Global Riemann-Roch formulas

Let K be a number field, $\Gamma=\operatorname{Gal}(\bar{K} / K), M$ a finite Γ-module of exponent m; i.e. $m M=(0)$. If S is a finite set of places of K we let $\Gamma_{S}=\operatorname{Gal}\left(K_{S} / K\right)$, where K_{S} is the union of all extensions of K in \bar{K} that are unramified outside S. This is a much smaller group and the cohomology of such groups arises naturally in problems of arithmetic geometry. One cannot always calculate the Galois cohomology groups $H^{i}\left(\Gamma_{S}, M\right)$, but global class field theory imposes strong relations between the cohomology of M and the cohomology of $M^{*}=\operatorname{Hom}\left(M, \mu_{m}\right)$, where μ_{m} is the group of m-th roots of unity in \bar{K}. It is natural to impose additional local conditions at the primes in S, and the cohomology groups with these conditions are called Selmer groups and are denoted $H_{\mathcal{D}}^{i}(K, M)$, the S being understood. We have already seen such groups as the cotangent spaces of deformation rings. The only interesting group is H^{1}. The corresponding group of cohomology of M^{*} is interpreted by Wiles as an error term, which he is able to eliminate by choosing appropriate local conditions. This should be compared to the use of the Riemann-Roch formula, where the error terms can also be eliminated to yield a much simpler result. In this section I derive the formula used by Wiles to control the size of Selmer groups. The result is an immediate consequence of class field theory, as interpreted by Tate and Poitou as a collection of local and global duality theorems. Complete proofs of the duality theorems are in Milne's book Arithmetic Duality Theorems.

In the applications it will suffice to take $m=\ell$ an odd prime, and we will make this hypothesis for simplicity. In this case, M and M^{*} are \mathbb{F}_{ℓ}-vector spaces.

1. Tate's local duality.

Let M be a finite $\mathbb{F}_{\ell}[\Gamma]$-module, as in the above discussion. We let Γ act on $M^{*}=\operatorname{Hom}\left(M, \mu_{\ell}\right)$ by

$$
\left.g \phi(m)=\omega_{\ell}(g) \phi\left(g^{-1} m\right)\right)
$$

where $\omega_{\ell}: \Gamma \rightarrow \mathbb{F}_{\ell}^{\times}=\operatorname{Aut}\left(\mu_{\ell}\right)$ is the cyclotomic character.
Tate's local duality theorem. Let v be a place of K, and let $\Gamma_{v} \subset \Gamma$ be a decomposition group at $v, I_{v} \subset \Gamma_{v}$ the inertia group.
(a) For all $i, H^{i}\left(\Gamma_{v}, M\right)$ is finite.
(b) For all integers m there are embeddings

$$
H^{2}\left(\Gamma_{v}, \mu_{m}\right) \hookrightarrow \mathbb{Q} / \mathbb{Z}
$$

compatible with the inclusions $\mu_{m} \hookrightarrow \mu_{n}$ if $m \mid n$.
(c) For $i=0,1,2$ the cup product and (b) give rise to a perfect pairing
$H^{i}\left(\Gamma_{v} \cdot M\right) \otimes H^{2-i}\left(\Gamma_{v}, M^{*}\right) \rightarrow H^{2}\left(\Gamma_{v}, M \otimes M^{*}\right) \rightarrow H^{2}\left(\Gamma_{v}, \mu_{\ell}\right) \hookrightarrow \mathbb{Q} / \mathbb{Z}$,
where the second arrow is induced from the natural contraction $M \otimes M^{*} \rightarrow \mu_{\ell}$.
(d) Suppose v is a finite prime with residue field k_{v}. Then $H^{i}\left(\Gamma_{v}, M\right)=(0)$ for $i>2$, and
$\operatorname{dim} H^{1}\left(\Gamma_{v}, M\right)=\operatorname{dim} H^{0}\left(\Gamma_{v}, M\right)+\operatorname{dim} H^{2}\left(\Gamma_{v}, M\right)+\operatorname{dim} M \otimes_{\mathbb{Z}} k_{v}$.
In other words, the Euler characteristic $\chi_{v}(M)=h_{v}^{0}(M)-h_{v}^{1}(M)+h_{v}^{2}(M)$, in the obvious notation, is zero unless v divides ℓ.
(e) If v is finite and prime to ℓ, then $H^{1}\left(\Gamma_{v} / I_{v}, M^{I_{v}}\right)$ and $H^{1}\left(\Gamma_{v} / I_{v},\left(M^{*}\right)^{I_{v}}\right)$ are annihilators of each other under the pairing

$$
H^{1}\left(\Gamma_{v}, M\right) \otimes H^{1}\left(\Gamma_{v}, M^{*}\right) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

If v is an archimedean prime, then Γ_{v} is a group of order 1 or 2 whose cohomology can (usually!) be calculated by hand.

