
Moret-Bailly’s theorem

Statement of the theorem.

We are going to sketch Moret-Bailly’s proof of a theorem that is a version of a
general class of theorems that goes by the name of Rumely’s local-global principle.

Theorem (Moret-Bailly). Let M be a geometrically irreducible variety over Q.
Let S1 and S2 be disjoint sets of places of Q, with ∞ ∈ S1. Suppose for all v ∈ S1,
w ∈ S2, M(Qv) 6= ∅, M(Qunr

w ) 6= ∅. Then there is a finite Galois extension F/Q

in which every place in S1 splits completely and every place in S2 is unramified,
such that M(F ) 6= ∅.

Moreover, if for all w ∈ S2 there is a Gal(Qunr
w /Qw)-invariant open subset Ωw of

the w-adic manifold M(Qunr
w ) such that Ωw 6= ∅, then we can assume that M(F )

contains a point x, for F a field as above, such that x ∈ Ωw for all w ∈ S2.

The second part of the theorem was important in the proof contained in the articles
[CHT], [T], [HST], because it allowed us to keep track of the place of multiplica-
tive reduction, but it appears to be unnecessary if one doesn’t worry about this
condition, thus it will be ignored.

Moret-Bailly’s theorem is much stronger: he shows the existence of a point x that
is integral at all places of Q but those in S1 ∪ S2, plus (at least) one more, chosen
arbitrarily. This may be useful in some applications. The theorem also applies to
general number fields and to function fields of curves over finite fields.

Let S = S1∪S2, R the ring of S′-integers of Q, where S′ is any set of places strictly
containing S, B = Spec(R). Here are some simple reductions:

(1) The condition that F/Q be Galois is superfluous, one can always replace F
by its Galois closure over Q. Thus it does not need to be verified separately.

(2) As mentioned, the theorem is valid over any number field. Existence of local
points over unramified extensions of Qw means existence of local points over
split extensions of Kw, after passing to an appropriate finite extension K/Q.
Thus we can assume S = S1.

(3) Using Bertini’s theorem and an argument of cutting by hypersurface sec-
tions, Moret-Bailly reduces the proof to the case where M is a curve. In
the main applications, M will always be a curve, thus we may assume
dimM = 1. Note however that one also needs to solve this problem simul-
taneously for several Mj , which means that one needs to find an F that
works for

∏
j Mj , thus the reduction is in fact necessary.

(4) It is not asserted that M is projective, and this will not in fact be the case
in the applications. Thus we may assume M to be an affine curve which
extends to a projective curve f̄ : M̄ → B. Moreover, by shrinking M we
may assume f : M → B to be smooth and surjective, hence M is a regular
(two-dimensional) scheme; we may normalize and assume M̄ to be normal.

We let Z = M̄ − M, of dimension ≤ 1, containing no fibers of f̄ ; we give Z the
reduced subscheme structure, and let g be the genus of M̄Q, z = deg(ZQ), and
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we can always assume z > 0 (by adding a point if necessary). Since we don’t
care about integrality, we can shrink B so that M̄ is regular, the fibers of f̄ are
geometrically integral, Z is regular and finite, flat, and surjective over B (see [MB]
for the justification).

For any integer d > 0, let M(d) be the d-th symmetric power of M

M(d) = Md/Sd

(fiber product over B). Let Ud ⊂ M(d) be the complement of the diagonals. Since
M is smooth over B, there is a functorial bijection for any B-scheme T identifying
M(d)(T ) with the set of effective Cartier divisors D ⊂ MT , finite, flat, and of
degree d over S; Ud(T ) correspond to étale Cartier divisors (no multiplicities).

For v ∈ S, let Ω
[d]
v ⊂ Ud(Qv) ⊂ M(d)(Qv) be the set of divisors in D ⊂ M(Qv)

that are effective of degree d, étale, and split over Qv.

Proposition. For all d ≥ 0, Ω
[d]
v is a non-empty open subset of Ud(Qv).

Proof. Since Xd → X(d) is étale over Ud, it defines an open map on Qv-valued

points. One can construct a point in Ω
[d]
v by taking d distinct points in M(Qv).

For any T as above, let PG(M̄, Z)(T ) denote the group of equivalence classes

of pairs (L, α) where L is an invertible sheaf on M̄S and α : OZS

∼
−→ LZS

a
trivialization over ZS . The group structure is given by tensor product of invertible
sheaves. Let PGd ⊂ PG be the subgroup of degree d. Then PG0 is the generalized
Jacobian (relative to the trivialization at Z. There is an exact sequence of sheaves:

1 → (Gm)B → (πZ)∗(Gm)Z → PG(M̄, Z) → PicM̄/B → 1.

Thus PG( ¯CM, Z) is an extension of Pic by a torus, Pic0 is the Jacobian of M̄,
Pic/P ic0 = ZB .

