
Schlessinger’s criterion for prorepresentability

In what follows, O will be an ℓ-adic integer ring with finite residue field k. We
let C = O be the category of artinian local O-algebras with residue field k (such

that the structure map O 7→ A induces the identity map on residue fields), and Ĉ
the category of complete noetherian local O-algebras with residue field k as above.
Schlessinger has given a criterion that guarantees that a functor from C to sets
is (pro)representable by an object in Ĉ that is similar to but more flexible than
the general criterion due to Grothendieck. Schlessinger’s criterion is the basis of
Mazur’s approach to deformation theory of Galois representations which is the
framework used by Wiles and all those who have followed him. The original paper
[S] of Schlessinger is easy to read and of course much more general than the case
needed to study ℓ-adic Galois representations, but I will nevertheless present the
proof in some detail.

1. Basic notions. As usual, m is the maximal ideal of O. If A is in Ĉ then mA is
its maximal ideal and the Zariski cotangent space of A over O is

t∗A = mA/(mA)2 + m.

For p : A → B, q : C → B in C, let

A×B C = {(a, c) ∈ A× C | p(a) = q(c)}.

Lemma 1.1. A morphism p : B → A in Ĉ is surjective if and only if the induced
map dp : t∗B → t∗A is surjective.

Proof. Exercise (one proves that the induced map on graded rings is surjective and
then applies a lemma from Bourbaki’s Algèbre Commutative.)

Definition 1.2. Let p : B → A be a surjection in C.

(a) The map p is called a small extension if ker p is a nonzero principal ideal (t)
such that mB · t = (0).

(b) The map p is called essential if for any q : C → B in C, surjectivity of pq
implies surjectivity of q.

Note that if p is a small extension then length(B) = length(A) + 1.

Corollary 1.3. Let p : B → A be a surjection in C. Then

(i) p is essential if and only if dp : t∗B → t∗A is an isomorphism;

(ii) If p is a small extension, then p is not essential if and only of p has a section
s : A → B with p ◦ s = IdA.
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Proof. (i) If dp is an isomorphism then by Lemma 1.1 p is essential. Conversely, let
ti, i = 1, . . . , r be a basis of t∗A, lift them to xi ∈ B, and set C = O[x1, . . . , xr] ⊂
B, with i : C → B the inclusion The natural map C → A is an isomorphism on
cotangent spaces, hence surjective. Since p ◦ i is surjective if p is essential then i is
also surjective, hence B = C, and it follows that dp is surjective.

(ii) If p has a section s, then since ker p 6= (0) s is not surjective, but p◦s is surjective,
so p is not essential. Conversely, if p is not essential then the subring C of B
constructed in (i) is not equal to B. Hence length(C) ≤ length(B)−1 = length(A).
But since C → A is surjective, length(C) = length(A), hence the map C → A is
an isomorphism and defines a section.

2. The representability criterion.

In what follows, F will be a covariant functor C → Sets such that F (k) contains just
one element. Our primary example will be the deformations of a fixed ρ̄ : Γ → G(k),
where Γ is some Galois group and G = GL(n) or a related group. The deformations
are assumed to satisfy a variety of additional properties, but F (k) is just the original
ρ̄, which is a genuine homomorphism (not up to equivalence).

Definition 2.1. A morphism F → G of functors is formally smooth if for any
surjection B → A in C, the morphism

F (B) → F (A)×G(A) G(B)

is surjective.

Since every surjection can be written as a composition of small extensions, it suffices
to check the criterion in (2.1) for small extensions.

The property of formal smoothness is preserved under composition and base change.
If R is in Ĉ, let hR be its functor of points

hR(A) = HomO(R, A).

The functor R → hR is a (contravariant) equivalence of categories (Yoneda’s Lemma,
and an excellent exercise, including the exact definition of the category to which
hR belongs).

Proposition 2.2. Let R → S be a morphism in Ĉ. Then hS → hR is formally
smooth if and only if R is a power series ring over S.

Proof. This is proved by successive approximation, starting from the obvious choice
of power series ring (the number of variables being dim t∗R/S, and is left as an

exercise.

Definition 2.3. The ring of dual numbers is k[ε]/(ε2), written just k[ε]. The
tangent space tF to F is F (k[ε]).

An easy and important exercise is to show that thR
≡ tR (the dual to t∗R).