Regarding the proofs: (b) is the usual calculation of the Brauer group. When $M=\mathbb{F}_{\ell}$ with trivial action then (c) is the cohomological formulation of local class field theory. One reduces to this case by restriction to the extension of K_{v} fixed by the subgroup of Γ_{v} that acts trivially on M.

2. Global Euler characteristic formulas.

In what follows, S is always a finite set of places of K containing all archimedean primes.
Global Euler characteristic formula. Let M be a finite $\mathbb{F}_{\ell}\left[\Gamma_{S}\right]$-module, as above, and define

$$
\chi_{S}(M)=\operatorname{dim} H^{0}\left(\Gamma_{S}, M\right)-\operatorname{dim} H^{1}\left(\Gamma_{S}, M\right)+\operatorname{dim} H^{2}\left(\Gamma_{S}, M\right)
$$

Assume S contains all primes of residue characteristic ℓ. Then

$$
\chi_{S}(M)=\sum_{v \mid \infty} H^{0}\left(\Gamma_{v}, M\right)-\operatorname{dim} M \cdot[K: \mathbb{Q}] .
$$

A remark: since $H^{3}\left(\Gamma_{S}, M\right)$ does not generally vanish, the left hand side is not a true Euler characteristic. In particular, it is not additive in short exact sequences. However, the failure of additivity is exactly compensated by the first term on the right. If K is totally imaginary, $H^{i}\left(\Gamma_{S}, M\right)$ vanishes for $i>2$ and both sides are additive, as expected. The proof is by a series of elementary reductions to the case $M=\mu_{\ell}$, where everything can be calculated explicitly in terms of groups of S-ideal classes and S-units.

Because the basis of our deformation theory is partially CM and partially totally real, reflecting the fact that we are deforming maps to the L-group of a unitary group, we will need a slight extension of the above formula.
Extended Euler characteristic formula. Let K^{\prime} / K be a finite Galois extension of degree prime to ℓ. Let S be a finite set of primes of K containing all primes of residue characteristic ℓ and all archimedean primes, and let K_{S}^{\prime} be the maximal extension of K^{\prime} unramified outside S. Thus K_{S}^{\prime} is Galois over K, with Galois group Γ_{S}^{\prime}. Let M be a finite $\mathbb{F}_{\ell}\left[\Gamma_{S}^{\prime}\right]$-module, and define

$$
\chi_{S}^{\prime}(M)=\operatorname{dim} H^{0}\left(\Gamma_{S}^{\prime}, M\right)-\operatorname{dim} H^{1}\left(\Gamma_{S}^{\prime}, M\right)+\operatorname{dim} H^{2}\left(\Gamma_{S}^{\prime}, M\right)
$$

Then

$$
\chi_{S}^{\prime}(M)=\sum_{v \mid \infty} H^{0}\left(\Gamma_{v}, M\right)-\operatorname{dim} M \cdot[K: \mathbb{Q}]
$$

where the sum on the right is over archimedean places of K.

3. Poitou-Tate global duality.

The most efficient summary of the duality between the cohomology of a finite Γ_{S} module M and that of its dual M^{*} is contained in the nine term exact sequence of Poitou-Tate, proved as Theorem 4.10 in Milne's book. To state the theorem, we need to introduce the modified cohomology groups $H^{0,+}\left(\Gamma_{v}, M\right): H^{0,+}\left(\Gamma_{v}, M\right)=0$ if v is archimedean, and $H^{0,+}\left(\Gamma_{v}, M\right)=H^{0}\left(\Gamma_{v}, M\right)$ if v is finite.

