
THE LOCAL LEVEL-RAISING PROBLEM

1. Moduli of certain pairs of matrices

When Mumford wrote an introduction to his approach to moduli via geometric
invariant theory in 1970 [MS], his first example to show the importance of his
stability criterion was the classification of endomorphisms of vector spaces; the
presence of unipotents implies that no coarse moduli space exists. For the same
reason, the functor of deformations of !-adic representations of ΓK := Gal(K̄/K),
where K is a q-adic field, q != !, is in general not representable. The worst case is
the one that arises in the problem of level raising. We consider an upper-triangular
representation

β : ΓK → GL(n,O); g #→

 χ1(g) ∗ . . . . . . ∗
0 χ2(g) . . . ∗
0 0 . . . . . . ∗
0 0 0 . . . χn(g)


for some !-adic integer ringO. The diagonal entries areO×-valued characters of ΓK ,
whose reductions modulo m are denoted χ̄i, i = 1, . . . , n. N.B.: The deformation
problem we consider imposes a restriction only on the inertial representation β |IK .

We will be assuming K = F+
v , for some v ∈ R, so in particular (3.4.3) implies

(1.1) q = qv := Nv ≡ 1 (mod !).

We call (1.1) plus the running assumption ! > n, the classical limit mod !. After
a finite cyclic extension – which makes no difference to the modularity problem, by
Proposition 1. 9 – we can assume

(1.2) χ̄i = 1, 1, . . . , n;

this is the degenerate case. By hypothesis β is tamely ramified, and hence is
determined up to isomorphism by an upper-triangular representation βI of the
tame inertia group Itame

K and an upper-triangular invertible Frobenius element
Φ = β(FrobK), satisfying

ΦβI(x)Φ−1 = βI(xq),∀x ∈ Itame
K

Again, one can assume (after a finite solvable extension) that tame inertia is purely
!-adic, and letting x0 ∈ Itame

K denote a generator of !-adic tame inertia, Σ = βI(x0),
the above equality becomes

(1.3) ΦΣΦ−1 = Σq.
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We are thus led to consider the moduli space of pairs of matrices (Φ,Σ) satisfying
(1.3). More precisely, for any monic polynomial P ∈ O[X] of degree n, we let
M(P, q) be the affine scheme over O representing pairs (Φ,Σ) as above, with Φ
invertible, such that Σ has characteristic polynomial P . Note that (1.3) implies
that, if M(P, q) is non-empty, P is invariant under the q − th power operation
applied to its roots. The following lemma is clear:

Lemma 1.4. Suppose q ≡ 1 (mod !) and P =
∏n

i=1(X − ζi), where the ζi are
distinct !th roots of unity in O. Then

• M(P, q) )M(P, 1)
• M(P, q)× Spec(k) ∼−→M((X − 1)n, q)× Spec(k).

Proof. Note that P divides X! − 1, which in turn divides Xq −X. Thus Σq = Σ,
hence ΦΣΦ−1 = Σq if and only if ΦΣ = ΣΦ. The second part is obvious.

Note that M(P, 1) just parametrizes pairs of commuting matrices, one of which
has fixed characteristic polynomial. The moduli problem makes sense over (µn

! )Z
but only becomes interesting over Spec(Z!), where µ! becomes connected over the
closed point. The observation behind [T] is that the most degenerate case P =
(X−1)n deforms to the least degenerate case P =

∏n
i=1(X−ζi) with all ζi distinct.

The affine algebra of M(P, q) is the ring of local liftings at v ∈ R used in Kisin’s
version of the Taylor-Wiles method. To describe its geometric properties, we relate
it to a Lie algebra variant. Let N (q) denote the moduli space of pairs of matrices
(Φ, N), with Φ invertible, N nilpotent (characteristic polynomial Xn) and

(1.5.) ΦNΦ−1 = qN

Lemma 1.6. Assume ! > n. Then
(i) N (q)red is a union of reduced irreducible components parametrized by nilpo-

tent conjugacy classes in Lie(GL(n)); i.e. by partitions of n (Jordan block decom-
position).

(ii) Each reduced irreducible component Z of N (q) is equidimensional of dimen-
sion n2 + 1, Zk is irreducible of dimension n2 and generically reduced, and each
irreducible component of N (q)× Spec(k) is contained in a unique irreducible com-
ponent of N (q) which is not purely of characteristic !.

(iii) The logarithm and exponential (applied to Σ) identify

M((X − 1)n, q)red ∼−→N (q)red.

