
The ring of deformations of unitary type

In case I’ve forgotten to mention this, ! is henceforth an odd prime. We begin with
the n-dimensional !-adic representation ρ. For the remainder of these lectures I
will usually assume it has coefficients in Q!, to simplify the exposition; this is by
no means a necessary hypothesis. Since the Galois group is compact, ρ stabilizes
a lattice, say Λ ⊂ Qn

! . Let ρ̄ denote the representation on Λ/!Λ. This is an n-
dimensional representation of GF with coefficients in F!. A priori it depends on the
choice of Λ, but we will always assume

Hypothesis. ρ̄ is absolutely irreducible.

Then the Brauer-Nesbitt theorem implies ρ̄ is independent of the choice of lattice,
up to equivalence. The residual representation ρ̄ is the basic object that allows us to
define the universal deformation ring Rr̄. One could work with the n-dimensional
representation ρ̄ itself, but the additional structure coming from the polarization
is essential. We let Gn denote the algebraic group (group scheme over Z) whose
identity component Go

n is GL(n) × GL(1), and which is a semi-direct product of
GL(n)×GL(1) by the group {1, j} acting by

j(g, µ)j−1 = (µtg−1, µ), g ∈ GL(n), µ ∈ GL(1).

There is a homomorphism ν : Gn → GL(1) sending (g, µ) to µ and j to −1. We let
gn = Lie(GL(n)) ⊂ Lie(Gn), g0

n the trace zero subspace.

We consider a topological group Γ with a closed subgroup ∆ of index 2 and an
element c ∈ Γ−∆ with c2 = 1.

Lemma. Let R be any commutative ring. There is a natural bijection between the
following two sets:

1. Homomorphisms r : Γ → Gn(R) such that ∆ = r−1Go
n(R),

2. Pairs (ρ, <, >), where ρ : ∆ → GL(n, R) and

<,>: Rn ⊗Rn → R

is a perfect bilinear pairing such that
* < x, y >= −µ(c) < y, x > for some µ(c) ∈ R, for all x, y ∈ Rn, and
* µ(δ) < δ−1x, y >=< x, cδcy > for any δ ∈ ∆, some µ(δ) ∈ R×. Under this

correspondence µ(γ) = ν ◦ r(γ) for all γ ∈ Γ.

Proof. Given r, let ρ = r |∆. Write

r(c) = (A,−(ν ◦ r)(c))× j.

Then we can define
< x, y >= txA−1y.
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The correspondence is now a simple calculation.

Since c2 = 1, we have

1 = r(c)2 = (A,−(ν ◦ r)(c)) · j(A,−(ν ◦ r)(c))j−1 = (A · (−(ν ◦ r)(c))tA−1, 1),

i.e.
tA = −(ν ◦ r)(c) · A.

Thus A is either symmetric or alternating, as ν ◦ r(c) = −1 or +1.

Corollary. Under the above hypotheses,

dim Lie(GL(n))c=1 =
n(n + ν ◦ r(c))

2
.

In other words, dim Lie(GL(n))c=1 = n(n−1)
2 (resp = n(n+1)

2 if A is symmetric
(resp. if A is alternating).

In the end, we will always find that A is symmetric.

We let ω denote the cyclotomic character acting on Q!(1) or F!(1).

Corollary. Let k = Q! (resp. F!). There is a homomorphism

r : GF+ → Gn(Q!)

(resp. r̄ :: GF+ → Gn(F!) such that r |GF = ρ (resp. ρ̄), ν ◦ r |GF = ω1−n, r(c) ∈
Gn(k)−GL(n, k).

The possible extensions r of ρ are classified up to isomorphism by elements of
k×/(k×)2. We will ignore this issue.

Now k = F! (though this may not always be legitimate), O = Z!. Let S ⊃ S! ∪S∞
be as before. We write Γ = GF+,S , ∆ = GF,S , where the subscript S means “the
Galois group of the maximal extension unramified outside S. Let c denote complex
conjugation, and assume r̄ is absolutely irreducible. For v ∈ S we let ∆v be the
decomposition group Gv. All places in S are assumed split in F/F+. We write
Sf = S! ∪ Smin ∪ R ∪ Q ∪ S1, where at places in Smin Πv is ramified, at Q Πv

is unramified, and at R the ramification, if any, is of principal series type. The
set S1 is present for technical reasons. For v ∈ S1, ρv = ρ |∆v is then absolutely
irreducible. We always assume that the residual representation ρ̄v is also absolutely
irreducible.

