
THE SATO-TATE CONJECTURE: ANALYTIC ARGUMENTS

Introduction

An elliptic curve is the set E of solutions of a cubic curve in two variables, for
example

E : y2 + y = x3 + x,

I will generally consider elliptic curves with rational coefficients, which after a
change of variables can be written

y2 = x3 + Ax+B

with A,B ∈ Q. These are not all distinct, and one can isolate two invariants: the
discriminant

∆ = ∆E − 16(4A3 + 27B2)

which is not really an invariant of E, but which has the following property: if
∆E 6= 0 then E is non-singular, which we always assume. There is also the j-
invariant, which really depends on E and not just on the equation:

j(E) = 1728 · 4A3

4A3 + 27B2

which determines E up to isomorphism over an algebraically closed field.
We may assume A,B ∈ Z. It then makes sense to reduce the equation modulo

a prime p and ask how many solutions E has modulo p:

Np = Np(E) = |E(Fp)|.

Suppose for the moment we replace E by a line L, given by a linear equation

L : y = ax+ b.

Then the number of solutions of L in the plane Fp
2 obviously equals p, to which

we add 1 for the point at infinity:

|L(Fp)| = p+ 1.

It turns out that p + 1 is in a natural sense the optimal number of points for a
curve of any genus (or degree). Skipping over quadric curves, we define an integer
ap = ap(E), for each prime p, by

Np(E) = p+ 1 − ap(E).
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2 THE SATO-TATE CONJECTURE: ANALYTIC ARGUMENTS

We only consider p for which E remains nonsingular modulo p, which is somewhat
weaker than the condition that ∆E 6= 0 (mod p). Such a p is called a prime of good
reduction. One can consider the beginning of arithmetic algebraic geometry to be
Hasse’s discovery that

|ap| ≤ 2
√
p

for any prime of good reduction.
In other words, p+ 1 is a good approximation to Np to square-root order. This

can be compared to the square-root good approximation to π(x), the number of
primes less than x:

π(x) =

∫ x

2

dx

logx
+ Error(x)

where the Riemann hypothesis is the assertion that

Error(x) = O(x
1

2 )

and indeed Hasse’s theorem was generalized by Weil to a version of the Riemann
hypothesis valid for all curves over finite fields.

The next question is whether anything can be said about the behavior of the
ap(E) as p varies. Is ap(E) more likely to be positive or negative? Is it more likely
to cluster around 0 or around ±2

√
p? The rough answer is that it is as random as

possible, but it is not immediately obvious how to make sense of this. We normalize
all the ap simultaneously to allow them to be compared:

anorm
p (E) =

1

2
√
p
ap(E) ∈ [−1, 1].

Thus there is a unique θp = θp(E) ∈ [0, π] such that anorm
p (E) = cos(θp). We ask

about the distribution of the anorm
p in [−1, 1], or equivalently of the θp ∈ [0, π]. Over

forty years ago, Sato and Tate independently formulated the following conjecture:

Sato-Tate Conjecture. Suppose E has no complex multiplication. Then the
anorm

p (E) (resp. the θp) are equidistributed in [−1, 1] (resp. [0, π]) with respect
to the probability measure

2

π

√

1 − t2dt ( resp.
2

π
sin2(θ)dθ ) .

Regarding the initial hypothesis most E have no complex multiplication. In
particular, if j(E) ∈ Q − Z, then j(E) has no complex multiplication. In this
setting the conjecture has recently been proved:

Theorem (L. Clozel, MH, N. Shepherd-Barron, R. Taylor). Suppose j(E)
is not an integer. Then the Sato-Tate Conjecture is valid for E.

2. Equidistribution

I reformulate the problem in terms of Galois representations. Let F+ be a totally
real field. Those who prefer can assume F+ = Q.

Let E be an elliptic curve over F+. To E we associate a 2-dimensional ℓ-adic
representation for any prime ℓ: let ρE,ℓ : Gal(Q/F+) → GL(2,Qℓ) denote the
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representation on H1(E
Q
,Qℓ), i.e. the dual of the ℓ-adic Tate module. Assume

F+ = Q for the time being. Then this representation encodes all information
about |E(Fp)| for almost all p, in the following sense. Remember that in the
previous section we mentioned primes of good reduction. Suppose p is a prime of
good reduction for E, and suppose also p 6= ℓ. Then we can recover ap(E) from

ρE,ℓ. Let Frobp ∈ Gal(Q/Q) be a Frobenius element for p. This is defined at the

beginning of a course in algebraic number theory. We know that Gal(Fp/Fp) is
generated by an element φp with the property that,

∀x ∈ Fp, φp(x) = xp.

