Framed deformations, following Kisin and Taylor

I repeat some of the definitions from the lecture on the local level-raising problem:
Let \mathcal{O} be an ℓ-adic integer ring with maximal ideal \mathfrak{m} and residue field k. We consider the category $\mathcal{C}_{\mathcal{O}}$, also called $\widehat{\mathcal{A R}}_{\mathcal{O}}$, of complete local \mathcal{O}-algebras A with residue field k (such that the structure map $\mathcal{O} \mapsto A$ induces the identity map on residue fields), and define the functor $F^{l o c}$ on $\mathcal{C}_{\mathcal{O}}$ defined by

$$
F^{l o c}(A)=\left\{r: \Gamma \rightarrow G L(n, A) \mid \Gamma=1 \quad\left(\bmod \mathfrak{m}_{A}\right)\right\}
$$

where \mathfrak{m}_{A} is the maximal ideal of A. Such an r is obviously trivial on the wild inertia group, since $q \neq \ell$, and factors through the quotient $\Gamma_{(\ell)}$ of Γ which fits into a two-step exact sequence:

$$
\begin{equation*}
1 \rightarrow I_{\ell} \xrightarrow{\sim} \mathbb{Z}_{\ell}(1) \rightarrow \Gamma_{(\ell)} \rightarrow G a l(\overline{\mathbb{F}} / \mathbb{F}) \xrightarrow{\sim} \hat{\mathbb{Z}} \rightarrow 1, \tag{0.1}
\end{equation*}
$$

where I_{ℓ} is the ℓ-adic part of tame inertia and $\hat{\mathbb{Z}}$ is topologically generated by geometric Frobenius $\operatorname{Frob}_{\mathbb{F}}$. In other words, if we choose a generator $T \in I_{\ell}$ then $F^{l o c}(A)$ is parametrized by the pairs of matrices

$$
\Sigma=r(T), \Phi=r\left(\text { Frob }_{\mathbb{F}}\right)
$$

satisfying the relation

$$
\begin{equation*}
\Phi \Sigma \Phi^{-1}=\Sigma^{q} \tag{0.2}
\end{equation*}
$$

and the relation

$$
\Sigma \equiv \Phi \equiv 1 \quad(\bmod \mathfrak{m})
$$

The functor $F^{l o c}$ is represented on $\mathcal{C}_{\mathcal{O}}$ by a ring $R^{l o c}$ in $\mathcal{C}_{\mathcal{O}}$.
We are interested in certain quotients of $R^{l o c}$. Let $\chi=\left(\chi_{1}, \ldots, \chi_{n}\right)$ be an n tuple of characters of Γ with values in $1+\mathfrak{m} \subset \mathcal{O}^{\times}$. Let R_{χ} be the maximal quotient of $R^{l o c}$ over which, for all $\sigma \in I_{\ell}$, the homomorphism r evaluated at σ has characteristic polynomial

$$
\begin{equation*}
P_{\chi, \sigma}(X)=\prod_{j=1}^{n}\left(X-\chi_{i}(\sigma)\right) \tag{0.3}
\end{equation*}
$$

It is equivalent to impose the characteristic polynomial condition on the generator T.

1. Galois-cohomological identification of cotangent space.

We now give ourselves our usual absolutely irreducible representation $\bar{\rho}: \Gamma_{F} \rightarrow G L(n, k)$ and the corresponding homomorphism

$$
\bar{r}: \Gamma_{F^{+}} \rightarrow \mathcal{G}_{n}(k) .
$$

We let R be a finite set of primes of F^{+}that split in F, such that for all $v \in R$, $q_{v}=|k(v)| \equiv 1(\bmod \ell)$. Let T_{v} be a chosen generator of $I_{\ell, v}$ for $v \in R$. We assume that, for all $v \in R$, the characteristic polynomial $P_{\chi, T}(X)$ satisfies (0.3) for some n-tuple $\chi_{v}=\left(\chi_{1, v}, \ldots, \chi_{n, v}\right)$. These are all primes of the sort considered in
the lecture on level-raising. A framed deformation (of type \mathcal{S}) of \bar{r} to a ring A in \mathcal{C}, of type χ, is a lifting

$$
\tilde{r}: \Gamma_{F^{+}} \rightarrow \mathcal{G}(A)
$$

with the usual hypotheses \mathcal{S} at S_{ℓ} (and $S_{\text {min }}$ and Q, if relevant), together with a local representation r_{v} of Γ_{v} of type χ_{v}, in the sense described above, and equalities (local framings)

$$
\left.\tilde{r}\right|_{\Gamma_{v}}=\alpha_{v} r_{v} \alpha_{v}^{-1},
$$

for all $v \in R$, all taken up to $1+\mathfrak{m}_{A} M(n, A)$-conjugacy. To be more precise, $\beta \in 1+\mathfrak{m}_{A} M(n, A)$ acts on a tuple ($\left.\tilde{r},\left\{r_{v}\right\},\left\{\alpha_{v}\right\}\right)$ by

$$
\beta\left(\tilde{r},\left\{r_{v}\right\},\left\{\alpha_{v}\right\}\right)=\left(\beta \tilde{r} \beta^{-1},\left\{r_{v}\right\}, \beta \alpha_{v}\right) .
$$

