Level raising and modularity in general, following Taylor

1. Review of notation.

We refer to the notes "frameddeformations," "localclassicallimit", "patching," and "Hecke+TW" (reproduced in part below) for the notation. We assume \bar{r} is the reduction of the homomorphism $r: \Gamma_{F^{+}} \rightarrow \mathcal{G}_{n}(\mathcal{O})$ whose modularity we wish to prove. We assume \bar{r}, or rather its restriction $\bar{\rho}$ to Γ_{F}, is of the form $\bar{\rho}_{\Pi, \ell}$ for some cuspidal automorphic representation Π of $G L(n, F)$ satisfying the usual hypotheses, and so we need to show that all reasonable liftings of \bar{r} are automorphic. (The problem of showing that the representation of interest is residually modular is independent and depends on the potential modularity techniques discussed separately.) We have chosen a set S which in the applications is just $S_{\infty} \cup S_{\ell}$ (possibly including the extra prime S_{1} and an indeterminate set $S_{\min }$ that have no effect on the dimension count) including all primes at which our original automorphic representation Π has minimal-type ramification, as well as primes dividing ℓ. To S we add the Taylor-Wiles primes Q_{N} whose contribution to the dimension count was determined in previous lectures. Finally, we add the set R of primes where either the lifting r is ramified or where the ramification of \bar{r} is not of minimal type. All finite primes in S are assumed split in F / F^{+}. At a prime $v \in R$ we require the ramification to be of type $\chi_{v}=\left\{\chi_{1, v}, \ldots, \chi_{n, v}\right\}$, where each $\chi_{i, v}$ is a tame character of $k(v)^{\times}$ (more precisely $k(\tilde{v})^{\times}$for some lift \tilde{v} of v to F) with values in μ_{ℓ}. The two extreme situations considered in "localclassicallimit" are where the χ_{i} are all distinct and non-trivial and where all the $\chi_{i}=1$. In the former case the local lifting ring $R_{\chi}^{\text {loc }}$ is smooth and irreducible in characteristic zero; in the latter case, the irreducible components in characteristic zero and in characteristic ℓ are in one-to-one correspondence. The quotient $R_{\chi}^{\text {loc }} / m_{\mathcal{O}}$ is independent of χ. The deformation problem of interest is denoted $\mathcal{S}\left(Q_{N}\right)$ and includes all the conditions discussed previously.

As in "frameddeformations" we introduce a power series ring \mathcal{T}_{R} over \mathcal{O} in $|R| \cdot n^{2}$ variables, representing the matrix entries of local liftings at $v \in R$. We have the following functorialities:

$$
\begin{equation*}
R_{\chi}^{l o c} \rightarrow R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square} ;, \mathcal{T}_{R} \rightarrow R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square} ; R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{u n i v} \hat{\otimes} \mathcal{T}_{R} \xrightarrow{\sim} R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square} \tag{1.1}
\end{equation*}
$$

where the first map and the first coordinate of the third map are canonical and the remaining maps depend on a choice of matrix lifting representing the universal deformation $r^{u n i v}$.

Note that we have dropped the index \bar{r}_{Π} from the universal deformation ring, for lack of space. As in "Hecke+TW" we still have a surjective map

$$
\begin{equation*}
R_{\chi, \mathcal{S}, Q_{N}}^{u n i v} \rightarrow \mathbb{T}_{\chi, \mathcal{S}, Q_{N}} \tag{1.2}
\end{equation*}
$$

A word about the Hecke algebra here. We need to specify level subgroups U_{v} for $v \in R$. Let I_{v} (denoted $I w_{v}$ in [CHT,T] be the Iwahori subgroup of integral matrices whose reduction modulo \tilde{v} is upper-triangular. Let q_{v} be the order of the residue field $k(v)$, a power of the prime p_{v}. We let $U_{v}=I(1)_{v} \subset I_{v}$ be the p_{v}-Sylow
subgroup, the matrices whose reduction modulo \tilde{v} is upper-triangular unipotent; mapping to the diagonal entries thus identifies

$$
\begin{equation*}
I_{v} / I(1)_{v} \xrightarrow{\sim}\left(k(v)^{\times}\right)^{n} \tag{1.3}
\end{equation*}
$$

Our hypothesis is that $q_{v}=|k(v)| \equiv 1(\bmod \ell)$ for any $v \in R$. The Hecke algebra $\mathbb{T}_{\chi, \mathcal{S}, Q_{N}}$ is an appropriate localization (for \bar{r}_{Π}) of a module of of automorphic forms on the totally definite unitary group G_{0} of level $U_{1, v}$ for $v \in Q_{N}$; for $v \in R$ we assume these forms are of level $I(1)_{v}$ and of character χ_{v} for $I_{v} / I(1)_{v}$. The localized module of automorphic forms is denoted $H_{\chi, N}$.