For technical reasons, we let Frobp = φ−1
p . This is an element of Gal(Fp/Fp), but

if we extend the p-adic valuation on Q to a valuation v on Q, the decomposition
subgroup Γv ⊂ Gal(Q/Q) fixing v is isomorphic to Gal(Q̄p/Qp). Since E has good
reduction at p and p 6= ℓ, the representation ρE,ℓ is unramified at p, which means in
particular that it is trivial on the inertia subgroup Iv ⊂ Γv, hence factors through
Γv/Iv ≃ Gal(Fp/Fp). Thus we can define ρE,ℓ(Frobp). This depends on the choice
of extension v of the p-adic valuation, but any two extensions are conjugate by an
element of Gal(Q/Q). In particular, the characteristic polynomial

Pp,E(T ) = det(I − ρE,ℓ(Frobp)T ) ∈ Qℓ[T ]

depends only on p. However, it is well known that Pp,E(T ) has coefficients in Q

and is independent of ℓ 6= p. Thus the complex function Pp,E(p−s) is well defined
for all primes of good reduction. In fact, we know that

Pp,E(p−s) = 1 − ap(E)p−s + p1−2s.

Let
Lp(E, s) = Pp,E(p−

1

2
−s)−1 = 1 − anorm

p (E)p−s + p−2s.

The complex L-function of E is

L(s, E) =
∏

p

Lp(E, s),

where for primes of bad reduction one has another definition of Lp(E, s). With our
chosen normalization, this function converges absolutely for Re(s) > 1.

A general conjecture is that L(s, E) extends to an entire function and satisfies
a functional equation. This is known for F+ = Q (Wiles, Taylor et al.) and
meromorphic continuation is known for general totally real F+ (Taylor). One
proves that L(s, E) is an entire function, for F+ = Q, by proving that it is the
L-function of a modular form. For more general F+, one wants to prove that it
is the L-function of a cuspidal automorphic representation. This will be explained
next week. In that case one says that E is automorphic over F+.

Suppose it is known that E is automorphic: that there exists a cuspidal auto-
morphic representation ΠE of GL(2, F+), whatever that means, such that (up to
normalization) L(s,ΠE) = L(s, E) as Euler products. For n ≥ 1 let

ρn
E,ℓ = Symn−1ρE,ℓ : Gal(Q/F+) → GL(n,Qℓ).
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For almost all p, the elliptic curve E has good reduction at p, which means that
the local factor ΠE,p is unramified. Let αp, βp be the Satake parameters of ΠE,p

with unitary normalization. I will return to this next week, but one can express
these parameters explicitly in terms of the number of points modulo p:

ap = p
1

2 (αp + βp), αp · βp = 1.

The theorem of Hasse stated before has a meaning in terms of ΠE .

Hasse, Eichler-Shimura (“Ramanujan conjecture”).

|αp| = |βp| = 1.

Up to permutation we have αp = eiθp , βp = e−iθp , say, with 0 ≤ θp ≤ π. I restate
the Sato-Tate Conjecture:

Sato-Tate Conjecture. Assume E has no complex multiplication. Then the θp

are equidistributed in [0, π] with respect to the measure dST (θ) := 2
π sin

2θ dθ.

The Sato-Tate measure is the push-forward of the Haar measure on SU(2) to
a measure on the set of conjugacy classes in SU(2), which can be identified with
[0, π]. The conjecture makes sense for the automorphic representation ΠE , without
reference to elliptic curves, and also makes sense for modular forms of higher weight.

Let X = [0, π]. For any f ∈ C(X) and x > 0 define

S(f, x) =
∑

p≤x

f(θp).

The Sato-Tate conjecture asserts the following: for any continuous function f ∈
C(X), we have

(E) lim
x→∞

S(f, x)

S(1, x)
= lim

x→∞

∑

p≤x f(θp)
∑

p≤x 1
=

∫

X

f(θ)dST (θ).