Theorem (nine term exact sequence). Let Let S be a finite set of primes of K containing all primes of residue characteristic ℓ and all archimedean primes, and write $S=S_{f} 【 S_{\infty}$, where S_{f} is the subset of finite primes, S_{∞} that of archimedean primes. Let M be a finite $\mathbb{F}_{\ell} \Gamma_{S}$-module. Then there is an exact sequence of finite groups

$$
\begin{array}{rllll}
0 \rightarrow H^{0}\left(\Gamma_{S}, M\right) & \rightarrow \oplus_{v \in S} H^{0,+}\left(\Gamma_{v}, M\right) & \rightarrow H^{2}\left(\Gamma_{S}, M^{*}\right)^{\vee} \\
H^{1}\left(\Gamma_{S}, M^{*}\right)^{\vee} & \leftarrow \oplus_{v \in S} H^{1}\left(\Gamma_{v}, M\right) & \leftarrow & H^{1}\left(\Gamma_{S}, M\right) \\
\downarrow & & & \\
H^{2}\left(\Gamma_{S}, M\right) & \rightarrow \oplus_{v \in S} H^{2}\left(\Gamma_{v}, M\right) & \rightarrow H^{0}\left(\Gamma_{S}, M^{*}\right)^{\vee} & \rightarrow 0
\end{array}
$$

The analogous sequence is valid for M of any exponent m, with a slightly more complicated statement when m is divisible by 2 .

4. Selmer groups.

We let S be as above. For each $v \in S$, we choose a subspace $L_{v} \subset H^{1}\left(\Gamma_{v}, M\right)$ with the property that, for all finite $v \notin S, L_{v}=H^{1}\left(\Gamma_{v} / I_{v}, M^{I_{v}}\right)$. The collection of these L_{v} is denoted \mathcal{S}. We define the Selmer group $H_{\mathcal{S}}^{1}$ by the short exact sequence

$$
\begin{equation*}
0 \rightarrow H_{\mathcal{S}}^{1}(K, M) \rightarrow H^{1}\left(\Gamma_{S}, M\right) \rightarrow \bigoplus_{v \in S} H^{1}\left(\Gamma_{v}, M\right) / L_{v} \tag{4.1}
\end{equation*}
$$

"Weak Mordell-Weil theorem". $H^{1}\left(\Gamma_{S}, M\right)$ is finite.
This is proved by Kummer theory or by global class field theory in the usual way. It follows that the Selmer group $H_{\mathcal{S}}^{1}(K, M)$ is also finite.

For any $v \in S$, we define a subspace $L_{v}^{\perp} \subset H^{1}\left(\Gamma_{v}, M^{*}\right)$ by duality: L_{v}^{\perp} is the annihilator of L_{v} under the Tate local duality pairing. Thus we have a Selmer group $H_{\mathcal{S}^{*}}^{1}\left(K, M^{*}\right)$ defined by means of the L_{v}^{\perp}.
Lemma. For all finite $v \notin S$, we have

$$
\chi_{\mathcal{S}, v}(M)=\operatorname{dim} L_{v}-\operatorname{dim} H^{0}\left(\Gamma_{v}, M\right)=0 .
$$

Proof. By hypothesis, $L_{v}=H^{1}\left(\Gamma_{v} / I_{v}, M^{I_{v}}\right)$. The Lemma thus follows from the exact sequence

$$
0 \rightarrow H^{0}\left(\Gamma_{v}, M\right) \rightarrow M^{I_{v}} \xrightarrow{F_{v}-1} M^{I_{v}} \rightarrow H^{1}\left(\Gamma_{v} / I_{v}, M^{I_{v}}\right) \rightarrow 0 .
$$

Here F_{v} is Frobenius at v and the isomorphism $M^{I_{v}} /\left(F_{v}-1\right) M^{I_{v}} \xrightarrow{\sim} H^{1}\left(F_{v}^{\hat{Z}}, M^{I_{v}}\right)$ is periodicity of (Tate) cohomology of cyclic groups.

With this Lemma in hand, the expression on the right-hand side of the following equality makes sense. We write h^{i} for $\operatorname{dim} H^{i}$. Let S_{f} be the set of finite places in S and S_{∞} the set of archimedean places of K. For $v \in S_{f}$ define $\chi_{\mathcal{S}, v}(M)$ as above. For $v \in S_{\infty}$ we set $\chi_{\mathcal{S}, v}(M)=\operatorname{dim} H^{0}\left(\Gamma_{v}, M^{*}\right)-\operatorname{dim} M\left[K_{v} ; \mathbb{R}\right]$. This is easily seen to equal $-\operatorname{dim} H^{0}\left(\Gamma_{v}, M\right)$: if v is complex this is clear, whereas if v is real then $c \in \Gamma_{v}$ acts by -1 on μ_{ℓ}, whence the claim follows. Since $L_{v}=H^{1}\left(\Gamma_{v}, M\right)=0$ (since ℓ is odd) the notation is consistent.