Remark 1.4. It is simplest in practice to incorporate all primes ramified for Π in R (the primes dividing ℓ are not ramified for Π, by hypothesis). We need the primes to satisfy two hypotheses: $\Pi_{v}^{I(1)_{v}} \neq(0)$ and $|k(v)| \equiv 1(\bmod \ell)$. The latter hypothesis can be guaranteed by replacing F^{+}by an appopriate cyclic extension unramified at v; the former hypothesis can be guaranteed by passage to an appropriate solvable extension of F^{+}. Our applications are indifferent to this sort of base change.

We have a good formula for the dimension of the cotangent space of $R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square}$ relative to $R_{\chi}^{l o c}$:

Lemma 1.5. $R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square}$ can be topologically generated over $R_{\chi}^{\text {loc }}$ by

$$
\left|Q_{N}\right|-\varepsilon_{\infty}=r-\varepsilon_{\infty}
$$

elements.

This is just Lemma 1.4 of "frameddeformations", where we have chosen Q_{N} as in "Hecke+TW" to eliminate the group $H_{\mathcal{S}\left(Q_{N}\right)^{*}, \chi}^{1}\left(\Gamma_{F+}, a d \bar{r}(1)\right)$ and where the remaining global term $H^{0}\left(\Gamma_{F^{+}}, a d \bar{r}(1)\right)$ vanishes by hypothesis. However, this in itself does not help us compare R with \mathbb{T}, because \mathbb{T} is not an algebra over $R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square}$. For this we make another ad hoc construction, following Taylor (and Kisin). Let

$$
\begin{align*}
H_{\chi, N}^{\square} & =R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square} \hat{\otimes}_{R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{u n i v}} H_{\chi, N} \tag{1.6}\\
& \xrightarrow{\sim} \mathcal{T}_{R} \hat{\otimes}_{\mathcal{O}} H_{\chi, N}
\end{align*}
$$

Here $H_{\chi, N}$ is the localized module of automorphic forms on G_{0} defined above, and the second isomorphism follows from (1.1).

Now we are ready to apply the Taylor-Wiles patching argument, in the version of Diamond-Fujiwara, but with a new ingredient. Instead of the algebra $A=$ $\mathcal{O}\left[\left[S_{1}, \ldots, S_{r}\right]\right]$ which maps on $R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{u n i v}$ by means of the diamond operators, we add new variables and construct an algebra

$$
\begin{equation*}
S_{\infty}=\mathcal{T}_{R}\left[\left[S_{1}, \ldots, S_{r}\right]\right]=\mathcal{T}_{R} \hat{\otimes}_{\mathcal{O}} A \tag{1.7}
\end{equation*}
$$

This maps to $R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square}$ via (1.1) and the map $A \rightarrow R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{u n i v}$ just recalled.
Recall the open ideal $J_{N} \subset A$, the kernel of the map $A \rightarrow \mathcal{O}\left[\Delta_{Q_{N}}\right]$. Let $\mathfrak{m}_{\mathcal{T}_{R}}$ be the kernel of the augmentation map $\mathcal{T}_{R} \rightarrow \mathcal{O}$ sending the variables $X_{v, i, j}$ to 0 . As in the minimal case, $H_{\chi, N}$ is finite free over A / J_{N}, which implies the first part of

Lemma 1.8.

(a) $H_{\chi, N}^{\square}$ is finite free over $S_{\infty} / J_{N} S_{\infty}$.
(b) We have an isomorphism

$$
R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square} /\left(\mathfrak{m}_{\mathcal{T}_{R}}+J_{0}\right) R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square} \xrightarrow{\sim} R_{\chi, \emptyset}^{u n i v}
$$

(c) $H_{\chi, N}^{\square} /\left(\mathfrak{m}_{\mathcal{T}_{R}}+J_{0}\right) H_{\chi, N}^{\square}$ is isomorphic as $R_{\chi, \emptyset}^{u n i v}$-modules to $H_{\chi, \emptyset}$.