Now the diagonal matrix diag(αp, βp) belongs to SU(2). There is an obvious map
φ : SU(2) → X identifying X with the space of conjugacy classes in SU(2), and
dST (θ) is the image with respect to φ of the Haar measure on SU(2) with total
mass 1. It suffices to prove (E) for f in an orthogonal basis of L2(X). Such an
orthogonal basis is given by the characters χn of the irreducible representations
Symn of SU(2). For f = χ0, which is the trivial representation, (E) is obvious.
For f = χn with n > 0, we have

∫

X

χn(θ)dST (θ) =

∫

X

χn(θ) · 1dST (θ) =< χn, χ0 >= 0

because the characters form an orthogonal basis.
In general

χn(θp) =
n

∑

j=0

αj
pβ

n−j
p .
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which is why it is convenient to use the Satake parameters of ΠE,p. So we need to
show

(2.1) lim
x→∞

∑

p≤x

χn(θp) = o(π(x)).

Now we use a standard argument from analytic number theory. Let

L∗(s, E, Symn) = L∗(s, ρn+1
E ),

normalized to be absolutely convergent for Re(s) > 1. In other words,

L∗(s, E, Symn) =
∏

p

L∗
p(s, ρ

n+1
E )

where for p /∈ S,

L∗
p(s, ρ

n+1
E ) =

n
∏

j=0

(1 − αj
pβ

n−j
p p−s)−1.

Comparing this with (1.1), we find

(2.2)

d

ds
log(L∗(s, E, Symn)) = −

∑

p

∑

m

χn(θm
p )log p

pms

= −
∑

p

χn(θp)log p

ps
+ ϕ(s)

where ϕ(s) is holomorphic for Re(s) > 1
2

and the first equality is only up to a
finite set of bad factors (irrelevant for the second equality).

With regard to the Sato-Tate conjecture, the main result of the articles [CHT],
[HST], and [T] is the following theorem

Theorem 2.3. For all n > 0, the function L∗(s, E, Symn) is meromorphic, and it
is holomorphic on Re(s) > 1 and continuous and non-vanishing up to Re(s) ≥ 1.

Thus for each n,

d

ds
log(L∗(s, E, Symn)) = L∗,′(s, E, Symn)/L∗(s, E, Symn)

is a quotient of meromorphic functions that are holomorphic and non-vanishing for
Re(s) ≥ 1.

Corollary.
∑

p
χn(θp)logp

ps has no pole for Re(s) ≥ 1.

The Wiener-Ikehara tauberian theorem states that ifD(s) =
∑

n
bn

ns is a Dirichlet
series convergent for Re(s) > 1 and non-singular except for a possible first-order
pole at s = 1, with residue α, then

∑

n<x

bn = α · x+ o(x).
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For the prime number theorem, this is applied with bn = p · log p if n = p is prime,
bn = 0 otherwise, to yield

∑

p<x

log p = ·x+ o(x).

Applying Abel summation, as explained below, this gives the usual estimate π(x) ∼
x/log x. In the present situation

∑

p≤x

χn(θp)log p = o(x).

Applying Abel summation to get rid of the logs, we find

S(χn, x) =
∑

p≤x

χn(θp) = o(x/logx)

and since
S(1, x) = S(χ0, x) =

∑

p≤x

1 = x/logx+ o(x/logx)

by the prime number theorem the ratio

lim
x→∞

S(χn, x)

S(1, x)
= 0

for all n > 1. This yields the estimate (2.1), and hence equidistribution.

Review of the Abel summation trick.

Proposition. Let bn, n = 2, 3, . . . be complex numbers such that

Ψ(x) =
∑

n≤x

bn = α · x+ o(x).

Then
Π(x) =

∑

n≤x

n

log n
= α · x/logx+ o(x/logx).

Proof. We may as well assume x = N is an integer. Since bn = Ψ(n) − Ψ(n − 1),
where we set Ψ(1) =, we have

Π(N) =
∑

n≤N

Ψ(n) − Ψ(n− 1)

log n
=

N
∑

n=2

Ψ(n)

log n
−

N−1
∑

n=1

Ψ(n)

log (n+ 1)

= Ψ(N)/log(N) +
N−1
∑

n=2

Ψ(n)

(

1

log (n)
− 1

log (n+ 1)

)

So it suffices to show that the sum in the second part is o( N
Log N

). Since Ψ(x) =

O(x), by hypothesis, we may replace Ψ(n) by Cn for some constant C. Moreover,

1

log (n)
− 1

log (n+ 1)
=

log(1 + 1
n )

log(n)log(n+ 1)
<

1/n

log(n)2
.
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Thus each term in the sum is bounded above by C
log(n)2

, and it suffices to show

N
∑

n=2

1

log(n)2
= o(N/log N).

