
Global Riemann-Roch formulas

Let K be a number field, Γ = Gal(K̄/K), M a finite Γ-module of exponent m;
i.e. mM = (0). If S is a finite set of places of K we let ΓS = Gal(KS/K), where
KS is the union of all extensions of K in K̄ that are unramified outside S. This is
a much smaller group and the cohomology of such groups arises naturally in prob-
lems of arithmetic geometry. One cannot always calculate the Galois cohomology
groups Hi(ΓS ,M), but global class field theory imposes strong relations between
the cohomology of M and the cohomology of M∗ = Hom(M,µm), where µm is the
group of m-th roots of unity in K̄. It is natural to impose additional local con-
ditions at the primes in S, and the cohomology groups with these conditions are
called Selmer groups and are denoted Hi

D(K, M), the S being understood. We have
already seen such groups as the cotangent spaces of deformation rings. The only in-
teresting group is H1. The corresponding group of cohomology of M∗ is interpreted
by Wiles as an error term, which he is able to eliminate by choosing appropriate
local conditions. This should be compared to the use of the Riemann-Roch formula,
where the error terms can also be eliminated to yield a much simpler result. In this
section I derive the formula used by Wiles to control the size of Selmer groups. The
result is an immediate consequence of class field theory, as interpreted by Tate and
Poitou as a collection of local and global duality theorems. Complete proofs of the
duality theorems are in Milne’s book Arithmetic Duality Theorems.

In the applications it will suffice to take m = ! an odd prime, and we will make
this hypothesis for simplicity. In this case, M and M∗ are F!-vector spaces.

1. Tate’s local duality.
Let M be a finite F![Γ]-module, as in the above discussion. We let Γ act on

M∗ = Hom(M,µ!) by
gφ(m) = ω!(g)φ(g−1m))

where ω! : Γ→F×! = Aut(µ!) is the cyclotomic character.

Tate’s local duality theorem. Let v be a place of K, and let Γv ⊂ Γ be a
decomposition group at v, Iv ⊂ Γv the inertia group.

(a) For all i, Hi(Γv,M) is finite.
(b) For all integers m there are embeddings

H2(Γv, µm) ↪→ Q/Z

compatible with the inclusions µm ↪→ µn if m | n.
(c) For i = 0, 1, 2 the cup product and (b) give rise to a perfect pairing

Hi(Γv.M)⊗H2−i(Γv,M∗)→H2(Γv,M ⊗M∗)→H2(Γv, µ!) ↪→ Q/Z,

where the second arrow is induced from the natural contraction M⊗M∗→µ!.
(d) Suppose v is a finite prime with residue field kv. Then Hi(Γv,M) = (0) for

i > 2, and

dim H1(Γv,M) = dim H0(Γv,M) + dim H2(Γv,M) + dim M ⊗Z kv.

In other words, the Euler characteristic χv(M) = h0
v(M)−h1

v(M)+h2
v(M),

in the obvious notation, is zero unless v divides !.
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(e) If v is finite and prime to !, then H1(Γv/Iv,M Iv ) and H1(Γv/Iv, (M∗)Iv )
are annihilators of each other under the pairing

H1(Γv,M)⊗H1(Γv,M∗)→Q/Z.

If v is an archimedean prime, then Γv is a group of order 1 or 2 whose cohomology
can (usually!) be calculated by hand.

Regarding the proofs: (b) is the usual calculation of the Brauer group. When
M = F! with trivial action then (c) is the cohomological formulation of local class
field theory. One reduces to this case by restriction to the extension of Kv fixed by
the subgroup of Γv that acts trivially on M .

2. Global Euler characteristic formulas.
In what follows, S is always a finite set of places of K containing all archimedean

primes.

Global Euler characteristic formula. Let M be a finite F![ΓS ]-module, as
above, and define

χS(M) = dim H0(ΓS ,M)− dim H1(ΓS ,M) + dim H2(ΓS ,M).

Assume S contains all primes of residue characteristic !. Then

χS(M) =
∑

v | ∞
H0(Γv,M)− dim M · [K : Q].

A remark: since H3(ΓS ,M) does not generally vanish, the left hand side is not a
true Euler characteristic. In particular, it is not additive in short exact sequences.
However, the failure of additivity is exactly compensated by the first term on the
right. If K is totally imaginary, Hi(ΓS ,M) vanishes for i > 2 and both sides are
additive, as expected. The proof is by a series of elementary reductions to the case
M = µ!, where everything can be calculated explicitly in terms of groups of S-ideal
classes and S-units.

