FRAMED DEFORMATIONS, FOLLOWING KISIN AND TAYLOR

I repeat some of the definitions from the lecture on the local level-raising problem: Let \mathcal{O} be an ℓ -adic integer ring with maximal ideal \mathfrak{m} and residue field k. We consider the category $\mathcal{C}_{\mathcal{O}}$, also called $\widehat{\mathcal{AR}}_{\mathcal{O}}$, of complete local \mathcal{O} -algebras A with residue field k (such that the structure map $\mathcal{O} \mapsto A$ induces the identity map on residue fields), and define the functor F^{loc} on $\mathcal{C}_{\mathcal{O}}$ defined by

$$F^{loc}(A) = \{r : \Gamma \to GL(n, A) \mid \Gamma = 1 \pmod{\mathfrak{m}_A}\}$$

where \mathfrak{m}_A is the maximal ideal of A. Such an r is obviously trivial on the wild inertia group, since $q \neq \ell$, and factors through the quotient $\Gamma_{(\ell)}$ of Γ which fits into a two-step exact sequence:

$$(0.1) 1 \to I_{\ell} \xrightarrow{\sim} \mathbb{Z}_{\ell}(1) \to \Gamma_{(\ell)} \to Gal(\bar{\mathbb{F}}/\mathbb{F}) \xrightarrow{\sim} \hat{\mathbb{Z}} \to 1,$$

where I_{ℓ} is the ℓ -adic part of tame inertia and \mathbb{Z} is topologically generated by geometric Frobenius $Frob_{\mathbb{F}}$. In other words, if we choose a generator $T \in I_{\ell}$ then $F^{loc}(A)$ is parametrized by the pairs of matrices

$$\Sigma = r(T), \Phi = r(Frob_{\mathbb{F}})$$

satisfying the relation

(0.2) $\Phi \Sigma \Phi^{-1} = \Sigma^q.$

and the relation

$$\Sigma \equiv \Phi \equiv 1 \pmod{\mathfrak{m}}.$$

The functor F^{loc} is represented on $\mathcal{C}_{\mathcal{O}}$ by a ring R^{loc} in $\mathcal{C}_{\mathcal{O}}$.

We are interested in certain quotients of R^{loc} . Let $\chi = (\chi_1, \ldots, \chi_n)$ be an *n*-tuple of characters of Γ with values in $1 + \mathfrak{m} \subset \mathcal{O}^{\times}$. Let R_{χ} be the maximal quotient of R^{loc} over which, for all $\sigma \in I_{\ell}$, the homomorphism r evaluated at σ has characteristic polynomial

(0.3)
$$P_{\chi,\sigma}(X) = \prod_{j=1}^{n} (X - \chi_i(\sigma)).$$

It is equivalent to impose the characteristic polynomial condition on the generator T.

1. Galois-cohomological identification of cotangent space.

We now give ourselves our usual absolutely irreducible representation $\bar{\rho}: \Gamma_F \rightarrow GL(n,k)$ and the corresponding homomorphism

$$\bar{r}: \Gamma_{F^+} \to \mathcal{G}_n(k).$$

We let R be a finite set of primes of F^+ that split in F, such that for all $v \in R$, $q_v = |k(v)| \equiv 1 \pmod{\ell}$. Let T_v be a chosen generator of $I_{\ell,v}$ for $v \in R$. We assume that, for all $v \in R$, the characteristic polynomial $P_{\chi,T}(X)$ satisfies (0.3) for some *n*-tuple $\chi_v = (\chi_{1,v}, \ldots, \chi_{n,v})$. These are all primes of the sort considered in the lecture on level-raising. A framed deformation (of type S) of \bar{r} to a ring A in C, of type χ , is a lifting

$$\tilde{r}: \Gamma_{F^+} \to \mathcal{G}(A)$$

with the usual hypotheses S at S_{ℓ} (and S_{min} and Q, if relevant), together with a local representation r_v of Γ_v of type χ_v , in the sense described above, and equalities (local framings)

$$(\Box) \qquad \qquad \tilde{r} \quad |_{\Gamma_v} = \alpha_v r_v \alpha_v^{-1},$$

for all $v \in R$, all taken up to $1 + \mathfrak{m}_A M(n, A)$ -conjugacy. To be more precise, $\beta \in 1 + \mathfrak{m}_A M(n, A)$ acts on a tuple $(\tilde{r}, \{r_v\}, \{\alpha_v\})$ by

$$\beta(\tilde{r}, \{r_v\}, \{\alpha_v\}) = (\beta \tilde{r} \beta^{-1}, \{r_v\}, \beta \alpha_v).$$