In particular, the reduced irreducible components of M((X − 1)n, q)red have the
properties (ii).

At the other extreme:

Lemma 1.7. Let P =
∏n

i=1(X − ζi) with all ζi distinct. Then M(P, 1) × K is
smooth and irreducible of dimension n2, whereas M(P, 1) × k

∼−→N (1) × k, and
hence has components indexed by partitions of n as in the previous lemma.

Moreover, the completion of the affine ring of M(P, 1) at the closed point of the
special fiber corresponding to Σ = 1 and Φ = 1 has a unique minimal prime.

In the second statement we just send Σ to Σ− 1, which is why there is no need
to consider reduced components.
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The ζi are the eigenvalues of β(x0). We can identify Syl!(k×v ) (!-Sylow subgroup)
with the subgroup of Gal(Kab/K) generated by x0, and so we define χi to be the
character of k×v of !-power order whose image on x0 is ζi. We let

Rloc
v,χ

be the affine O-algebra of M(Pχ, 1), where Pχ =
∏n

i=1(X − ζi) as above. Thus χ
and ζ are alternative notation for the same thing; we have already seen χ in the
discussion of R in §3 in connection with Hecke algebras. The notation Rloc will be
explained in the global discussion.

Complete proofs of these lemmas are somewhat delicate, because they concern
functors on general O-algebras, but the proofs on closed points over fields are quite
clear.

Nilpotent conjugacy classes. Let Pn be the set of unordered partitions of n. It is
standard (Jordan normal form) that the conjugacy classes of nilpotent matrices in
Lie(GL(n)) are in bijection with Pn. The set Pn is partially ordered by refinement:
a partition (ν1, . . . , νr) refines (n1, . . . , ns) if each ni is a sum of some νj . Let Niln
be the variety of nilpotent matrices over an algebraically closed field, say L, and
for any σ ∈ Pn let Niln(σ) be the reduced closed subscheme of nilpotent matrices
whose blocks are a partition refining σ; let

Niln(σ)0 = Niln(σ) \ ∪σ′>σNiln(σ′).

For each σ let N(σ) ∈ Niln(σ) be the standard upper triangular matrix in
Jordan normal form. Let Flag(σ) be the moduli space of flags in the free rank n
module Mn of type σ, meaning the dimensions di(σ) are the same as those of the
kernels of successive powers of N(σ). For example, if n = 4, σ = (2, 1, 1), then
the corresponding flag is of type (0, 3, 4). Let F (σ) be the standard flag of type
σ. There is a universal flag over Flag(σ)0 that (locally in the Zariski topology) is
conjugate by a section of GL(n) to F (σ). Now let NilFn (σ) be the moduli space
of pairs (F,N) where F = (F0 ⊂ F1 ⊂ · · · ⊂ Mn) is a flag of type σ and N is
a nilpotent endomorphism such that N(Fi) ⊂ Fi−1. Let NilFn (σ)0 ⊂ NilFn (σ) be
the open subset of maximal rank, i.e. where N(Fj+1/Fj) is a direct summand of
Fj/Fj−1 for all j. There are natural maps

NilFn (σ)0 ↪→ NilFn (σ) → Flag(σ)

where the second map takes (F,N) to F . Locally on the Zariski topology on
Flag(σ) this second map has a section (take a local section conjugating a given flag
to the standard flag). Hence locally on Flag(σ) there are isomorphisms

NilFn (σ) ) Flag(σ)×Q(σ); NilFn (σ)0 ) Flag(σ)×Q0(σ),

where Q(σ) ⊂ M(n) is the (standard) set of n×n matrices taking F (σ)i to F (σ)i−1

for all i and Q0(σ) is the open subset of Q(σ) of maximal rank.
In this way we can calculate dim NilFn (σ) = dim Flag(σ) + dim Q0(σ). Now

dim Flag(σ) = dim GL(n) − dim P (σ) = dim(GL(n))−dim L(σ)
2 where P (σ) is the

stabilizer of F (σ) and L(σ) is its Levi subgroup.
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Exercise in notation.

dim L(σ) =
∑

i

[di(σ)− di−1(σ)]2;

dim Q0(σ) = dim Q(σ) = dim P (σ)− dim L(σ).

Hence NilFn (σ)0 (resp.NilFn (σ)) is smooth and connected (resp. integral and con-
nected) of relative dimension

dim GL(n)− dim L(σ) = n2 −
∑

i

[di(σ)− di−1(σ)]2.