3

Definition 2.4. A pair (R, ξ ∈ F (R)) is called a hull of F (resp. prorepresents
F ) if (a) the map hR → F induced by

f ∈ Hom(R, A) 7→ f∗(ξ)

is formally smooth and (b) the induced map tR → tF is a bijection (resp. if hR → F
is an isomorphism).

Proposition 2.5. Two hulls of F are (noncanonically) isomorphic. If (R, ξ) and
(R′, ξ′) prorepresent F then they are canonically isomorphic

Proof. Another good exercise.

Lemma 2.6. Suppose F is a functor satisfying

F (k[ε]×k k[ε])
∼
−→ F (k[ε])× F (k[ε]).

Then tF has a canonical vector space structure.

Proof. Exercise.

Theorem 2.7. Let F be a functor from C to Sets such that F (k) is a single point.
For morphisms A′ → A, A” → A in C, consider the map

(*) F (A′ ×A A”) → F (A′)×F (A) F (A”).

Then F has a hull (resp. is prorepresentable) if and only if F has properties (H1),
(H2), (H3) (resp. and also (H4)) below:

(H1) (*) is a surjection whenever A” → A is a small extension;
(H2) (*) is a bijection when A = k and A” = k[ε];
(H3) dimk(tF ) <∞;
(H4) (*) is a bijection whenever A′ = A” is a small extension.

Note that (H2) implies in particular that F satisfies the hypothesis of Lemma 2.6, so
tF is a vector space. Also (H1) implies by induction that (*) is always a surjection
whenever A” → A is a surjection.

Proof. That any representable functor F = hR satisfies (H1) − (H4) is a useful
exercise and we assume it below.

Suppose F satisfies conditions (H1), (H2), (H3). We construct a hull R by succes-
sive approximation. Let t1, . . . , tr be a basis of t∗F with dual basis {t∗1, . . . , t

∗
r}, and

set S = O[T1, . . . , Tr]. Let

R2 = S/(mS)2 + m · S ≃ k[ε]×k · · · ×k k[ε]

(with r factors on the right). By (H2)

F (R2)
∼
−→ F (k[ε])×F (k) · · · ×F (k) F (k[ε])

∼
−→ tF × · · · × tF ,
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because F (k) is a point; but the right hand side is canonically tF⊗t∗F = Hom(tF , tF )
by construction. The trace (identity element) then defines an element ξ2 ∈ F (R2)
such that, if xi ∈ tR2

= Hom(R2, k[ε]) is dual to Ti, then (xi)∗(ξ2) = t∗i in tF ;

hence ξ2 defines an isomorphism tR2

∼
−→ tF .

Now suppose we have found (Rq, ξq) with Rq = S/Jq for some ideal. We seek Jq+1

minimal among ideals J ⊂ S satisfying mSJq ⊂ J ⊂ Jq and ξq lifts to S/J . Each
such J corresponds to a vector subspace of Jq/mSJq hence it suffices to show that
the set S of such J is stable under pairwise intersection.

So let J, K be two such ideals, and enlarge J so that J + K = Jq without changing
J ∩K. Then

S/J ×S/Jq
S/K ≃ S/(J ∩K)

(check this) and then by (H1)

F (S/J ∩K) = F (S/J ×S/Jq
S/K) → F (S/J)×F (S/Jq) F (S/K)

is surjective. Thus J ∩K is also in S. Now let Jq+1 be the intersection of all ideals
in S and let Rq+1 = S/Jq+1 and ξq+1 any lifting of ξq.

Let J = ∩qJq, R = S/J , a complete noetherian quotient of S, and set ξ =
proj lim ξq. (In the case of interest, it’s just a group representation, hence exists as a

genuine element of F (R).) We know that tR
∼
−→ tF because this is already true for

R2, hence to show that R is a hull of F it suffices to show that the map hR → F
is formally smooth. It is enough to check that hR(A′) → F (A′) ×F (A) hR(A) is
surjective for any small extension p : A′ → A, say A = A′/I. In other words, let
η ∈ F (A) be the image of η′ ∈ F (A′), f : R → A taking ξ to η; we have to show f
lifts to f ′ : R → A′ taking ξ to η′.