Let Cf
O be the category of Artinian local O-algebras A for which the map O → A

induces an isomorphism on residue fields, CO the full subcategory of topological
O-algebras whose objects are inverse limits in Cf

O. For A an object of Cf
O or CO we

want to classify liftings of ρ̄ to homomorphisms ρ′ : ∆ → GL(n, A) satisfying the
properties of 2 of the Lemma, or more properly homomorphisms r′ : Γ → Gn(A)
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lifting r̄. Moreover, we only consider liftings up to equivalence: two liftings are
equivalent if they are conjugate by an element of GL(n, A) that reduces to 1 in
GL(n, A/mA) = GL(n, k), where mA is the maximal ideal of A.

Suppose A is an object of CO with closed ideal I, and suppose r1 and r2 are two
liftings of r̄ to A that are equivalent mod I. By induction on the length of A/I we
can reduce to the case where mA · I = (0). Thus there is a short exact sequence

1 → M(n, k) → Gn(A) → Gn(A/I) → 1

where M(n, k) = 1 + M(n, I) ⊂ Gn(A). Then

γ *→ r2(γ)r1(γ)−1 − 1 ∈ M(n, k)

defines a cocycle [r2 − r1] ∈ Z1(Γ,M(n, k)) where the action of Γ on M(n, k) is
given by conjugation in Gn(A), i.e. by ad r̄. We have a cocycle because the liftings
are group homomorphisms; and two cocycles give rise to equivalent liftings if and
only if they define the same class in H1(Γ, ad r̄).

Without much difficulty we can prove that the functor classifying liftings of r̄ to
CO is representable by a ring Runiv, in the sense that homomorphisms Runiv → A
are canonically in bijection with liftings of r̄ to A. Since Γ = GF+,S , the resulting
liftings are automatically unramified outside S

∐
S!. However, we need additional

conditions, for example to guarantee that the liftings are geometric in the sense
of Fontaine-Mazur. The only liftings of interest are thus those that satisfy certain
conditions upon restriction to ∆v, v ∈ S

∐
S!. This makes representability more

delicate. We begin with the minimal conditions. We always assume ρ comes from
cohomology with trivial coefficients:

Hypotheses (minimal case). We only consider liftings r′ of r̄ with the following
properties:

(1) For v ∈ Smin, the natural map r′(Iv) → r̄(Iv) is an isomorphism.
(2) For v ∈ R, there is no restriction on r′(Iv), but since this is the minimal

case, R is now assumed empty.
(3) For v ∈ S!, r′ |∆v is crystalline (Fontaine-Laffaille) with Hodge-Tate weights

0, 1, . . . , n− 1, each with multiplicity one.
(4) For the moment, Q is empty.

Let ρ′ = r′ |∆. We always assume

Polarization hypothesis. We assume ν ◦ ρ′ = ω1−n.

Condition (3) means that that the Fontaine-Laffaille functor Mcrys(ρ′) attached
to ρ′ |∆v is a free A-module of rank n with Fili/F ili+1 free of rank 1 for i =
0, 1, . . . , n − 1. One of the main open questions in the theory is what condition
to use when ! < n. If we restrict attention to ordinary representations, or even
“nearly ordinary” in Hida’s sense, there is a practical substitute. Otherwise, it’s
quite mysterious except for n = 2, where Kisin has defined a workable theory.
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Theorem. The functor classifying minimal liftings is representable in CO by a
noetherian Z!-algebra Rmin

r̄ with residue field k.

The proof, which follows the arguments of Mazur and Ramakrishna, is based on
Schlessinger’s criterion for pro-representability of functors on categories like Cf

O. In
the next lecture I will say more about Rmin

r̄ and the non-minimal variants, and
the relations with Galois cohomology and Selmer groups. The goal of the theory is
to prove that Rmin

r̄ and its non-minimal variants are isomorphic to certain Hecke
algebras, acting on automorphic forms on the definite unitary group G′. This is
sufficient to prove that every lifting of r̄ of geometric type, in the sense of Fontaine-
Mazur, comes from automorphic forms on GL(n, F ).