Ignoring the framing, there is a universal deformation of type χ (and \mathcal{S}) over a ring $R_{\chi, \mathcal{S}}^{u n i v}$. That the condition (0.3) defines a functor that satisfies the Schlessinger criteria comes from the fact that the characteristic polynomial is assumed to have roots not merely in A but in the image of \mathcal{O}^{\times}in A^{\times}. Thus the functor is relatively representable over the functor of deformations that are unrestricted at primes in v. In particular, if $A_{3}=A_{2} \times{ }_{A_{0}} A_{1}$ is the typical fiber product, and if we have a deformation over A_{3}, then it is of type χ over A_{3} if and only if its projections to A_{2} and A_{1} are of type χ, because the characteristic polynomials of T_{v} over A_{2} and A_{1} determine the characteristic polynomial over A_{3}.

There is also a universal framed deformation of \bar{r} of type χ over an object $R_{\chi, \mathcal{S}}^{\square}$ of \mathcal{C}. Once we have $R_{\chi, \mathcal{S}}^{u n i v}$, the framings at $v \in R$ are determined by additional data. Forgetting the framings defines a map $R_{\chi, \mathcal{S}}^{u n i v} \rightarrow R_{\chi, \mathcal{S}}^{\square}$

We drop the subscript \mathcal{S} for the remainder of this section.
On the other hand, let

$$
R_{\chi}^{l o c}=\widehat{\otimes}_{v \in R} R_{v, \chi}^{l o c}
$$

(denoted R_{R} in [T]):

$$
\mathcal{T}_{R}=\mathcal{O}\left[\left[X_{v, i, j} \mid v \in R, i, j=1, \ldots, n\right]\right]
$$

(matrix coefficients of liftings for each v to parametrize r_{v}). If $r^{u n i v}$ is the universal deformation of $\bar{\rho}$, choose a lifting that represents it (i.e. in its equivalence class). Such a choice of matrix coordinates gives rise to maps

$$
R_{\chi}^{l o c} \rightarrow R_{\chi, \mathcal{S}}^{\square} ; \mathcal{T}_{R} \rightarrow R_{\chi, \mathcal{S}}^{\square} .
$$

The former is defined by forgetting everything except the framing, the latter by setting $\alpha_{v}=I_{n}+\left(X_{v, i, j}\right)$ in the given matrix coordinates.

Lemma 1.1.

$$
R_{\chi, \mathcal{S}}^{u n i v} \hat{\otimes} \mathcal{T}_{R} \xrightarrow{\sim} R_{\chi, \mathcal{S}}^{\square} .
$$

Proof. If we choose a matrix representation $r^{u n i v}$, then given any collection $\alpha_{v} \in$ $1+\mathfrak{m}_{A} M(n, A)$ we can define $r_{v}=\alpha_{v}^{-1} r^{u n i v} \alpha_{v}$. The important point is that α_{v} and r_{v} determine each other uniquely, given $r^{u n i v}$, by the lemma below.

Lemma 1.2. The centralizer of $r^{u n i v}$ in $1+\mathfrak{m}_{A} M(n, A)$ is trivial.
Proof. The centralizer of $\rho^{u n i v}=\left.r^{u n i v}\right|_{\Gamma_{F}}$ is the group of scalar matrices, as we have already seen by successive approximation. and so the centralizer in $1+$ $\mathfrak{m}_{A} M(n, A)$ is the group of scalars $a \in 1+\mathfrak{m}_{A}$. But such a scalar a commutes with $c \in \Gamma_{F^{+}} \backslash \Gamma_{F}$ if and only if $a=a^{-1}$, hence $a=1$, since $\ell>2$.

Now we are in a position to calculate the embedding dimension of R_{χ}^{\square} as an $R_{\chi}^{l o c}$-algebra. We define $Z_{\mathcal{S}, \chi}^{1}$ and $Z_{\mathcal{S}, \chi}^{1}$ by the usual conditions for $v \in S, v \notin R$. For $v \in R$ we take $L_{v}=(0)$, meaning that deformations are assumed trivial at $v \in R$.
Lemma 1.3. R_{χ}^{\square} can be topologically generated over $R_{\chi}^{\text {loc }}$ by

$$
\operatorname{dim}_{k} H_{\mathcal{S}, \chi}^{1}\left(\Gamma_{F^{+}}, a d \bar{r}\right)+\sum_{v \in R} \operatorname{dim}_{k} H^{0}\left(\Gamma_{v}, a d \bar{r}\right)
$$

elements.
The proof in $[\mathrm{T}]$ is analogous to the usual calculations of

$$
\operatorname{dim} \mathfrak{m}_{R_{\chi, \mathcal{S}}^{\square}} /\left(\mathfrak{m}_{R_{\chi, \mathcal{S}}}^{2}+\mathfrak{m}_{R_{\chi}^{\text {loc }}} R_{\chi, \mathcal{S}}^{\square}\right),
$$