It is time to interpret condition (H1). We have

(2.8) A′ ×A A′ ∼
−→ A′ ×k k[I]; (x, y) 7→ (x, x0 + y − x);

here k[I] is the algebra k ⊕ I with I2 = 0 and x0 = x (mod m)A′ ∈ k. (This is
obviously a bijection; one has to check it is an isomorphism of algebras. The trick
is to show that if (a, b) and (c, d) are in A′ ×A A′ then

bd− ac = a0(d− c) + c0(b− a) = a(d− c) + c(b− a)

which is true because (b− a)(d− c), (a − a0)(d− c), and (c− c0)(b− a) are all in
I2 = 0. This is just the proof of Leibniz’ rule, which we see again below in another
form.

Now if p : A′ → A is a small extension then k[I]
∼
−→ k[ε]; It then follows from (H2)

that

(2.9)
F (A′)×tF⊗I = F (A′)×F (k)F (k[ε])⊗I = F (A′×kk[I]) = F (A′×′

AA′) → F (A′)×F (A)F (A′)
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where the third equality is (2.8) and the last arrow is surjective by (H1) (resp.
bijective if we assume (H4)). By the formal properties of this map one sees that,
for any η ∈ F (A), (2.9) defines a group action of tF ⊗ I on the fiber F (p)−1(η)
of the right-hand map F (A′) → F (A), which is transitive because the composition
of the maps in (2.9) is surjective. Moreover, if we assume (H4), then this makes
F (p)−1(η) a principal homogeneous space under tF ⊗ I.

Now we return to our lifting problem. We need to lift the map f : (R, ξ) → (A, η)
to a map f ′ : (R, ξ) → (A′, η′). Claim it suffices to lift f to a map f ′, i.e. to find
f ′ such that p ◦ f ′ = f . Indeed, given such an f ′,

F (p) ◦ F (f ′)(ξ) = F (f)(ξ) = η

thus F (f ′)(ξ) is in the fiber F (p)−1(η), which by the previous paragraph, equals
the orbit of η′ under tF ⊗I. Meanwhile, tF ⊗I also acts transitively on hR(p)−1(η),
which is thus the orbit of f ′. In other words, there exists σ ∈ tF ⊗ I such that
σ[F (f ′)(ξ)] = η′, and we can replace f ′ by g′ = σ ◦ f ′ to obtain

F (g′)(ξ) = η′, p ◦ g′ = f.

To lift f to f ′, note that f factors modulo Rq for some q. Thus it suffices to
complete the diagram

O[T1, . . . , Tr]
w

−−−−→ Rq ×A A′ −−−−→ A′





y

pr1





y





y

p

Rq+1 −−−−→ Rq
f

−−−−→ A

by lifting to a map Rq+1 → Rq ×A A′. Now either pr1 has a section, in which case
the lift is obvious, or we have seen pr1 is essential, in which case w is surjective by
definition. Now (H1) implies the map

F (Rq ×A A′) → F (Rq)×F (A) F (A′)

is surjective, hence ξq ∈ F (Rq) lifts back to F (Rq×AA′). This implies Jq+1 ⊂ kerw
by minimality of Jq+1, hence w factors through Rq+1, which completes the proof
of formal smoothness, hence that (R, ξ) is a hull.

Finally, under (H4), we prove hR(A)
∼
−→ F (A) by induction on the length of A.

Suppose it’s true for A and let p : A′ → A = A′/I be a small extension. Let
η ∈ F (A). Now the action of tF ⊗ I is simply transitive on hR(p)−1(η) and under
(H4) it is also simply transitive on F (p)−1(η). Finally, hR(A′) → F (A′) is surjective
since hR → F is formally smooth, and it follows that hR(A′) → F (A′) is bijective,
which completes the induction.

3. Moduli of Galois representations.

In what follows, G is either (i) Gal(KS/K), where K is a number field, S is a finite
set of places of K, and KS is the maximal extension of K unramified outside S, or
(ii) Gal(K̄/K), where K is a p-adic field. In case (i), if L is a finite extension of K,
let LS be the maximal extension of L unramified outside the primes of L above S.
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Lemma 3.1. For any finite extension L/K, let GL = Gal(LS/L) in case (i), resp.
GL = Gal(K̄/L) in case (ii). Then Hom(GL, k) is a finite set.

Proof. This is a consequence of class field theory. If L is p-adic then

Hom(GL, k) = Hom(L×, k) = Hom(L×/(L×)ℓ, k)

which is finite by the structure theory of p-adic fields (and of dimension no bigger
than 2 if ℓ 6= p). If L is a number field then

Gab
L

∼
−→ L×

A
/L× ·

∏

v/∈S

Uv · L
+,×
∞ .