Ignoring the framing, there is a universal deformation of type χ (and S) over a ring $R_{\chi,S}^{univ}$. That the condition (0.3) defines a functor that satisfies the Schlessinger criteria comes from the fact that the characteristic polynomial is assumed to have roots not merely in A but in the image of \mathcal{O}^{\times} in A^{\times} . Thus the functor is relatively representable over the functor of deformations that are unrestricted at primes in v. In particular, if $A_3 = A_2 \times_{A_0} A_1$ is the typical fiber product, and if we have a deformation over A_3 , then it is of type χ over A_3 if and only if its projections to A_2 and A_1 are of type χ , because the characteristic polynomials of T_v over A_2 and A_1 determine the characteristic polynomial over A_3 .

There is also a universal framed deformation of \bar{r} of type χ over an object $R_{\chi,S}^{\Box}$ of \mathcal{C} . Once we have $R_{\chi,S}^{univ}$, the framings at $v \in R$ are determined by additional data. Forgetting the framings defines a map $R_{\chi,S}^{univ} \to R_{\chi,S}^{\Box}$.

We drop the subscript \mathcal{S} for the remainder of this section.

On the other hand, let

$$R_{\chi}^{loc} = \widehat{\otimes}_{v \in R} R_{v,\chi}^{loc}$$

(denoted R_R in [T]):

$$\mathcal{T}_R = \mathcal{O}[[X_{v,i,j} \mid v \in R, i, j = 1, \dots, n]]$$

(matrix coefficients of liftings for each v to parametrize r_v). If r^{univ} is the universal deformation of $\overline{\rho}$, choose a lifting that represents it (i.e. in its equivalence class). Such a choice of matrix coordinates gives rise to maps

$$R^{loc}_{\chi} \to R^{\square}_{\chi,\mathcal{S}}; \ \mathcal{T}_R \to R^{\square}_{\chi,\mathcal{S}}.$$

The former is defined by forgetting everything except the framing, the latter by setting $\alpha_v = I_n + (X_{v,i,j})$ in the given matrix coordinates.

Lemma 1.1.

$$R^{univ}_{\chi,\mathcal{S}} \hat{\otimes} \mathcal{T}_R \xrightarrow{\sim} R^{\square}_{\chi,\mathcal{S}}.$$

Proof. If we choose a matrix representation r^{univ} , then given any collection $\alpha_v \in 1 + \mathfrak{m}_A M(n, A)$ we can define $r_v = \alpha_v^{-1} r^{univ} \alpha_v$. The important point is that α_v and r_v determine each other uniquely, given r^{univ} , by the lemma below.

Proof. The centralizer of $\rho^{univ} = r^{univ} |_{\Gamma_F}$ is the group of scalar matrices, as we have already seen by successive approximation. and so the centralizer in $1 + \mathfrak{m}_A M(n, A)$ is the group of scalars $a \in 1 + \mathfrak{m}_A$. But such a scalar *a* commutes with $c \in \Gamma_{F^+} \setminus \Gamma_F$ if and only if $a = a^{-1}$, hence a = 1, since $\ell > 2$.

Now we are in a position to calculate the embedding dimension of R_{χ}^{\Box} as an R_{χ}^{loc} -algebra. We define $Z_{\mathcal{S},\chi}^1$ and $Z_{\mathcal{S},\chi}^1$ by the usual conditions for $v \in S, v \notin R$. For $v \in R$ we take $L_v = (0)$, meaning that deformations are assumed trivial at $v \in R$.

Lemma 1.3. R_{χ}^{\Box} can be topologically generated over R_{χ}^{loc} by

$$\dim_k H^1_{\mathcal{S},\chi}(\Gamma_{F^+}, ad \ \bar{r}) + \sum_{v \in R} \dim_k H^0(\Gamma_v, ad \ \bar{r})$$

elements.

