This is a continuation of the lecture on the Euler characteristic and Riemann-Roch formulas. As always, ℓ is an *odd* prime. In this section, $\bar{\rho}$ is an absolutely irreducible representation of Γ_F that extends to a homomorphism $\Gamma_{F^+} \to \mathcal{G}_n(\bar{\mathbb{F}}_\ell)$. We set $M = \mathbf{A}(\bar{\rho}), \Gamma = \Gamma_{F^+}$, and write $H^1(\Gamma, M)$ instead of $H^1(K, M)$, etc. We also write S as the disjoint union $S_{\ell} \cup Q \cup R \cup S_1 \cup S_{\infty}$, where S_{∞} and S_{ℓ} are self-explanatory and the remaining sets will be described below. I have not yet explained the subspaces $L_v \subset H^1(\Gamma_v, M)$ introduced in the previous lecture. We will only consider v split in F/F^+ , so that Γ_v can be considered a decomposition group for F or F^+ . Recall that $H^1(\Gamma, M)$ is identified with the tangent space to the ring parametrizing deformations of \bar{r} ramified at primes in S, with no restrictions on the type of ramification. The Selmer group $H^1_{\mathcal{S}}(\Gamma, M)$ is defined to be the subspace of the group $H(\Gamma, M)$ whose deformation classes restrict to classes in L_v at $v \in S$. The L_v are chosen to correspond to certain well-defined types of deformations: a deformation ρ to $k[\varepsilon]$ is of type \mathcal{S} (in the literature this is usually written \mathcal{D} and we will gradually switch to this notation) if and only if the class of its restriction to Γ_v is in L_v for all $v \in S$. (The condition at S_∞ is empty because ℓ is odd.)

In subsequent lectures certain specific kinds of deformation types will be described for S_{ℓ} , Q, and R. The article [CHT] considers many more kinds of deformation types, but after writing [T], Taylor realized that most of these are unnecessary for applications in which there is a great deal of freedom in choosing the prime ℓ , and in particular for the Sato-Tate conjecture, and I will omit the (often extremely intricate) details. In the present lecture I will concentrate on the representability of the functor classifying deformations of type S. I will describe a criterion due to Ramakrishna, based on Schlessinger's criterion for representability. There are alternative approaches based on the constructions of the deformation ring by Faltings and de Smit-Lenstra.

Ramakrishna's theorem.

Let $Rep_{\mathcal{O}}(\Gamma)$ be the category of \mathcal{O} -modules of finite length endowed with a continuous Γ -action. A *Ramakrishna subcategory* of $Rep_{\mathcal{O}}(\Gamma)$ is a full subcategory of \mathcal{S} closed under passage to subobjects, quotients, and direct sums.

Let \mathcal{S} be a Ramakrishna subcategory of $Rep_{\mathcal{O}}(\Gamma)$, and suppose $(\bar{\rho}, M)$ is in \mathcal{S} . Consider the subfunctor $Def_{\bar{\rho},\mathcal{S}}$ of $Def_{\bar{\rho}}$ such that, for A in $\mathcal{C}_{\mathcal{O}}$, a deformation ξ of $\bar{\rho}$ to A is in $Def_{\bar{\rho},\mathcal{S}}$ if, for some (any) lifting ρ of $\bar{\rho}$ to A representing the equivalence class ξ , ρ belongs to \mathcal{S} .

Theorem 1.1 [**R**]. Under the above hypotheses, the functor $Def_{\bar{\rho},S}$ is prorepresentable by a quotient $R_{\bar{\rho},S}$ in \hat{C} .

The proof, following Mazur's survey article, is given in several steps.

Proposition 1.2. Hypotheses as in Theorem 1.1. Then (1) Let $A \to A_1$ be a morphism in C, let (ρ, M) be a lifting of $\bar{\rho}$ to A, (ρ_1, M_1) the induced lifting to A_1 with $M_1 = M \otimes_A A_1$. If (ρ, M) is in S, then so is (ρ_1, M_1) .