Riemann-Roch formula. Under the above hypotheses, we have the following equality:

$$
h_{\mathcal{S}}^{1}(K, M)-h_{\mathcal{S}^{*}}^{1}\left(K, M^{*}\right)=h^{0}\left(\Gamma_{K}, M\right)-h^{0}\left(\Gamma_{K}, M^{*}\right)+\sum_{v} \chi_{\mathcal{S}, v}(M)
$$

By the lemma, the sum over v is actually a sum over $v \in S$.
Proof. The exact sequence (4.1), applied to M^{*} and \mathcal{S}^{*}, is

$$
0 \rightarrow H_{\mathcal{S}^{*}}^{1}\left(K, M^{*}\right) \rightarrow H^{1}\left(\Gamma_{S}, M^{*}\right) \rightarrow \bigoplus_{v \in S_{f}} H^{1}\left(\Gamma_{v}, M^{*}\right) / L_{v}^{\perp}
$$

where we can ignore the $H^{1}\left(\Gamma_{v}, *\right)$ for $v \in S_{\infty}$. Dualizing this sequence, we find

$$
\begin{equation*}
\bigoplus_{v \in S_{f}} L_{v} \rightarrow H^{1}\left(\Gamma_{S}, M^{*}\right)^{\vee} \rightarrow H_{\mathcal{S}^{*}}^{1}\left(K, M^{*}\right)^{\vee} \rightarrow 0 \tag{4.2}
\end{equation*}
$$

Now take the first six terms of the nine term exact sequence, but with the local groups $H^{1}\left(\Gamma_{v}, M\right)$ replaced by L_{v} :

$$
\begin{aligned}
& 0 \quad \rightarrow \quad H^{0}\left(\Gamma_{S}, M\right) \quad \rightarrow \quad \oplus_{v \in S_{f}} H^{0}\left(\Gamma_{v}, M\right) \quad \rightarrow \quad H^{2}\left(\Gamma_{S}, M^{*}\right)^{\vee} \\
& H^{1}\left(K, M^{*}\right)^{\vee} \leftarrow \quad \oplus_{v \in S_{f}} L_{v} \quad \leftarrow \quad H_{\mathcal{S}}^{1}(K, M)
\end{aligned}
$$

Completing this with (4.2) we obtain

$$
\begin{array}{rlllll}
0 & \rightarrow H^{0}\left(\Gamma_{S}, M\right) & \rightarrow & \oplus_{v \in S} H^{0}\left(\Gamma_{v}, M\right) & \rightarrow & H^{2}\left(\Gamma_{S}, M^{*}\right)^{\vee} \\
0 \leftarrow H_{\mathcal{S}^{*}}^{1}\left(K, M^{*}\right)^{\vee} & \leftarrow H^{1}\left(\Gamma_{S}, M^{*}\right)^{\vee} & \leftarrow & \oplus_{v \in S_{f}} L_{v} & \leftarrow & H_{\mathcal{S}}^{1}(K, M)
\end{array}
$$

The alternating sum of dimensions of the terms in this sequence equals zero, thus

$$
\begin{aligned}
& h_{\mathcal{S}}^{1}(K, M)-h_{\mathcal{S}^{*}}^{1}\left(K, M^{*}\right) \\
& =h^{0}\left(\Gamma_{S}, M\right)-\sum_{v \in S_{f}}\left[\operatorname{dim} L_{v}-h^{0}\left(\Gamma_{v}, M\right)\right]+h^{2}\left(\Gamma_{S}, M^{*}\right)-h^{1}\left(\Gamma_{S}, M^{*}\right) \\
& =h^{0}\left(\Gamma_{S}, M\right)-h^{0}\left(\Gamma_{S}, M^{*}\right)+\chi_{S}\left(M^{*}\right)+\sum_{v \in S_{f}} \chi_{\mathcal{S}, v}(M)
\end{aligned}
$$