On the other hand, there is a forgetful map NilFn (σ) → Niln (forget F ). One
can show (using the valuative criterion) that this map is proper, so its image Z(σ)
is integral and connected. Let Z0(σ) ⊂ Z(σ) be the open dense subset where kerN j

is locally free of rank dj(σ) for all j. Over Z0(σ) the filtration F is thus unique,
hence the forgetful map

NilFn (σ)0 → Z0(σ)

is an isomorphism, i.e. dim Z0(σ) = n2 − ∑
i[di(σ) − di−1(σ)]2. But over L, the

map
GL(n)/ZGL(n)(N(σ)) → Z0(σ)

is a bijection on matrices. This shows that

dim ZGL(n)(N(σ)) =
∑

i

[di(σ)− di−1(σ)]2 = dim L(σ).

With these preliminaries out of the way, we can sketch the proofs of the lemmas.

Sketch of proof of 1.6, following Taylor. Let Poln be the affine space of monic
polynomials of degree n. For each σ = (n1, . . . , nr), let Poln(q, σ) ⊂ Poln be the
reduced closed subscheme corresponding to the set of polynomials whose roots can
be partitioned into r sub multisets of the form {α, qα, . . . , qnj−1α}. There are maps

n : N (q) → Niln

(forget Φ) and
π : N (q) → Poln

((Φ, N) goes to the characteristic polynomial of Φ). For each σ, let

N (q, σ)0 = n−1(Z0(σ)),

and let N (q, σ) be the reduced subscheme of the closure of N (q, σ)0 in N (q). Let
N (q, σ)′ be the reduced subscheme of n−1(Z(σ)) ∩ π−1(Poln(q, σ)); thus

N (q, σ)′ ⊃ N (q, σ) ⊃ N (q, σ)0,red.

For any σ as above and any r-tuple a = (a1, . . . , ar), we construct an element
Φ(σ, a, q) such that

(*.) (Φ(σ, a, q), N(σ)) ∈ N (q, σ)
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as the explicit diagonal matrix

diag(a1q
n1−1, a1q

n1−2, . . . , a1; a2q
n2−1, . . . , a2; . . . ; arq

nr−1, . . . , ar).

One verifies (*) by explicit calculation. Moreover, if (Φ, N(σ)) ∈ N (q, σ) is any
element then it is clear that

(**) Φ = Φ(σ, q) · z for some z ∈ ZGL(n)(N(σ)

where Φ(σ, q) = Φ(σ, (1, . . . , 1), q).
Now locally in the Zariski topology, the map

N (q, σ)0 → Z0(σ)

splits as a map
Z0(σ)× ZGL(n)(N(σ) → Z0(σ).

Indeed, on an open subset U the universal N over Z0(σ) is of the form gN(σ)g−1;
then by (**) the preimage of U in N (q, σ)0 is just

U × gΦ(σ, q)ZGL(n)(N(σ))g−1.

Thus N (q, σ) is a smooth variety over L of dimension

dim Z0(σ) + dim ZGL(n)(N(σ)) = [n2 − dim L(σ)] + dim L(σ)] = n2.

Over O it is an integral scheme of dimension n2 + 1.
It remains to show that there are no other irreducible components. For this

we choose sufficiently general a; it suffices to assume aiqj != ai′qj′
for i != i′ and

0 ≤ j ≤ ni, 0 ≤ j′ ≤ ni′ . Then calculating the characteristic polynomial of
Φ(σ, a, q), we find that (Φ(σ, a, q), N(σ)) /∈ N (q, σ′)′ if σ′ != σ. In particular,

(Φ(σ, a, q), N(σ)) ∈ N (q, σ) \
⋃

σ′ %=σ

N (q, σ).

It follows that the N (q, σ)red exhaust the reduced irreducible components of N (q).
Moreover, the final assertion of 1.6 (ii) follows because the construction is indepen-
dent of characteristic.

Finally, 1.6 (iii) is obviously true over a field of characteristic 0 or ! > n, where
the logarithm and exponential maps are well defined, and that will be enough for
us.