Here Uv is the group of units in the v-adic completion of L.

[L×

A
: L× ·

∏

v

Uv · L
×
∞]

is the order of the ideal class group of L which is finite. It thus suffices to show
that

∏

v∈S

Uv/U ℓ
v × L×

∞/L+,×
∞

is a finite group, but the archimedean part is a finite two group and the non-
archmedean part was already used for case (i).

Now let r̄ : G → GL(n, k) be a finite-dimensional representation. For A in C, a
lifting of r̄ to A is a homomorphism

ρ : G → GL(n, A); ρ = r̄ (mod mA).

For all N , let Γ(mN
A ) be the principal congruence subgroup of GL(n, A):

Γ(mN
A ) = {γ ∈ GL(n, A) | γ ≡ 1 (mod m

N
A )}.

A deformation of r̄ to A is an equivalence class of liftings ρ, where ρ1 and ρ2

are equivalent if there exists a matrix γ ∈ GL(n, A), with γ ∈ Γ(mA), such that

ρ2 = γ ◦ ρ1 ◦ γ−1. Define the functor Def(r̄) on Ĉ for which Def(r̄)(A) is the set
of deformations of r̄ to A.

The functor of liftings is obviously prorepresentable by some sort of ring (take
generators and relations). Now Lemma 3.1 implies G is (in a certain weak sense)
topologically finitely generated, so the functor of liftings is prorepresentable by a
noetherian local ring. (A more precise formulation of this point is given at the end
of the lecture on Carayol’s theorem.) More difficult is

Theorem 3.2 (Mazur). Suppose r̄ is absolutely irreducible. Then Def(r̄) is

prorepresentable by a ring Rr̄ in Ĉ.

This is the first and simplest of the theorems of this kind. It suffices to show that
the functor Def(r̄) satisfies hypotheses (H1)− (H4) of Schlessinger.
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Lemma 3.3. Let A be in C and ρ a lifting of r̄ to A. Then Aut(ρ) = Gm(A) is
the group of scalar matrices in GL(n, A), and this isomorphism is functorial if one
is given compatible liftings.

Proof. Let α ∈ Aut(ρ). If A = k, then because r̄ is absolutely irreducible we know
that α ∈ Gm(k) by Schur’s Lemma. Now we may lift any element in Gm(k) to
Gm(A) for any fixed A (i.e., Gm is formally smooth), so we may assume α = 1
(mod ()mA). The matrix of α − 1 belongs to EndG(r̄ ⊗ mA/(mA)2) (mod m

2
A).

Inducting on the dimension of t∗A we find by Schur’s lemma again that α − 1 is a
scalar (in mA/(mA)2) up to m

2
A. By induction we find that α is scalar.

Lemma 3.4. Let A be in Ĉ. Then

Def(r̄)(A) = lim←−
n

Def(r̄)(A/m
n
A).

In particular, the definition of Def(r̄) on Ĉ is the same as the tautological definition
obtained from its restriction to C.

Proof. Suppose ρ1 and ρ2 are two liftings of r̄ to A, and suppose that, for all N
there exists γN ∈ Γ(mA) such that Any two such γN differ by an element of Aut(ρ2)
(mod m

N
A ), and so in particular

γN+1 ≡ γN · αN (mod m
N
A )

for some α ∈ Aut(ρ2 (mod m)n
A) = Gm(A/m

n
A) where the equality follows from

Lemma 3.3. Thus we can modify γN+1 by a scalar to obtain

γN+1 ≡ γN (mod m
N
A )

for all N , hence that ρ1 and ρ2 are equivalent over A.

We now verify Schlessinger’s conditions. For simplicity, write F = Def(r̄).

(H3). By definition

tF = Homr̄(G, GL(n, k[ε])/(1 + εM(n, k))

where Homr̄ denotes liftings and the quotient by (1 + εM(n, k)) is for the con-
jugation action. I claim this is isomoprhic to H1(G, Ad(r̄)) where Ad(r̄) is the
representation of G on Endk(r̄). Here

H1(G, Ad(r̄)) = {C : G → M(n, k) : c(g1g2) = c(g1) + Ad(r̄)(g1)c(g2)}.