Proof. For (b), we use the isomorphism (1.1), so that

$$
R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square} /\left(\mathfrak{m}_{\mathcal{T}_{R}}+J_{0}\right) R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square} \xrightarrow{\sim} R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{u n i v} / J_{0} R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{u n i v} \hat{\otimes} \mathcal{T}_{R} / \mathfrak{m}_{\mathcal{T}_{R}} \xrightarrow{\sim} R_{\chi, \emptyset}^{u n i v}
$$

as in the minimal case. The assertion (c) is a combination of two points: On the one hand,

$$
H_{\chi, N}^{\square} /\left(\mathfrak{m}_{\mathcal{T}_{R}}\right) H_{\chi, N}^{\square} \xrightarrow{\sim} H_{\chi, N}
$$

by the second line of (1.6). On the other hand, $H_{\chi, N} / J_{0} H_{\chi, N}$ is just $H_{\chi, \emptyset}$ as in the minimal Taylor-Wiles argument (using the subtleties of the Taylor-Wiles primes to establish Diamond's point (c).

Now consider first the case of $\left\{\chi_{v}\right\}$ generic. Diamond's patching argument does not go over to this situation directly, because it is based on patching modulo ℓ, and even in the generic case $R^{l o c}$ is singular and highly reducible modulo ℓ. Taylor introduces a new patching argument purely in characteristic zero. To avoid obscuring the main point we assume the archimedean error term $\varepsilon_{\infty}=0$. Let $B=\mathcal{O}\left[\left[X_{1}, \ldots, X_{r}\right]\right]$ as in "patching." This is the algebra that maps onto $R_{\chi, \mathcal{S}_{Q_{N}}}^{u n i v}$ by the Riemann-Roch calculation in the minimal case. Correspondingly, if we let $B_{\chi}^{\square}=R_{\chi}^{l o c} \hat{\otimes}_{\mathcal{O}} B$, then Lemma 1.5 implies

Lemma 1.9. For all N, there are surjective homomorphisms

$$
\phi_{N}^{\square}: B_{\chi}^{\square} \rightarrow R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square}
$$

of $R_{\chi}^{\text {loc }}$-algebras.

I remind you that these maps are in no way canonical and the patching is based on a finiteness argument. In any case, these maps, together with the S_{∞}-structure on $H_{\chi, N}^{\square}$, yields:

Lemma 1.10. For all $N, H_{\chi, N}^{\square}$ is a module over $B_{\chi}^{\square} \hat{\otimes}_{\mathcal{O}} S_{\infty}$ which is finite free over $S_{\infty} / J_{N} S_{\infty}$. Moreover, the image of S_{∞} in $\operatorname{End}\left(H_{\chi, N}^{\square}\right)$ is contained in the image of B_{χ}^{\square}.

The second point follows from Lemma 1.9, the inclusion (1.1) $\mathcal{T}_{R} \rightarrow R_{\chi, \mathcal{S}\left(Q_{N}\right)}^{\square}$, and the inclusion of the diamond operators in $R_{\chi, \mathcal{S}_{Q_{N}}}^{u n i v}$.
2. Completion of the proof. As in the proof of Diamond's Theorem 1.5 in "patching," the patching in the limit yields the following
(2.1) A module $H_{\chi, \infty}^{\square}$ over $B_{\chi}^{\square} \hat{\otimes}_{\mathcal{O}} S_{\infty}$
(2.2) The action of S_{∞} factors through B_{χ}^{\square} (since S_{∞} is a power series ring over \mathcal{O}, any action can be made to lift) and makes $H_{\chi, \infty}^{\square}$ a free S_{∞}-module
(2.3) An isomorphism $H_{\chi, \infty}^{\square} / J_{0} H_{\chi, \infty}^{\square} \xrightarrow{\sim} H_{\chi, \emptyset}$.
(2.4) The isomorphism (2.2) is compatible with surjective maps

$$
B_{\infty}^{\square} \rightarrow R_{\chi, \mathcal{S}_{\emptyset}}^{u n i v} \rightarrow \mathbb{T}_{\chi, \emptyset} .
$$

The first map in (2.4) is defined by a simultaneous patching over the map $S_{\infty} \rightarrow R_{\chi, \mathcal{S}_{\emptyset}}^{u n i v}$ which factors through \mathcal{O}, so is patched together from finite quotients of $R_{\chi, \mathcal{S}_{\emptyset}}^{u n i v}$. The novelty of this point, compared to Taylor-Wiles, Diamond, and Fujiwara, is somewhat concealed in the middle of the proof of the main theorem of $[\mathrm{T}]$.