Because the basis of our deformation theory is partially CM and partially totally
real, reflecting the fact that we are deforming maps to the L-group of a unitary
group, we will need a slight extension of the above formula.

Extended Euler characteristic formula. Let K ′/K be a finite Galois extension
of degree prime to !. Let S be a finite set of primes of K containing all primes
of residue characteristic ! and all archimedean primes, and let K ′

S be the maximal
extension of K ′ unramified outside S. Thus K ′

S is Galois over K, with Galois group
Γ′S. Let M be a finite F![Γ′S ]-module, and define

χ′S(M) = dim H0(Γ′S ,M)− dim H1(Γ′S ,M) + dim H2(Γ′S ,M).

Then
χ′S(M) =

∑
v | ∞

H0(Γv,M)− dim M · [K : Q],

where the sum on the right is over archimedean places of K.
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3. Poitou-Tate global duality.
The most efficient summary of the duality between the cohomology of a finite

ΓS module M and that of its dual M∗ is contained in the nine term exact sequence
of Poitou-Tate, proved as Theorem 4.10 in Milne’s book. To state the theorem, we
need to introduce the modified cohomology groups H0,+(Γv,M): H0,+(Γv,M) = 0
if v is archimedean, and H0,+(Γv,M) = H0(Γv,M) if v is finite.

Theorem (nine term exact sequence). Let Let S be a finite set of primes of K
containing all primes of residue characteristic ! and all archimedean primes, and
write S = Sf

∐
S∞, where Sf is the subset of finite primes, S∞ that of archimedean

primes. Let M be a finite F!ΓS-module. Then there is an exact sequence of finite
groups

0 → H0(ΓS ,M) → ⊕v∈SH0,+(Γv,M) → H2(ΓS ,M∗)∨
↓

H1(ΓS ,M∗)∨ ← ⊕v∈SH1(Γv,M) ← H1(ΓS ,M)
↓

H2(ΓS ,M) → ⊕v∈SH2(Γv,M) → H0(ΓS ,M∗)∨ → 0

The analogous sequence is valid for M of any exponent m, with a slightly more
complicated statement when m is divisible by 2.

4. Selmer groups.
We let S be as above. For each v ∈ S, we choose a subspace Lv ⊂ H1(Γv,M)

with the property that, for all finite v /∈ S, Lv = H1(Γv/Iv,M Iv ). The collection of
these Lv is denoted S. We define the Selmer group H1

S by the short exact sequence

(4.1) 0→H1
S(K, M)→H1(ΓS ,M)→

⊕
v∈S

H1(Γv,M)/Lv.

“Weak Mordell-Weil theorem”. H1(ΓS ,M) is finite.

This is proved by Kummer theory or by global class field theory in the usual
way. It follows that the Selmer group H1

S(K, M) is also finite.
For any v ∈ S, we define a subspace L⊥v ⊂ H1(Γv,M∗) by duality: L⊥v is the

annihilator of Lv under the Tate local duality pairing. Thus we have a Selmer
group H1

S∗(K, M∗) defined by means of the L⊥v .

Lemma. For all finite v /∈ S, we have
χS,v(M) = dimLv − dim H0(Γv,M) = 0.

Proof. By hypothesis, Lv = H1(Γv/Iv,M Iv ). The Lemma thus follows from the
exact sequence

0→H0(Γv,M)→M Iv Fv−1−→ M Iv→H1(Γv/Iv,M Iv )→0.

Here Fv is Frobenius at v and the isomorphism M Iv/(Fv−1)M Iv
∼−→ H1(F Ẑ

v ,M Iv )
is periodicity of (Tate) cohomology of cyclic groups.

With this Lemma in hand, the expression on the right-hand side of the following
equality makes sense. We write hi for dim Hi. Let Sf be the set of finite places in
S and S∞ the set of archimedean places of K. For v ∈ Sf define χS,v(M) as above.
For v ∈ S∞ we set χS,v(M) = dim H0(Γv,M∗)− dim M [Kv; R]. This is easily seen
to equal −dim H0(Γv,M): if v is complex this is clear, whereas if v is real then
c ∈ Γv acts by −1 on µ!, whence the claim follows. Since Lv = H1(Γv,M) = 0
(since ! is odd) the notation is consistent.
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Riemann-Roch formula. Under the above hypotheses, we have the following
equality:

h1
S(K, M)− h1

S∗(K, M∗) = h0(ΓK ,M)− h0(ΓK ,M∗) +
∑

v

χS,v(M)

By the lemma, the sum over v is actually a sum over v ∈ S.