- (2) Let A₁, A₂, A₀ be in C, α : A₁ → A₀, β : A₂ → A₀ morphisms in C, with A₃ = A₁×_{A₀}A₂. Let (ρ₃, M₃) be a lifting of ρ̄ to A₃, and let (ρ_i, M_i) denote the induced liftings over A_i, i = 1, 2, with respect to the projections of A₃ on A_i. Then (ρ₃, M₃) is in S if and only if (ρ_i, M_i) is for i = 1, 2.
- (3) Let $A \to A_1$ be an injection in C, and suppose (ρ_1, M_1) is a lifting of $\bar{\rho}$ to A_1 that is in S. Then (ρ_1, M_1) , viewed as an $A[\Gamma]$ -module, is in S.

Proof. Note that in (3), the $A[\Gamma]$ -module (ρ_1, M_1) is not a lifting of $\bar{\rho}$. Of course (3) is obvious because the property of being in S does not depend on the coefficient ring. As for (1): we may assume A_1 is of the form $A[X_1, \ldots, X_m]/J$ for some integer m and some ideal J. Passage from A to $A[X_1, \ldots, X_m]$ replaces M by a direct sum of copies of M, which is still in S; passage from $A[X_1, \ldots, X_m]$ to $A[X_1, \ldots, X_m]/J$ replaces an object in S by a quotient, which is therefore also in S.

Finally, in the situation of (2), suppose (ρ_3, M_3) is in \mathcal{S} . Since A_i is a quotient ring of A_3 for i = 1, 2, the argument used for (1) implies that each (ρ_i, M_i) is in \mathcal{S} . Conversely, as $\mathcal{O}[\Gamma]$ -module, (ρ_3, M_3) is a submodule of $(\rho_1 \times \rho_2, M_1 \times M_2)$. Thus the implication in the reverse direction follows because \mathcal{S} is closed under passage to subobjects.

Proposition 1.3. Let \mathcal{D} be a subfunctor of the covariant functor D from \mathcal{C} to the category of sets, with $\mathcal{D}(k) = D(k)$ a singleton. Suppose for all triples A_1, A_2, A_0 in \mathcal{C} , with $\alpha : A_1 \to A_0$, $\beta : A_2 \to A_0$ morphisms in \mathcal{C} , and $A_3 = A_1 \times_{A_0} A_2$, the square

is Cartesian, where the vertical maps are the natural inclusions. Suppose D is prorepresentable by an algebra R_D in \hat{C} . Then D is prorepresentable by a quotient R_D of R_D .

If \mathcal{D} satisfies the hypothesis of the proposition, it is called *relatively representable*.

Proof. I sketch a proof. If D is prorepresentable by R, then D satisfies the Schlessinger conditions (H_i) , i = 1, 2, 3, 4. In particular, the bottom row of the diagrom (1.4) is surjective or bijective under certain hypotheses on A_1 and A_2 . Now if \mathcal{D} is a relatively representable subfunctor, then the surjectivity (resp. bijectivity) of the top row of (1.4) is an immediate consequence of surjectivity of the bottom row. In particular, \mathcal{D} is prorepresentable by some $R_{\mathcal{D}}$. It remains to show that $R_{\mathcal{D}}$ is a quotient of R_D , but this is a formal consequence of the fact that \mathcal{D} is a subfunctor of D. Indeed, there is a natural morphism $R_D \to R_{\mathcal{D}}$ corresponding to the inclusion $\mathcal{D} \to D$ by Yoneda's lemma. Since both rings are complete, noetherian, and local, to show surjectivity it suffices to show that the map on Zariski tangent spaces is

surjective. Equivalently, it suffices to show that $\mathcal{D}(k[\varepsilon]) \to D(k[\varepsilon])$ is injective, but this is true by definition.

It remains to show that

Lemma 1.5. The morphism of functors $Def_{\bar{\rho},S} \to Def_{\bar{\rho}}$ is relatively representable.

Proof. First of all, we need to know that the inclusion $Def_{\bar{\rho},S} \to Def_{\bar{\rho}}$ really is a morphism of functors, and this follows from Proposition 1.2, (1). Next, we need to show that the diagram (1.4) is Cartesian for the pair $D = Def_{\bar{\rho}}, \mathcal{D} = Def_{\bar{\rho},S}$, and this is an immediate consequence of Proposition 1.2 (2).

References.

[R] R. Ramakrishna, On a variation of Mazur's deformation functor, *Compositio Math.*, **87** 269-286 (1993).