which are deformations over $k[\epsilon] /(\epsilon)^{2}$ with the R-data fixed (equal to $\left.\bar{r}\right|_{\Gamma_{v}}$ at v). I copy the argument from $[\mathrm{T}]$. The space $\left.\mathfrak{m}_{R_{\chi, \mathcal{S}}}^{\square} / \mathfrak{m}_{R_{\chi, \mathcal{S}}}^{2}+\mathfrak{m}_{R_{\chi}^{\text {loc }}} R_{\chi, \mathcal{S}}^{\square}\right)$ is dual to the set of equivalence classes of framed deformations

$$
\left.\left(\left(I_{n}+\varepsilon \phi\right) \bar{r},\left\{\left.\bar{r}\right|_{\Gamma_{v}}\right\},\left\{1+\varepsilon a_{v}\right)\right\}\right)
$$

of \bar{r} to $k[\varepsilon] /(\varepsilon)^{2}$ of type \mathcal{S}, χ, satisfying the compatibility (\square) of $\S 1$. As in the unframed calculation, we have $\phi \in Z_{\mathcal{S}, \chi}^{1}\left(\Gamma_{F^{+}}\right.$, ad $\left.\bar{r}\right)$, where the condition at $v \in R$ is guaranteed by the condition $r_{v}=\left.\bar{r}\right|_{\Gamma_{v}}$ is fixed. The number of generators is equal to the dimension over k of

$$
\left[\operatorname{ker}\left(Z_{\mathcal{S}, \chi}^{1}\left(\Gamma_{F^{+}}, \operatorname{ad} \bar{r}\right) \oplus \bigoplus_{v \in R} \operatorname{ad} \bar{r} \rightarrow \bigoplus_{v \in R} Z^{1}\left(\Gamma_{v}, \operatorname{ad} \bar{r}\right)\right)\right] / \operatorname{ad} \bar{r}
$$

Here the map sends

$$
\left(\phi,\left(a_{v}\right)\right) \mapsto\left(\left.\phi\right|_{\Gamma_{v}}-\partial a_{v}\right)
$$

and the fact that our class lies in the kernel is an expression of (\square). Note that for fixed ϕ, the dimension of the space of solutions to $\left.\phi\right|_{\Gamma_{v}}-\partial a_{v}=0$ is the same as for $\phi=0$, i.e. it equals $h^{0}\left(\Gamma_{v}\right.$, ad $\left.\bar{r}\right)$. Because the conjugation action is faithful (by lemma 1.2), the action of ad \bar{r}) is also faithful, hence the number of generators is just

$$
\operatorname{dim} Z_{\mathcal{S}, \chi}^{1}\left(\Gamma_{F^{+}}, \operatorname{ad} \bar{r}\right)+\sum_{v} h^{0}\left(\Gamma_{v}, \operatorname{ad} \bar{r}\right)-n^{2}
$$

which can be rewritten

$$
\left[\operatorname{dim} Z_{\mathcal{S}, \chi}^{1}\left(\Gamma_{F^{+}}, \text {ad } \bar{r}\right)-n^{2}\right]+\sum_{v} h^{0}\left(\Gamma_{v}, \operatorname{ad} \bar{r}\right)
$$

which (again because the action is faithful) equals

$$
\operatorname{dim}_{k} H_{\mathcal{S}, \chi}^{1}\left(\Gamma_{F^{+}}, \operatorname{ad} \bar{r}\right)+\sum_{v \in R} \operatorname{dim}_{k} H^{0}\left(\Gamma_{v}, \operatorname{ad} \bar{r}\right)
$$

Using the Riemann-Roch formula as in the unframed calculation (which may not yet have been presented), we find that

Lemma 1.4. R_{χ}^{\square} can be topologically generated over $R_{\chi}^{\text {loc }}$ by

$$
|Q|+\operatorname{dim}_{k} H_{\mathcal{S}^{*}, \chi}^{1}\left(\Gamma_{F^{+}}, a d \bar{r}^{*}\right)-\operatorname{dim}_{k} H^{0}\left(\Gamma_{F+}, a d \bar{r}^{*}\right)-n \sum_{v \in S_{\infty}} \frac{c_{v}+1}{2}
$$

elements.
Indeed, the term $\operatorname{dim}_{k} H^{0}\left(\Gamma_{F^{+}}\right.$, ad $\left.\bar{r}\right)$ vanishes by Lemma 1.2. On the other hand, for $v \in R \operatorname{dim} L_{v}=0$ and so $\chi_{\mathcal{S}, v}=-\operatorname{dim}_{k} H^{0}\left(\Gamma_{v}, \mathbf{A} \bar{r}\right)$, which exactly cancels the local terms in Lemma 1.3. Finally, the term $|Q|$ is a consequence of the calculation, yet to be presented, that $\chi_{\mathcal{S}, v}=1$ for $v \in Q$.