Proof. The exact sequence (4.1), applied to M∗ and S∗, is

0→H1
S∗(K, M∗)→H1(ΓS ,M∗)→

⊕
v∈Sf

H1(Γv,M∗)/L⊥v ,

where we can ignore the H1(Γv, ∗) for v ∈ S∞. Dualizing this sequence, we find

(4.2)
⊕
v∈Sf

Lv→H1(ΓS ,M∗)∨→H1
S∗(K, M∗)∨→0

Now take the first six terms of the nine term exact sequence, but with the local
groups H1(Γv,M) replaced by Lv :

0 → H0(ΓS ,M) → ⊕v∈Sf H0(Γv,M) → H2(ΓS ,M∗)∨
↓

H1(K, M∗)∨ ← ⊕v∈Sf Lv ← H1
S(K, M)

Completing this with (4.2) we obtain

0 → H0(ΓS ,M) → ⊕v∈SH0(Γv,M) → H2(ΓS ,M∗)∨
↓

0 ← H1
S∗(K, M∗)∨ ← H1(ΓS ,M∗)∨ ← ⊕v∈Sf Lv ← H1

S(K, M)

The alternating sum of dimensions of the terms in this sequence equals zero, thus

h1
S(K, M)− h1

S∗(K, M∗)

= h0(ΓS ,M)−
∑
v∈Sf

[dim Lv − h0(Γv,M)] + h2(ΓS ,M∗)− h1(ΓS ,M∗)

= h0(ΓS ,M)− h0(ΓS ,M∗) + χS(M∗) +
∑
v∈Sf

χS,v(M).

Now we apply the Euler characteristic formula to calculate χS(M∗)

χS(M∗) =
∑

v | ∞
h0(Γv,M∗)− dim M · [K : Q] =

∑
v∈S∞

χS,v(M).

Thus

h1
S(K, M)− h1

S∗(K, M∗) = h0(ΓS ,M)− h0(ΓS ,M) +
∑
v∈S

χS,v(M)

which concludes the proof.
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5. The basic numerical coincidence.
Now we assume K is a totally real field. For each real v, let σv be a corresponding

complex conjugation in Gal(Q/K. Let S! be the subset of S of all primes of K
dividing !. In this section we indicate how the above formula simplifies if we make
certain assumptions on the local terms for v ∈ S! ∪ S∞.

5.1 Numerical hypotheses.
(1) For all v ∈ S!,

dim Lv − dimk H0(Γv,M) = n(n− 1)[Kv : Q!]/2.

(2) For all v |∞, there is a constant cv = ±1 such that, ,

dim H0(Γv,M) = dim(M)σv=1 = n(n− 1)/2 + n
1 + cv

2
.

By (1),

(5.2)
∑
v∈S!

χS,v(M) =
n(n− 1)

2

∑
v∈S!

[Kv : Q!] =
n(n− 1)

2
[K : Q].

By (2),
(5.3)∑
v∈S∞χS,v(M)

= −|S∞|n(n− 1)
2

−n·
∑

v∈S∞

1 + cv

2
= −n(n− 1)

2
[K : Q]−n·

∑
v∈S∞

1 + cv

2
.

The contribution of S! compensates the main part of the contribution of S∞, and
the Riemann-Roch formula simplifies:
(5.4)

h1
S(K, M)−h1

S∗(K, M∗) = h0(ΓK ,M)−h0(ΓK ,M∗)+
∑

v∈Sf\S!

χS,v(M)−n·
∑

v∈S∞

1 + cv

2
.

This is the form in which the Euler characteristic formula will be applied. In
practice the two global terms h0(ΓK ,M) and h0(ΓK ,M∗) vanish. The basis of
the Taylor-Wiles method is to choose S so that so that h1

S∗(K, M∗) = 0. Then the
interesting dimension h1

S(K, M) is expressed entirely in terms of local χS,v(M) that
can be scrupulously controlled, as well as a sum n ·∑v∈S∞

1+cv
2 that will ultimately

be forced to vanish. In subsequent lectures I will explain when the hypotheses 5.1
are valid.