By (2.2) the B_{χ}^{\square}-depth of $H_{\chi, \infty}^{\square}$ is at least $\operatorname{dim} S_{\infty}=1+r+\operatorname{dim} \mathcal{T}_{R}=1+r+n^{2}|R|$. Thus

$$
\begin{equation*}
\operatorname{dim} B_{\chi}^{\square} / \operatorname{Ann}\left(H_{\chi, \infty}^{\square}\right) \geq 1+r+n^{2}|R| \tag{2.5}
\end{equation*}
$$

However, Taylor's determination of $R_{\chi}^{l o c}$ in the generic case implies that $\operatorname{dim} B_{\chi}^{\square}=$ $\operatorname{dim} R_{\chi}^{l o c}+r=1+r+n^{2}|R|$, and that B_{χ}^{\square} has a unique minimal ideal. It follows that

Proposition 2.6. $\operatorname{Ann}\left(H_{\chi, \infty}^{\square}\right)$ is contained in the unique minimal ideal of B_{χ}^{\square}; in other words, $H_{\chi, \infty}^{\square}$ is a nearly faithful module over B_{χ}^{\square}, in the terminology of [T]. In particular, $\operatorname{Ann}\left(H_{\chi, \infty}^{\square}\right)$ is nilpotent.

Now J_{0} defines an ideal in B^{\square} by (2.2), contained in the kernel of the surjection (2.4). Now (2.3) and (2.4), together with Proposition 2.6, imply that

Proposition 2.7. $H_{\chi, \emptyset}$ is a nearly faithful $R_{\chi, \mathcal{S}_{\emptyset}}^{u n i v}$-module in the generic case.
Recalling that our Hecke algebras are reduced, Proposition 2.7 implies that

$$
R_{\chi, \mathcal{S}_{\emptyset}}^{\text {univ,red }} \rightarrow \mathbb{T}_{\chi, \mathcal{S}_{\emptyset}}
$$

is an isomorphism in the generic case, which is strong enough to imply the modularity lifting theorem in the generic case. But this is not what we need to prove! We need to work with the stable situation, the worst possible case, namely when $\chi_{i, v}=1$ for all i and all v. This is stable because one can always reduce to this case by passing to an appropriate abelian extension of F^{+}. However, Proposition 2.6 does have this additional consequence:

Corollary 2.8. $H_{\chi, \emptyset} / \mathfrak{m}_{\mathcal{O}} H_{\chi, \emptyset}$ is a nearly faithful $B_{\chi}^{\square} / \mathfrak{m}_{\mathcal{O}} B_{\chi}^{\square}$-module. In particular, $H_{1, \emptyset} / \mathfrak{m}_{\mathcal{O}} H_{1, \emptyset}$ is a nearly faithful $B_{1}^{\square} / \mathfrak{m}_{\mathcal{O}} B_{\chi}^{\square}$-module.

The first part is an argument in commutative algebra, using Nakayama's lemma. The second part follows from the first because the reductions $\bmod \mathfrak{m}_{\mathcal{O}}$ of either H_{χ} or $B_{\chi}^{\text {square }}$ are isomorphic for all χ. But now recall Taylor's analysis of $R_{1}^{\text {loc }}$, namely the following (reprinted from "localclassicallimit"):

Lemma 2.9. Suppose $\chi_{i}=1$ for all i. Then $R_{\chi}=R_{1}$ is equidimensional of dimension $n^{2}+1$ and no minimal prime contains $\mathfrak{m}_{\mathcal{O}}$. Moreover, every minimal prime is contained in a prime which is minimal over $\mathfrak{m}_{\mathcal{O}} \cdot R_{1}$, and every prime which is minimal over $\mathfrak{m}_{\mathcal{O}} \cdot R_{1}$ contains a unique minimal prime.