Any Cartier divisor D ∈ M(d)(T ) defines a class clZ(D) ∈ PGd(M̄, Z), the triv-
ialization along Z being given by the canonical map OM̄ → OM̄(D) which is an
isomorphism outside D, and in particular along Z. There is thus a B-morphism

φd : M(d) → PGd(M̄, Z)

analogous to the usual map from the symmetric power of a complete smooth curve
to its Jacobian. For d sufficiently large, one knows that the latter map is a projective
space bundle, the projective space over an invertible sheaf L being the projectiviza-
tion of the space of sections of a sufficiently ample twist of L, the set of zeroes of a
given section defining a point in the symmetric power. In this relative generalized
situation, the result is

Lemma. Suppose d ≥ 2g + z − 1. Then φd is a locally trivial fibration in affine
spaces of dimension d + 1 − g − z.
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More precisely, for any T , set

Γ(M̄T ,L, α) = {s ∈ H0(M̄,L) | s|Z = α}.

This is an affine space and there is a bijection

M(d)(T ) = { isomorphism classes of triples (L, α, s)}

where (L, α) ∈ PGd(M̄, Z)(T ) and s ∈ Γ(M̄T ,L, α). Here D on the left maps to
the pair (clZ(D), sD), and (L, α, s) maps to div(s).

We are very close to having translated the initial problem into a problem of strong
approximation in the affine space A = Γ(M̄,L, α). We can view A as a principal
homogeneous space under the projective R-module (which we can even take to be
free) M = H0(M̄,L(−Z)), the difference between any two α being a section of L
vanishing on Z.

Lemma. Let S′ be a set of places of Q strictly containing S, and let R be the ring
of S′-integers. Under localization, the R-affine space A is dense in

∏
v∈S A⊗R Qv.

If we ignored S′-integrality, this would be quite standard. We apply the lemma as
follows (we write PGd for PGd(M̄, Z):

Lemma. Let L be an invertible sheaf on M̄ of degree d ≥ 2g + z − 1. Let α be a
trivialization of L over Z, hence (L, α) ∈ PGd(R). Suppose that for every v ∈ S,

the corresponding point in PGd(Qv) belongs to φd(Ω
[d]
v ).

Then there is an s ∈ A = Γ(M̄,L, α) such that div(s)v ∈ Ω
[d]
v for all v ∈ S.

Moreover, any irreducible component of div(s) defines a point of M over a number
field in which the places in S split completely.

The first statement is an immediate consequence of strong approximation for A,

since by an earlier proposition, the set of sinA⊗RQv such that div(s) ∈ Ω
[d]
v is open.

The second statement just follows from the definitions. Since this may seem like
we are getting something for nothing, I remind you that the property of a divisor

D being in Ω
[d]
v is just that it is a union of d distinct points of M all rational over

Qv. So the trick is to find a pair (L, α) with the given local property.

Proposition. Let L0 be an ample line bundle on M̄ (i.e., of positive degree).
Under the above hypotheses, there exists an integer n ≥ 1 and a trivialization α of
L⊗n

0 |Z such that the pair (L⊗n
0 , α) satisfies the local hypotheses of the last lemma.

Proof. Let d = deg(L0). After taking an appropriate tensor power, we may assume

d ≥ 2g + z and L0 |Z
∼
−→ OZ (the latter hypothesis has to do with triviality of the

class group of Z, which can be assumed by shrinking B). Take a trivialization α0

of L0 on Z. Then any trivialization of L⊗n
0 on Z is of the form λ · α⊗n

0 for some
invertible function λ on Z. Set

QS =
∏

v∈S

Qv; G = PG0(QS)/Im(Γ(Z,O×

Z ),

the latter with the quotient topology on the S-adic topological group.
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Main Lemma. The topological group G is quasi-compact; in particular, for any
g ∈ G, the sequence (gn, n = 1, 2, . . . ) has the identity as accumulation point.

The proof of this lemma is in two parts. Recall that PG0 is a generalized Jacobian,
an extension of an abelian variety by a torus. For the abelian variety part, this
is a consequence of projectivity of abelian varieties. For the torus part, this is a
consequence of the Dirichlet unit theorem (for S-units), where the existence of an
extra place in S′ is crucial.

Admitting this lemma, I conclude the proof. There is an additional non-trivial

property of the Ω
[d]
v ), namely

Ω[d]
v ) · Ω[d′]

v ) ⊂ Ω[d+d′]
v )

provided d′ > 0 and d ≥ 2g + z, which (like the construction of the affine fibration)

is a consequence of the Riemann-Roch theorem. We define Ω
[d]
S =

∏
v∈S Ω

[d]
v ), so

that, for all m, n ≥ 1,

Ω
[nd]
S ) · Ω

[md]
S ) ⊂ Ω

[(m+n)d]
S ).

Fix a point q0 ∈ Ω
[d]
S ) and let p0 ∈ PGd(QΣ) be the class of (L0, α0). Now Ω′ =

q−1
0 ·Ω

[d]
S ) is a neighborhood of the identity in PG0(QS). Applying the Main Lemma,

we conclude that there exists n ≥ 1 such that (p0q
−1
0 )n ∈ Γ(Z,O×

Z ) · Ω′. In other

words, there exists λ ∈ Γ(Z,O×

Z ) such that (p0/q0)
n ∈ λq−1

0 Ω′, i.e.

λ−1pn
0 ∈ qn−1

0 · Ω
[d]
S .

But q0 ∈ Ω
[d]
Σ and by the multiplicative property recalled above, this implies that

λ−1pn
0 ∈ Ω

[nd]
S .

Letting α = λ · αn
0 , we find that (Ln

0 , α) satisfies the conclusion of the Proposition.