We break this up as sum for

∑

2<n<
√

N

1

log(n)2
+

∑

√
N<n<N

1

log(n)2
,

where the first term is bounded above by
√
N/(log(2)2) and the second by N

log(
√

N)2
=

4N
log(N)2 . Each term is clearly o(N/log(N)), so we are done.

3. Artin L-functions and Brauer’s theorem

It is expected that L(s, ρn
E) is the L-function of a cuspidal automorphic repre-

sentation of GL(n,Q) for all n. I explain what this means in the next lecture.
Whatever it means, it would imply that L(s, ρn

E) is entire as well as non-vanishing
for Re(s) ≥ 1. We cannot prove this, but we can prove a weaker result that implies
Theorem 2.3. Here is a version of what we prove:

Theorem 3.1. For every n > 1, there is a totally real Galois extension Fn/Q
such that the L-function of ρn

E,Fn
= ρn

E |Gal(Q/Fn) is the L-function of a cuspidal

automorphic representation of GL(n, Fn).

Remark. Theorem 3.1 is not yet proved as such. In [HST] we only construct
automorphic representations for even n. An argument using Rankin-Selberg L-
functions suffices to prove that the L(s, ρn

E) for odd n still enjoy the expected
analytic properties up to Re(s) = 1, which is sufficient to imply Theorem 2.3. In
a more recent paper I have shown how to obtain automorphic representations for
odd n as well, assuming completion of ongoing work on the stable trace formula.
So I will not include the Rankin-Selberg argument in the notes, though it may be
mentioned during the course.

Theorem 3.1 comes with additional properties that will be mentioned in the
subsequent argument. To motivate this theorem, and to explain what it has to do
with Theorem 2.3, I will step back and recall the theory of Artin L-functions, which
are L-functions of complex representations of Gal(Q/F ), for any number field F .

Let

ρ : Gal(Q/F ) → GL(V ) ≃ GL(n,C)

be a continuous representation on an n-dimensional complex vector space V . Thus
the image of ρ is necessarily finite, hence factors through Gal(E/F ) for some finite
extension E of F ; in particular ρ is unramified outside the finite set of primes of F
that ramify in E. For any prime ideal v of F that is unramified in E, we can define
a (geometric) Frobenius element Frobv ∈ Gal(E/F ) as before. Again, Frobv is
only well defined up to conjugacy, but

Lv(s, ρ) = det(I − ρ(Frobv)Nv
−s)−1
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depends only on v. If v is ramified, we let Iv ⊂ Γv be the intertia group. Then
Γv/Iv acts on V Iv , and we define

Lv(s, ρ) = det(I − ρ(Frobv, V
Iv )Nv−s)−1;

L(s, ρ) =
∏

v

Lv(s, ρ).

This product converges absolutely for Re(s) > 1. Perhaps the most important
conjecture in algebraic number theory is

Artin Conjecture. If ρ is irreducible and non-trivial, then L(s, ρ) is entire and
satisfies a certain (explicit) functional equation.

One has known for some time that

Theorem. In any case, L(s, ρ) is meromorphic, satisfies the expected functional
equation, and is continous and non-vanishing for Re(s) ≥ 1.

This is essentially a consequence of Brauer’s theorem on characters. I need to
explain a few facts about Galois representations and their L-functions.

Semisimplification. The representations ρ and ρ′ have the same Jordan-Hölder
constituents, if and only if Tr(ρ) = Tr(ρ′), and the latter is true if and only if
L(s, ρ) = L(s, ρ′) as Euler products.

In particular, we can always replace ρ by its semisimplification (the direct sum
of its Jordan-Hölder constituents.

Additivity. L(s, ρ⊕ ρ′) = L(s, ρ)L(s, ρ′).