Now we apply the Euler characteristic formula to calculate $\chi_{S}\left(M^{*}\right)$

$$
\chi_{S}\left(M^{*}\right)=\sum_{v \mid \infty} h^{0}\left(\Gamma_{v}, M^{*}\right)-\operatorname{dim} M \cdot[K: \mathbb{Q}]=\sum_{v \in S_{\infty}} \chi_{\mathcal{S}, v}(M) .
$$

Thus

$$
h_{\mathcal{S}}^{1}(K, M)-h_{\mathcal{S}^{*}}^{1}\left(K, M^{*}\right)=h^{0}\left(\Gamma_{S}, M\right)-h^{0}\left(\Gamma_{S}, M\right)+\sum_{v \in S} \chi_{\mathcal{S}, v}(M)
$$

which concludes the proof.

5. The basic numerical coincidence.

Now we assume K is a totally real field. For each real v, let σ_{v} be a corresponding complex conjugation in $\operatorname{Gal}\left(\overline{\mathbb{Q}} / K\right.$. Let S_{ℓ} be the subset of S of all primes of K dividing ℓ. In this section we indicate how the above formula simplifies if we make certain assumptions on the local terms for $v \in S_{\ell} \cup S_{\infty}$.

5.1 Numerical hypotheses.

(1) For all $v \in S_{\ell}$,

$$
\operatorname{dim} L_{v}-\operatorname{dim}_{k} H^{0}\left(\Gamma_{v}, M\right)=n(n-1)\left[K_{v}: \mathbb{Q}_{\ell}\right] / 2 .
$$

(2) For all $v \mid \infty$, there is a constant $c_{v}= \pm 1$ such that,,

$$
\operatorname{dim} H^{0}\left(\Gamma_{v}, M\right)=\operatorname{dim}(M)^{\sigma_{v}=1}=n(n-1) / 2+n \frac{1+c_{v}}{2}
$$

By (1),

$$
\begin{equation*}
\sum_{v \in S_{\ell}} \chi_{\mathcal{S}, v}(M)=\frac{n(n-1)}{2} \sum_{v \in S_{\ell}}\left[K_{v}: \mathbb{Q}_{\ell}\right]=\frac{n(n-1)}{2}[K: \mathbb{Q}] . \tag{5.2}
\end{equation*}
$$

By (2),

$$
\begin{equation*}
\sum_{v \in S_{\infty} \chi \mathcal{S}, v(M)}=-\left|S_{\infty}\right| \frac{n(n-1)}{2}-n \cdot \sum_{v \in S_{\infty}} \frac{1+c_{v}}{2}=-\frac{n(n-1)}{2}[K: \mathbb{Q}]-n \cdot \sum_{v \in S_{\infty}} \frac{1+c_{v}}{2} . \tag{5.3}
\end{equation*}
$$

The contribution of S_{ℓ} compensates the main part of the contribution of S_{∞}, and the Riemann-Roch formula simplifies:

$$
\begin{equation*}
h_{\mathcal{S}}^{1}(K, M)-h_{\mathcal{S}^{*}}^{1}\left(K, M^{*}\right)=h^{0}\left(\Gamma_{K}, M\right)-h^{0}\left(\Gamma_{K}, M^{*}\right)+\sum_{v \in S_{f} \backslash S_{\ell}} \chi_{\mathcal{S}, v}(M)-n \cdot \sum_{v \in S_{\infty}} \frac{1+c_{v}}{2} . \tag{5.4}
\end{equation*}
$$

This is the form in which the Euler characteristic formula will be applied. In practice the two global terms $h^{0}\left(\Gamma_{K}, M\right)$ and $h^{0}\left(\Gamma_{K}, M^{*}\right)$ vanish. The basis of the Taylor-Wiles method is to choose \mathcal{S} so that so that $h_{\mathcal{S}^{*}}^{1}\left(K, M^{*}\right)=0$. Then the interesting dimension $h_{\mathcal{S}}^{1}(K, M)$ is expressed entirely in terms of local $\chi_{\mathcal{S}, v}(M)$ that can be scrupulously controlled, as well as a sum $n \cdot \sum_{v \in S_{\infty}} \frac{1+c_{v}}{2}$ that will ultimately be forced to vanish. In subsequent lectures I will explain when the hypotheses 5.1 are valid.