Under these conditions, Taylor proves (by another commutative algebra argument) that the second claim of Corollary 2.8 implies that

Corollary 2.10. $H_{1, \emptyset}$ is a nearly faithful B_{1}^{\square}-module.
Finally, just as in Proposition 2.7, we obtain the main theorem of $[\mathrm{T}]$:

Theorem 2.10. $H_{1, \emptyset}$ is a nearly faithful $R_{1, \mathcal{S}_{\emptyset}}^{u n i v}$-module (i.e., in the totally degenerate case). In particular, the map

$$
R_{1, \mathcal{S}_{\emptyset}}^{\text {univ,red }} \rightarrow \mathbb{T}_{1, \mathcal{S}_{\emptyset}}
$$

is an isomorphism.

This is the optimal modularity lifting theorem and suffices for all applications, provided of course the ramification at ℓ is controlled (of Fontaine-Laffaille type, with ℓ unramified in F).

Remarks 2.11.
(1) The proof of Theorem 2.10 actually requires simultaneous patching for the modules $H_{\chi, N}^{\square}$ with generic χ and for $H_{1, N}^{\square}$, as well as for the maps $S_{\infty} \rightarrow R_{\chi, S_{\emptyset}}^{u n i v}$ used to construct (2.4). This does not pose any new difficulty but the notation is much more cumbersome.
(2) The hypothesis $\varepsilon_{\infty}=0$ was made for simplicity. In $[\mathrm{T}]$ the algebra B_{χ}^{\square} is defined to have dimension $R_{\chi}^{l o c}+r-\varepsilon_{\infty}$, which suffices to define surjective maps to the framed deformational algebras. In the end the depth calculation shows that $\varepsilon_{\infty}=0$, just as in the minimal case.

Appendix: Taylor-Wiles patching in the minimal case (reprise).

To apply the above calculations to obtain the situation described in the notes on patching, we replace n by r and m by N. The modules H_{m} are what we have called $S_{\left\{\chi_{v}\right\}}\left(U\left(Q_{N}\right), \mathcal{O}\right)_{\mathfrak{m}}$ above, where $U\left(Q_{N}\right)$ is the open compact subgroup satisfying condition (3.5.4) at primes in Q_{N}. We write $H_{Q_{N}}$ for H_{m} Ignore the χ_{v} for the time being, since the set R of non-minimal primes of (3.5.2) is here assumed empty. The ring R_{m} of Diamond's Corollary 1.6 is our ring $R_{\bar{\rho}, \mathcal{S}\left(Q_{N}\right)}$ which we write more simply $R_{\bar{r}_{\Pi}, Q_{N}}$. The ring T_{m} is just the image of $R_{\bar{r}_{\Pi}, Q_{N}}$ in $\operatorname{End}\left(H_{Q_{N}}\right)$, and this
is just $\mathbb{T}_{\left\{\chi_{v}\right\}}^{T}\left(U\left(Q_{N}\right)\right)_{\mathfrak{m}}$, which we denote $\mathbb{T}_{\bar{r}_{\Pi}, Q_{N}}$ for consistency. Indeed, the only way $R^{u n i v}$ acts on modular forms is through its (surjective) homomorphism to the corresponding Hecke algebra.

We have not yet constructed the maps involving A and B. Recall that A and B are power series ring in r variables, denoted S_{i} and X_{i}, respectively. It follows from Proposition 3.14.5 that each $R_{\bar{r}_{\Pi}, Q_{N}}$ is generated over \mathcal{O} by $r-n \sum_{v \in S_{\infty}} \frac{1+c_{v}}{2}$. elements, hence is a quotient of a power series ring in r variables. One can therefore construct the maps $B \rightarrow R_{\bar{r}_{\Pi}, Q_{N}}$ ad hoc.

The maps $A \rightarrow R_{m}$ are more intrinsic. For each $v \in Q_{N}$ let Δ_{v} be the quotient of order ℓ^{N} of $k(v)^{\times}$. By (3.14.1) there is such a quotient. Let

$$
U_{0, v}=U_{1, v}:=\left\{g \in G L\left(n, \mathcal{O}_{F, \tilde{v}}\right) \left\lvert\, g \equiv\left(\begin{array}{cc}
g_{n-1} & *_{n-1} \\
0_{n-1} & *
\end{array}\right) \quad\left(\bmod \mathfrak{m}_{\tilde{v}}\right)\right.\right\}
$$

by analogy to (3.5.4), so that $U_{0, v} / U_{1, v} \xrightarrow{\sim} k(v)^{\times}$. Let $U_{1, v}^{+} \subset U_{0, v}$ be the subgroup containing $U_{1, v}$ such that

$$
U_{0, v} / U_{1, v}^{+} \xrightarrow{\sim} \Delta_{v} \xrightarrow{\sim} \mathbb{Z} / \ell^{N} \mathbb{Z}
$$