Inductivity. Let F ′/F be a finite extension, ρ′ a continuous representation of
Gal(Q/F ′), ρ = IndF ′/F ρ

′ the induced representation of Gal(Q/F ). Then

L(s, ρ′) = L(s, ρ).

If ρ is the trivial representation of Gal(Q/F ), then L(s, ρ) = ζF (s) is the
Dedekind ζ-function of F . More generally, if ρ is one-dimensional then it factors
through Gal(Q/F )ab.

Abelian L-functions. Suppose dim ρ = 1 and ρ is non-trivial. Then L(s, ρ) is
entire and satisfies the expected functional equation. Moreover, L(s, ρ) is continuous
and non-vanishing for Re(s) ≥ 1.

This is due to Hecke (Dirichlet when F = Q) and follows from class field theory.
In particular, in the inductivity situation, if ρ′ is abelian and non-trivial. then

L(s, IndF ′/F ρ
′) satisfies the Artin conjecture.

Brauer’s Theorem. Let H be a finite group and ρ : H → GL(n,C) be any finite-
dimensional representation. Then there are solvable subgroups Hi ⊂ H, characters
χi : Hi → C×, and integers ai such that

ρ ≡ ⊕iaiInd
H
Hi
χi.
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The decomposition above is not unique, and the integers ai are certainly not
assumed positive. Applied to ρ : H = Gal(E/F ) → GL(n,C), this and additivity
implies

L(s, ρ) =
∏

i

L(s, IndFi/Fχi)
ai ,

where Fi is the fixed field of Hi and χi is the character of Hi = Gal(E/Fi); and
again this is

∏

i

L(s, χi)
ai .

Since each of the L(s, χi) is entire and invertible for Re(s) ≥ 1, the product is
meromorphic and invertible for Re(s) ≥ 1. The functional equation also follows
from this product expression. We have not yet used that the Hi are solvable.

Now we return to the situation of an elliptic curve E/Q without complex mul-
tiplication, and assume Fn/Q is a finite Galois extension. Let 1 be the trivial
representation of H = Gal(Fn/Q). Brauer’s theorem applies to 1:

1 = ⊕aiInd
H
Hi
χi.

Let Li be the fixed field of Hi in Fn, ρn
E,Li

the restriction of ρn
E to Gal(Q/Li).

Now in general, if ρ is a representation of H, ρ′ a representation of the subgroup
H ′ ⊂ H, then it is easy to see that

(IndH
H′ρ′) ⊗ ρ = IndH

H′(ρ′ ⊗ResH
H′ρ),

where ResH
H′ρ is the restriction of ρ to H. It follows that

ρn
E = ⊕ai(Ind

H
Hi
χi) ⊗ ρn

E = ⊕aiInd
H
Hi
χi ⊗ ρn

E)

which implies

L(s, ρn
E) =

∏

L(s, ρn
E,Li

⊗ χi)
ai .

The following fact follows from a strengthened version of Arthur-Clozel base-change
for certain kinds of automorphic representations of totally real fields.

Theorem 3.2. Suppose Fn is totally real and Galois over Q, and ρn
E,Fn

is auto-

morphic (of a certain type to be made precise below). Then for any solvable subgroup
Hi ⊂ H with fixed field Li, and any character χi of Gal(Q/Li), L(s, ρn

E,Li
⊗ χi) is

entire, and is invertible for Re(s) ≥ 1.

Thus Theorems 3.1 and (the much older) 3.2 suffice to imply Theorem 2.3, and
hence the Sato-Tate conjecture.

4. Rate of convergence to the Sato-Tate
distribution (following Mazur)

Return to the elliptic curve E with which we started. The Sato-Tate conjecture
concerns the distribution of the error term ap(E) in the estimate of the number of
points on E modulo p. But the determination of the behavior of this error term
leads to a question about errors at the next level of approximation: how good
an approximation is the Sato-Tate distribution to the real distribution of errors?
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In other words, the theorem to be discussed in this course asserts that, for any
continuous function on [−1, 1],

lim
C→∞

[

∑

p≤C f(cos(θp))

π(C)
− 2

π

∫ 1

−1

f(t)
√

1 − t2dt] = 0.