Proof of 1.7 (sketch).
I will be more brief. Recall that M(P, q) = M(P, 1) when the roots are distinct

and q ≡ 1 (mod !), so we are only concerned with the case q = 1. Let λ be the
maximal ideal ofO and let α ∈ (1+λ)n be any n-tuple of distinct elements ofO×; let
d(α) be the corresponding diagonal matrix and Pα its characteristic polynomial.
Let Tn be the group of invertible diagonal matrices and Flag(n) the total flag
variety (non-canonically isomorphic to GL(n)/B where B is a Borel subgroup).
Let 0 = F0 ⊂ F1 ⊂ . . . Fn = Ln be the standard flag. Let MFlag(α) be the
incidence space of triples ({Fi},Φ,Σ) where {Fi} ∈ Flag(n), (Φ,Σ) ∈ M(Pα, 1),
both Φ and Σ preserve each Fi, and Σ acts by αj on Fj/Fj−1.
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Lemma. The maps

GL(n)/Tn × Tn →MFlag(α) →M(Pα, 1)

where the first map takes (gTn, t) to {gFj}, gtg−1, gd(α)g−1) and the second map
forgets the filtration, are isomorphisms over the field L of characteristic zero.

In particular, the generic fiber of M(Pα, 1) is smooth and connected of dimension
n2.

This is an easy matrix calculation – in particular, note that the flag is uniquely
determined by the distinct eigenvalues in characteristic zero – and completes the
first part of the proof of Lemma 1.7. The second part is more technical and I refer
you to [T] for the proof (dispersed among Lemmas 1.4 (7), 1.5, and 1.6).

2. Local lifting rings in the degenerate classical limit

The previous section concerned moduli spaces of matrices of certain forms. These
are not the same as local deformation rings; in particular, they are not !-adically
complete. The process of completion can potentially disturb the properties estab-
lished in the previous section; for example, the completion of the localization at !
of the ring of integers of a number field in general is semilocal rather than local.
The present subsection defines the local deformation rings and states the analogues
of the theorems of the previous section without proof.

Let q != ! be a prime and F a q-adic field with residue field F, Γ = Gal(F̄ /F ).
As in §1, we assume q ≡ 1 (mod !) and ! > n. Let O be an !-adic integer ring
with maximal ideal m and residue field k. We consider the category CO, also called
ÂRO, of complete local O-algebras A with residue field k (such that the structure
map O #→ A induces the identity map on residue fields), and define the functor F loc

on CO defined by

F loc(A) = {r : Γ → GL(n, A) | Γ = 1 (mod mA)}

where mA is the maximal ideal of A. Such an r is obviously trivial on the wild
inertia group, since q != !, and factors through the quotient Γ(!) of Γ which fits into
a two-step exact sequence:

(2.1) 1 → I!
∼−→Z!(1) → Γ(!) → Gal(F̄/F) ∼−→Ẑ → 1,

where I! is the !-adic part of tame inertia and Ẑ is topologically generated by
geometric Frobenius FrobF. In other words, if we choose a generator T ∈ I! then
F loc(A) is parametrized by the pairs of matrices

Σ = r(T ),Φ = r(FrobF)

satisfying relation (1.3) and the relation

Σ ≡ Φ ≡ 1 (mod m).

However, F loc is represented on CO by a ring Rloc in CO and the rings considered
in §1 are not complete.
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We are interested in certain quotients of Rloc. Let χ = (χ1, . . . ,χn) be an n-
tuple of characters of Γ with values in 1 + m ⊂ O×. Let Rχ be the maximal
quotient of Rloc over which, for all σ ∈ I!, the homomorphism r evaluated at σ has
characteristic polynomial

(2.2) Pχ,σ(X) =
n∏

j=1

(X − χi(σ)).

It is equivalent to impose the characteristic polynomial condition on the generator
T .

Lemma 2.3. Suppose the χi are distinct characters of order !, in other words, that
χi(T ) are distinct !th roots of unity in O×. Then Rχ has a unique minimal prime
ideal and this prime does not contain m. Moreover, Rχ has dimension n2 + 1 (the
generic fiber has dimension n2).

Lemma 2.4. Suppose χi = 1 for all i. Then Rχ = R1 is equidimensional of
dimension n2 + 1 and no minimal prime contains m. Moreover, every minimal
prime is contained in a prime which is minimal over m ·R1, and every prime which
is minimal over m ·R1 contains a unique minimal prime.

Here a prime of R1 is “minimal over m ·R1” if it is the inverse image of a minimal
prime in the reduction modulo m ·R1.

The ring R1 is the formal completion at m · R1 of the ring denoted M((X −
1)n, q) in §1; likewise, Rχ is the formal completion of M(Pχ,T , q) ) M(Pχ,T , q)
in the notation of where P = Pχ,T is the polynomial (2.2). The two lemmas are
derived from the corresponding properties of moduli spaces (Lemma 1.7 and Lemma
1.6, respectively) by general arguments about completions in commutative algebra,
namely Lemmas 1.6 and 1.7 of [T].


