is upper-triangular with the same diagonal entries
but there is no reason for the entries above the diagonal to be concentrated on one
superdiagonal.

The solution is to assume I` acts diagonally on E[`]. Since this is not always pos-
sible we introduce a new prime `′′ and a new elliptic curve E′ with E′[`′′] ∼−→E[`′′]
as Galois modules and E′[`] diagonal for I` (a canonical lift at `). This requires an
additional application of Moret-Bailly’s theorem, but to simplify we assume E[`] is
already diagonal. This means we need to find Xt with the same property. Fortu-
nately, one is staring us in the face: the Fermat hypersurface, with t = 0, whose
cohomology is diagonal over I` as long as ` splits completely in Q(µn+1) (` ≡ 1
(mod n + 1)). Note that in the usual study of hypergeometric functions, 0 is a
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singular point, as it is in the usual study of moduli of the Dwork family. This is
why our moduli space is Y , a cyclic cover of P1 − {1,∞} with Galois group µn+1,
rather than the usual moduli space P1 − {0, 1,∞}.

Once we have a diagonal action of I` on E[`], with powers of the cyclotomic
character along the diagonal, the set of points lying above some `-adic neighborhood
of 0 in Y (Q`

unr) provides points of M`,`′ over Q`
unr, provided ` ≡ 1 (mod n+ 1).

The argument for `′ is similar, except that one needs `′ split in the cyclic CM field
M as well; for good measure, we take ` split in M , to avoid conflicts with condition
(BF1) at `.

5.4.3 Wrapping up. We also need to keep track of at least one of the primes q
dividing the denominator of j(E), to make sure it splits completely in F1, in order
to remain in the range of applicability of condition (c). We need moreover that the
local monodromy at q – and also at the q′ introduced in (5.4.1) – is non-trivial mod
` and `′, which forces some of the `’s to be big relative to q and q′ at some stages
in the argument. Most, if not all, of these complications, would disappear if one
could scrap condition (c).
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