
The Skinner-Wiles level lowering trick

1. Background.

The trick in question is a generalization of an argument introduced in [SW] for
n = 2. The background is as follows. Wiles’ original paper on Fermat’s Last
Theorem divided the proof of the isomorphism R

∼−→ T into two parts. The first
part was to prove it in the minimal case:

R∅
∼−→ T∅.

The residual representation ρ̄ was assumed ramified at a set S of primes of the base
field F not dividing `, together with the set S` of divisors of ` (for Wiles, F = Q).
The deformation ring R∅ classifies deformations

ρA : ΓF → GL(2, A)

that are unramified outside S∪S`, with the usual (crystalline or other) conditions at
S`, and such that, for all v ∈ S, the natural map ρA(Iv) → ρ̄(Iv) is an isomorphism.
In other words, ρA is no more ramified than ρ̄ at primes in S. This step was
carried out in the Taylor-Wiles article. The second step deduces the general case
– additional ramification allowed at v ∈ S∗, for some finite set S∗ containing S –
from the minimal case.

The structure of the proof is such that one needs to know, not only that ρ̄ admits
some lifting that comes from modular forms, but that it admits a modular (au-
tomorphic) lifting that is minimal in the above sense. In the case considered by
Wiles, it was in fact known that the existence of some modular lifting implies the
existence of a minimal modular lifting. The crucial step was due to Ribet, who
showed that, if ρ = ρf,` is the 2-dimensional Galois representation attached to a
modular form f of weight 2 (say) and level N , and if q is a prime dividing N such
that ρ̄ is unramified at q, then f is congruent modulo ` to a form f ′ of level prime to
q. Ribet’s theorem was also the most subtle step in showing that the most precise
form of Serre’s conjecture on the modularity of 2-dimensional representations of
ΓQ over finite fields followed from the least precise form of the conjecture. This
theorem was generalized to modular forms of other weights and levels but the basic
argument was always the same.

Ribet’s proof involved a very ingenious analysis of the geometry of Néron mod-
els of Shimura curves that could not be reproduced in other situations. It was
long believed that this represented an insurmountable barrier to the generaliza-
tion of Wiles’ results to Galois representations of higher dimensions, though an
unpublished manuscript of Harris-Taylor (the predecessor of [CHT]) showed how
to generalize Taylor-Wiles, using the arguments of Diamond and Fujiwara. The
article [SW] showed how to avoid Ribet’s level lowering argument by substituting
a base-change argument. Instead of finding an f ′ congruent to f of level prime to
q, they find an f ′ congruent to f that is apparently more ramified at q than f , but
whose ramification has finite (abelian) image. Thus after a finite totally real base
change F ′/F , ρf ′,` is unramified at q. This leaves unsettled the interesting and
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important question whether R
∼−→ T over the original F , but to prove modularity

of ρ, it suffices to establish R
∼−→ T over F ′.

Once the minimal (Taylor-Wiles) isomorphism R∅
∼−→ T∅ is established, the pas-

sage to the general case requires the techniques of level raising, also developed by
Ribet. These arguments were completely original when Ribet invented them but
appeared to be much less difficult than his level lowering theorem. All attempts to
generalize them to higher dimension have failed thus far, however, because it has
proved impossible to generalize a lemma of Ihara that Ribet used as his starting
point. In [CHT] we outlined a strategy, developed by Taylor and his student Russ
Mann, for proving the non-minimal case on the basis of an appropriate generaliza-
tion of Ihara’s Lemma. In [T], Taylor found a way to ignore level-raising entirely,
using Kisin’s technique of framed deformations and a geometric analysis of the
level raising/lowering problem that is based on exactly the same principle as the
Skinner-Wiles trick.

2. The Skinner-Wiles lemma.

Notation is as in the notes denoted Introduction to the Proof, §3; however, G0

is the unitary group of a positive-definite hermitian form and there is no division
algebra B. We consider the open compact subgroup U =

∏
v Uv defined by (3.5.1-

4). For v ∈ R,

Uv = Iv = {u ∈ GL(n,Ov) | uij ∈ mOv
∀i > j}.