We modify our modular forms $H_{Q_{N}}$ and consider only the submodule of $\prod_{v \in Q_{N}} U_{1, v^{-}}^{+}$ fixed vectors, but we do not change notation. Let $\Delta_{Q_{N}}=\prod_{v \in Q_{N}} \Delta_{v}$. This group acts on $H_{Q_{N}}$, and we have the important
(not quite true) Principle 3.15.1. For any N, the module $H_{Q_{N}}$ is free over $\mathcal{O}\left[\Delta_{Q_{N}}\right]$.

This principle is almost true because the $S_{\left\{\chi_{v}\right\}}\left(U\left(Q_{N}\right), \mathcal{O}\right)$ are spaces of functions on finite sets on which the group $\Delta_{Q_{N}}$ acts almost freely, and the localization that produces $H_{Q_{N}}$ does not affect the condition of being free over the group algebra. Since we don't know that $\Delta_{Q_{N}}$ acts freely, we follow Taylor and Wiles and introduce an additional prime of potential ramification, denoted S_{1} above. Adding S_{1} to the level makes the action of $\Delta_{Q_{N}}$ free, and S_{1} is chosen so that no constituent of the localization at \mathfrak{m} is actually ramified at S_{1}, so the Riemann-Roch calculation is unchanged. The existence of an appropriate S_{1} is another condition guaranteed by the hypothesis that the image of $\bar{\rho}$ is "big." I will not dwell on this point.

On the other hand, for $v \in Q_{N}$, consider the action of inertia $I_{\tilde{v}}$ on the universal deformation $r^{u n i v}$ of type $\mathcal{S}\left(Q_{N}\right)$ of \bar{r}_{Π}. We can restrict our attention to the homomorphism $\rho^{u n i v}: \Gamma_{F} \rightarrow G L\left(n, R_{\bar{r}_{\Pi}, Q_{N}}\right.$. Then in an appropriate basis, $\left.\rho^{u n i v}\right|_{I_{\tilde{v}}}$ can be written as the sum of a trivial n-1-dimensional representation (lifting \bar{s}_{v}) and a one-dimensional character $\xi_{v}: I_{\tilde{v}} \rightarrow R_{\tilde{r}_{\Pi}, Q_{N}}^{\times}$on the lifting of the α_{v}-eigenspace. The character ξ_{v} is well-defined and independent of the choice of basis, and is tame, hence factors through the tame inertia group $k(\tilde{v})^{\times}$. Moreover, we have

Principle 3.15.2. The character ξ_{v} factors through the quotient Δ_{v} of $k(\tilde{v})^{\times}$, and the action of Δ_{v} on $H_{Q_{N}}$ induced by the composition of ξ_{v} with the homomorphism $R_{\bar{r}_{\Pi}, Q_{N}} \rightarrow \operatorname{End}\left(H_{Q_{N}}\right)$ is the natural group-theoretic action described above.

Both parts of this principle follow from the compatibility of the local and global Langlands correspondences for the representation ρ_{Π}, proved in my book with Taylor.

Let $A_{N}=A / J_{N}$. Choose a generator $\delta_{v} \in \Delta_{v}$ for each $v \in Q_{N}$. The variables S_{i} in $A=\mathcal{O}\left[S_{1}, \ldots S_{r}\right]$ are indexed by the elements $v \in Q_{N}$ for some ordering of the latter - say we write $i=i(v), i=1, \ldots, r$ - and we identify $A_{N}=\mathcal{O}\left[\Delta_{N}\right]$ by identifying δ_{v} with the image of $1+S_{i}(v)$ in A_{N}. In this way, there is a natural map

$$
A \rightarrow A_{N} \rightarrow R_{\bar{r}_{\Pi}, Q_{N}}^{\times}
$$

where the second arrow is the product of the ξ_{v} of 3.15 .2 . In this way H_{N} becomes an A-module for each N, and Diamond's condition (d) is satisfied:

3.15.3. $A n n_{A}\left(H_{N}\right)=J_{N}$ and H_{N} is a free A_{N}-module for each $N .$.