The proof in [T] is analogous to the usual calculations of

$$\dim \mathfrak{m}_{R^{\square}_{\chi,\mathcal{S}}}/(\mathfrak{m}^{2}_{R^{\square}_{\chi,\mathcal{S}}}+\mathfrak{m}_{R^{loc}_{\chi}}R^{\square}_{\chi,\mathcal{S}}),$$

which are deformations over $k[\epsilon]/(\epsilon)^2$ with the *R*-data fixed (equal to $\bar{r} \mid_{\Gamma_v}$ at v). I copy the argument from [T]. The space $\mathfrak{m}_{R_{\chi,S}^{\Box}}/(\mathfrak{m}_{R_{\chi,S}^{\Box}}^2 + \mathfrak{m}_{R_{\chi}^{loc}}R_{\chi,S}^{\Box})$ is dual to the set of equivalence classes of framed deformations

$$((I_n + \varepsilon \phi)\bar{r}, \{\bar{r} \mid_{\Gamma_v}\}, \{1 + \varepsilon a_v)\})$$

of \bar{r} to $k[\varepsilon]/(\varepsilon)^2$ of type S, χ , satisfying the compatibility (\Box) of §1. As in the unframed calculation, we have $\phi \in Z^1_{S,\chi}(\Gamma_{F^+}, \operatorname{ad} \bar{r})$, where the condition at $v \in R$ is guaranteed by the condition $r_v = \bar{r} \mid_{\Gamma_v}$ is fixed. The number of generators is equal to the dimension over k of

$$[\ker(Z^1_{\mathcal{S},\chi}(\Gamma_{F^+}, \mathrm{ad}\ \bar{r}) \oplus \bigoplus_{v \in R} \mathrm{ad}\ \bar{r} \to \bigoplus_{v \in R} Z^1(\Gamma_v, \mathrm{ad}\ \bar{r}))]/\mathrm{ad}\ \bar{r}.$$

Here the map sends

$$(\phi, (a_v)) \mapsto (\phi \mid_{\Gamma_v} -\partial a_v),$$

and the fact that our class lies in the kernel is an expression of (\Box). Note that for fixed ϕ , the dimension of the space of solutions to $\phi \mid_{\Gamma_v} -\partial a_v = 0$ is the same as for $\phi = 0$, i.e. it equals $h^0(\Gamma_v, \operatorname{ad} \bar{r})$. Because the conjugation action is faithful (by lemma 1.2), the action of ad \bar{r}) is also faithful, hence the number of generators is just

$$\dim Z^1_{\mathcal{S},\chi}(\Gamma_{F^+}, \mathrm{ad}\ \bar{r}) + \sum_v h^0(\Gamma_v, \mathrm{ad}\ \bar{r}) - n^2$$

which can be rewritten

$$[\dim Z^1_{\mathcal{S},\chi}(\Gamma_{F^+}, \mathrm{ad}\ \bar{r}) - n^2] + \sum_v h^0(\Gamma_v, \mathrm{ad}\ \bar{r})$$

which (again because the action is faithful) equals

$$\dim_k H^1_{\mathcal{S},\chi}(\Gamma_{F^+}, \mathrm{ad} \ \bar{r}) + \sum_{v \in R} \dim_k H^0(\Gamma_v, \mathrm{ad} \ \bar{r}).$$

Using the Riemann-Roch formula as in the unframed calculation (which may not yet have been presented), we find that

Lemma 1.4. R_{χ}^{\Box} can be topologically generated over R_{χ}^{loc} by

$$|Q| + \dim_k H^1_{\mathcal{S}^*, \chi}(\Gamma_{F^+}, ad \ \bar{r}^*) - \dim_k H^0(\Gamma_{F^+}, ad \ \bar{r}^*) - n \sum_{v \in S_{\infty}} \frac{c_v + 1}{2}$$

elements.

Indeed, the term $\dim_k H^0(\Gamma_{F^+}, \operatorname{ad} \bar{r})$ vanishes by Lemma 1.2. On the other hand, for $v \in R \dim L_v = 0$ and so $\chi_{\mathcal{S},v} = -\dim_k H^0(\Gamma_v, \mathbf{A}\bar{r})$, which exactly cancels the local terms in Lemma 1.3. Finally, the term |Q| is a consequence of the calculation, yet to be presented, that $\chi_{\mathcal{S},v} = 1$ for $v \in Q$.