In other words, the reduction of u modulo mOv is upper triangular. Consider as in
[loc. cit] the subgroup I(1)v ⊂ Iv:

I(1)v = {u ∈ Iv | uii ∈ 1 + mOv ∀i}.
In other words, the reduction of u modulo mOv

is upper triangular unipotent. Let
U(1) =

∏
v/∈R Uv ×

∏
v∈R I(1)v, DR =

∏
v∈R Iv/I(1)v = U/U(1) =

∏
v∈R(k(v)×)n.

Recall that a character of Iv/I(1)v is denoted χv = (χ1,v, . . . , χn,v) where each χi,v

is a character of k(v)×. Let χv be as above, for v ∈ R, let A be either the coefficient
ring O, which we assume contains all the values of all possible χv, or its residue
field k, and define

S{χv}(U,A) = {f ∈ S(G0, A) | f(gu) =
∏
v∈R

χ−1
v (uv)f(g)}

for all g ∈ G0(Af ) and u =
∏

uv ∈ U , as well as

S(U(1), A) = {f ∈ S(G0, A) | f(gu) = f(g)},
which contains all the S{χv}(U,A). This is the module on which our Hecke algebra
T = TT (U(1)) acts, as in [loc. cit.]. Recall that this Hecke algebra is generated by
the (unramified, split) Hecke operators at primes outside T , and in particular the
set of generators is independent of {χv}. On the other hand, the action of DR on
S(U(1), A) commutes with T. Assuming U is sufficiently small – this is guaranteed
by choosing an appropriate non-empty set S1, as in [loc. cit., 3.5.3] – S(U(1), A) is
a free A[DR]-module. The character {χv} defines a map O[DR] → O× and there
is a natural isomorphism

(2.1) S(U(1),O)⊗O[DR],{χv} O
∼−→ S{χv}(U,O).

The same is true if O is replaced by k, in which case we write χ̄v instead of χv.
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Lemma 2.2 [SW]. Let {χv}, {χ′v} be two collections of characters of DR as
above. Let m ⊂ TT (U(1)) be a maximal ideal. Suppose χ̄v = χ̄′v for all v. Then
S{χv}(U,O)m 6= 0 if and only if S{χ′

v}(U,O)m 6= 0.

Proof. This is certainly true if O is replaced by k in the statement of the lemma.
But both S{χv}(U,O)m and S{χ′

v}(U,O)m are free O-modules, so that

S{χv}(U, k)m = S{χv}(U,O)m ⊗ k

and likewise for S{χ′
v}(U,O)m. The Lemma is thus clear.

This is applied with χ′v = 1 for all v, χv regular in the sense that, for each v,
χi,v 6= χj,v 6= 1 for all i, j. Recall that ` | |k(v)|× and ` > n, so regular sets of χv

exist. (If we don’t want to assume ` > n, we may replace the ground field F by an
extension unramified at all v ∈ R so that k(v)× is divisible by a sufficiently large
power of ` for all v.) An automorphic representation π of G0 corresponding to an
automorphic form in S{χv}(U,O) defines an `-adic Galois representation ρπ,` with
the property that

(2.3) ρπ,`(Iv) is finite ∀v ∈ R.

Thus an appropriate finite abelian base change of π eliminates all ramification
at v ∈ R. If we now start with π′ corresponding to S{1}(U,O)m and assume π

corresponds to S{χv}(U,O)m, then ρ̄π′,`
∼−→ ρ̄π,`. In this way, at the price of a

possible base change F ′/F , we can find an automorphic form πF ′ on some G0,F ′

such that
ρ̄πF ′ ,`

∼−→ ρ̄π,` |ΓF ′

but ρπF ′ ,` is unramified at all primes above R, no matter how ramified ρπ,` was at
v ∈ R. This is the Skinner-Wiles trick.
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