To simplify the notation further, we write R_{N} and \mathbb{T}_{N} instead of $R_{\bar{r}_{\Pi}, Q_{N}}$ and $\mathbb{T}_{\bar{r}_{\Pi}, Q_{N}}$ We have already seen Diamond's condition (a) (surjectivity of the maps $R_{N} \rightarrow \mathbb{T}_{N}$). Condition (b) is not quite true as stated. We have chosen ad hoc maps $B \rightarrow R_{N}$ and we can lift the maps $A \rightarrow R_{N}$ to maps $c_{N}: A \rightarrow B$ in such a way that the map $B \rightarrow R_{N}$ factors through $B_{N}=B / c_{N}\left(J_{N}\right)$. In (b) we can replace R_{N} by B_{N}, as Diamond did, and then (b) remains true.

Condition (c) is a subtle point. It is not hard to see that $H_{N} / J_{0} H_{N} \xrightarrow{\sim} H_{0}$ which is the localization at \mathfrak{m} of the automorphic forms invariant under the group $U_{0}\left(Q_{N}\right)$, which are fixed by $\prod_{v \in Q_{N}} U_{0, v}$, in the above notation. But condition (c) requires an identification of H_{0} with $H_{\Pi, \emptyset}$. There are two independent points, one global, one local, discussed in the appendix.

The global point - see Lemma A. 2 of the appendix - is that the condition at \mathfrak{m} guarantees that any representation Π^{\prime} of type $\mathcal{S}\left(Q_{N}\right)$, with $\bar{\rho}_{\Pi^{\prime}} \xrightarrow{\sim} \bar{\rho}_{\Pi}$, and with $\left(\Pi^{\prime}\right)^{U_{0}\left(Q_{N}\right)} \neq 0$, is necessarily unramified at Q_{N}. This is the group-theoretic equivalent of the Galois-theoretic condition (3.13.6) that says that any deformation of $\bar{\rho}_{\Pi}$ of type $\mathcal{S}\left(Q_{N}\right)$ necessarily breaks up as a sum of the unramified n-1-dimensional piece and the potentially ramified one-dimensional piece. This heuristic argument can be made rigorous by considering the classification of admissible representations of $G L\left(n, F_{\tilde{v}}\right)$ with $U_{0, v}$-fixed vectors.

The second point is that H_{0} is naturally a space of $U_{0, Q_{N}}$-invariant automorphic forms in the space of automorphic forms unramified at Q_{N}. For each v, the space of $U_{0, v}$-invariant forms in $\Pi_{\tilde{v}}$ is of dimension n, and one needs to pick out a submodule of rank one over R_{\emptyset} and construct an isomorphism with the module of $\prod_{v} G L\left(n, \mathcal{O}_{\tilde{v}}\right)$-invariant forms. It is for this reason that we need the additional operators V_{v} for $v \in Q_{N}$ and to include $V_{v}-\alpha_{v}$ in the ideal \mathfrak{m}. This can be done by means of Hensel's lemma, but the construction depends on an analysis of the reduction modulo $\mathfrak{m}_{\mathcal{O}}$ of principal series representations of $G L\left(n, F_{\tilde{v}}\right)$ when $N v-1$ is divisible by ℓ. This was considered by Vignéras and the results are described in part in the notes entitled modularprincipalseries.pdf.

Admitting this last step, we have completed the verification of Diamond's conditions
(or Fujiwara's equivalent conditions). We may therefore conclude as in TaylorWiles:

Theorem 3.15.4. The map

$$
\phi_{\emptyset}: R_{\bar{r}_{\Pi}, \emptyset} \rightarrow \mathbb{T}_{\Pi}
$$

is an isomorphism of complete intersections, and H_{Π} is a free module over \mathbb{T}_{Π}. In particular, any deformation of \bar{r}_{Π} of minimal type \mathcal{S} is of the form $r_{\Pi^{\prime}}$ for some automorphic representation Π^{\prime} of $G L(n)$ of cohomological unitary type.

Finally, the error term $\epsilon_{\infty}=n \sum_{v \in S_{\infty}} \frac{1+c_{v}}{2}$ necessarily vanishes. In other words, $c_{v}=-1$ for all $v \in S_{\infty}$.