Indeed, consider a lifting ρ of r̄ to GL(n, k[ε]). Define

dρ(g) =
d

dε
ρ(g), cρ(g) = dρ(g)r̄g−1.
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Now by Leibniz’ rule,

dρ(g1g2) = dρ(g1)r̄(g2) + ρ(g1)dr̄(g2),

hence
cρ(g1g2) = [dρ(g1)r̄(g2) + r̄(g1)dρ(g2)](r̄(g2)

−1r̄(g1)
−1)

= dρ(g1)r̄(g1)
−1 + r̄(g1)[dρ(g2)(r̄(g2)

−1]r̄(g1)
−1

= cρ(g1) + Ad(r̄(g1))cρ(g2)

which is the cocycle relation. I leave as an exercise the verification that the quotient
by (1 + εM(n, k)) is exactly the quotient of cocycles by coboundaries.

Now let L be a finite Galois extension of K such that r̄ is trivial on GL. We have
the exact inflation-restriction sequence

1 → H1(Gal(L/K), Ad(r̄)) → H1(G, Ad(r̄)) → H1(GL, Ad(r̄)) = Hom(GL, Ad(r̄))

The first group is finite because Gal(L/K) and Ad(r̄) are finite groups, and the
last group is finite by Lemma 3.1. This completes (H3).

(H1).

Let Ai, i = 0, 1, 2, 3 be four rings in C, with A3 = A2 ×A0
A1, and let Ei be the set

of liftings of r̄ to Ai for each i, Fi = F (Ai) = Ei/Γ(mAi
). We have clearly that

E3 → E2 ×E0
E1

is bijective, because the lifting functor is representable . Assume A2 → A0 is small.
In particular it is surjective, and this implies that Γ(mA2

) → Γ(mA0
) is surjective.

Now suppose we have liftings ρi, i = 0, 1, 2, such that ρ1 = γ0ρ2γ
−1
0 in GL(n, A0).

We lift γ0 to γ2 ∈ GL(n, A2) and define

ρ3 = (ρ1, γ2ρ2γ
−1
2 ).

This gives surjectivity of
F3 → F2 ×F0

F1.

To prove injectivity, we use the following lemma:

Lemma 3.5. If for all φ2 ∈ E2, φ0 = Im(φ2) ∈ E0, the map

CentA2
(φ2) → CentA0

(φ0)

is surjective, then
F3 → F2 ×F0

F1

is injective.

Since the hypothesis is always satisfied for small extensions, so is the injectivity.
Thus this lemma implies (H1).
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Proof. Suppose ρ3, ρ′
3 are elements of E3 such that there exist γ1, γ2 for which

γ1ρ3γ
−1
1 = ρ′

3 on A1;

γ2ρ3γ
−1
2 = ρ′

3 on A2.

Since Γ(mA3
) → Γ(mA1

) is surjective, we may assume γ1 = 1. Now recall A2 → A0

is a small extension, i.e. A2/(t) = A0, mA2
· (t) = (0). Let pij : Ai → Aj be the

maps when they exist. We know ρ3 ∈ E3, which means

p10 ◦ p31(ρ3) = p20 ◦ p32(ρ3)

and likewise with ρ3 replaced by ρ′
3. But we also have

(3.5.1) p10 ◦ p31(ρ
′
3) = p10 ◦ p31(ρ3) = p20 ◦ p32(ρ3);

p20(γ2p32(ρ3)γ
−1
2 = p20 ◦ p32(ρ

′
3) = p10 ◦ p31(ρ

′
3) = p20 ◦ p32(ρ3)

where the last equality is (3.5.1). It follows that p20(γ2) ∈ CentA0
(ρ0). By hy-

pothesis, it lifts to an element δ ∈ CentA2
(ρ2), and multiplying γ2 by δ−1 we may

assume p20(γ2) = 1. In other words, the element (1, γ2) ∈ GL(n, A1 × A2) belongs
to GL(n, A3) and can be used to conjugate γ3 to γ′

3.

(H2). If A0 = k, A2 = k[ε], then CentA2
(φ2) → CentA0

(φ0) is obviously surjective
(because the map A2 → A0 is split.

(H4).

Here r̄ is assumed absolutely irreducible and A1 = A2. But Lemma 3.3 implies the
surjectivity of CentA2

(φ2) → CentA0
(φ0), hence Lemma 3.5 implies that the map

is bijective.

This completes the proof of Theorem 3.2