This is just a reformulation of (E) from §2, with a change of variable (for a change).
Here π(c) is the number of primes ≤ C. In an article [M] to be published soon in
the Bulletin of the AMS, Mazur asks how the expression in the brackets depends
on x, and makes the following conjecture:

Conjecture 4.1. Let f(t) be a real-valued function on [−1, 1] of bounded variation.
Put

∆f (C) = |
∑

p≤C f(cos(θp))

π(C)
− 2

π

∫ 1

−1

f(t)
√

1 − t2dt|.

Then for every ǫ > 0 we have

Deltaf (C) < C− 1

2
+ǫ

for C >> 0.

He shows this is a consequence of a stronger conjecture due to Akiyama and
Tanigawa [AT].

Conjecture 4.2. Consider the class Φα of characteristic functions of intervals
[−1, α] ⊂ [−1, 1], and define

D(C) = Maxα∆(Φα)(C).

Then for every ǫ > 0 we have

D(C) < C− 1

2
+ǫ

for C >> 0.

Numerical evidence presented in [M] shows that Conjecture 4.1 is, if anything,
conservative, though it is hard on statistical grounds to justify a better bound than
a square-root error (real-life statistical error in random sampling).

The deduction of Conjecture 4.1 from 4.2 uses arguments already in [AT]. Con-
jecture 4.1 has the following very interesting consequence, pointed out in [AT]

Proposition 4.3 (in [AT] in the case n = 1, the general proof is iden-
tical). Let n > 0 be a positive integer. Suppose L∗(s, E, Symn) extends to an
entire function and satisfies the expected functional equation. Assume Conjecture
4.1 holds for the polynomial function χn. Then L∗(s, E, Symn) satisfies the gener-
alized Riemann hypothesis: i.e., all its zeroes lie on the line Re(s) = 1

2
.

The expected functional equation is established in [CHT], [HST], [T], but we
only prove meromorphic continuation to the left of Re(s) = 1. Note that the case
n = 0 is excluded, Conjecture 4.1 doesn’t seem to imply the original Riemann
hypothesis.
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Proof. Define a polynomial sn on [−1, 1] such that sn(cos(θ)) = χn(θ). Our hy-
pothesis is that

∆χn
(C) = |

∑

p≤C sn(cos(θp))

π(C)
− 2

π

∫ 1

−1

f(t)
√

1 − t2dt|.

Then for every ǫ > 0 we have

Deltaf (C) < C− 1

2
+ǫ

for C >> 0. On the other hand, the prime number theorem asserts that π(C) ≥
C1−δ for any positive δ for C >> 0. Moreover, the integral vanishes because n 6= 0.
So we obtain

(4.4) |
∑

p≤C sn(cos(θp))

π(C)
| < C

1

2
+ǫ

for C >> 0.
Now formula (2.2) is roughly equivalent (after some changes of variables) to

(4.5) log(L∗(s, E, Symn) =
∑

p

sn(cos(θp))p
−s + ψ(s)

where ψ(s) is holomorphic for Re(s) > 1
2 . Then GRH for L∗(s, E, Symn) follows

if we can show that log(L∗(s, E, Symn) has no poles to the left of the axis of
symmetry, i.e. that the first term on the right hand side of (4.5) is holomorphic for
Re(s) > 1

2
. So the Proposition follows from (4.4) and Lemma 4.6 below.

Lemma 4.6. If for any ǫ > 0,
∑

p sn(cos(θp)) is O(C
1

2
+ǫ), then

∑

p sn(cos(θp))p
−s

converges to yield a holomorphic function on Re(s) > 1
2 .

Proof. For k = 1, 2, . . . set ak = sn(cos θp) if k is prime, 0 otherwise. Thus our

Dirichlet series is
∑

k akk
−s and for any ǫ > 0 we have

∑

k≤N ak = O(N
1

2
+ǫ).

Partial summation as in §2 gives

∑

k<N

akk
−s =

∑

k<N

akN
−s −

∑

n<N

(
∑

k<n

ak)[(n+ 1)−s − n−s].

The first term on the right hand side is thus O(N
1

2
+ǫ−s) which, if Re(s) > 1

2 is
bounded independent of N for appropriate ǫ. But

[(n+ 1)−s − n−s] ≤ n−s−1

so the second term is bounded by a constant times

∑

n

n
1

2
+ǫ−s−1 = ζ(s+

1

2
− ǫ).

And this is also bounded independently of N if Re(s) > 1
2
− ǫ.
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