
Elements of p-adic (ℓ-adic) Hodge theory

1. Cohomology of smooth projective (Shimura) varieties and the ℓ-adic
comparison theorem.

For reasons having to do with the origin of our work, ℓ plays the role of p. Crys-
talline ℓ-adic representations, or more generally de Rham ℓ-adic representations, are
the kinds of representations that arise in the ℓ-adic etale cohomology of algebraic
varieties over number fields or ℓ-adic fields. This is a theorem, however: the con-
dition of being crystalline or de Rham has an abstract definition, due to Fontaine,
whose most important properties have been established in just the last few years.
Our Galois representations will be realized in the cohomology of Shimura varieties,
denoted Sh(G), that are smooth and projective over Spec(O) for some ℓ-adic in-
teger ring O unramified over Zℓ. Thus our Galois representations will in fact by
crystalline. In the proof of the Sato-Tate conjecture we have a great deal of freedom
to choose ℓ arbitrarily large relative to other data, which means we can apply the
easiest version of integral ℓ-adic Hodge theory due to Fontaine and Laffaille [FL].

We work over the base field Qℓ for simplicity, although everything stated here is
true over general unramified extensions of Qℓ (and probably ramified extensions as
well). From our point of view the main object is either an irreducible n-dimensional
ℓ-adic representation ρ of ΓQ = Gal(Q/Q) or a cuspidal automorphic representation
π of GL(n, Q), which is assumed unramified at ℓ. The Shimura variety Sh(G) is
needed for the construction of the ℓ-adic representation ρπ associated to π but
is not otherwise visible in the papers [CHT], [HST], [T]. In this section I refer
to it explicitly because its properties are used to establish the properties of the
restriction of ρπ to a decomposition group at ℓ. The Shimura variety is attached
to a certain unitary group G, split at ℓ. It is of dimension n − 1 and its middle-
dimensional cohomology is decomposed into n-dimensional pieces by the action of
Hecke operators, and ρπ is one of these pieces when the cohomology in question is
ℓ-adic. Indeed, the Hecke algebra is the same as the one acting on modular forms
on the definite unitary group discussed elsewhere in these notes, but this fact is
never used explicitly.

Assume Sh(G) has good reduction mod ℓ, i.e. extends to a proper smooth scheme
S(G) over Spec(Zℓ). (We are considering Shimura varieties of fixed level and this
hypothesis is true if the level is prime to ℓ in a standard sense.) Then the Shimura
variety Sh(G) gives rise to two spaces of cohomology over Qℓ. The first is the ℓ-
adic cohomology Hℓ = Hn−1(Sh(G), Qℓ) = lim←−N Hn−1

et (Sh(G), Z/ℓN/Z)⊗Qℓ. The
second is de Rham cohomology:

HdR = Hn−1
dR (S/Spec(Zℓ)) = Hn−1(S, Ω•

S/Zℓ
).

The former is topological, the latter is computed by differential forms with coeffi-
cients in Ov. Both have the same finite dimension and the eigenspaces for Hecke
operators on the two spaces have the same dimension as well. However, they have
different structures. The ℓ-adic cohomology carries an action of ΓQ, and in partic-
ular of the decomposition group Γℓ. The second has two structures: a crystalline
Frobenius:

φ : HdR → HdR
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which is a bijective map that is Frob-linear

φ(av) = Frobℓ(a)φ(v).

This doesn’t look like anything more than a linear map but in fact it has the same
property after base change to the completion of the maximal unramified extension
of Qℓ. And a Hodge filtration: there is a filtration . . . F pHdR ⊂ F p−1HdR . . . with

F p/F p+1 ∼
−→ Hq(SK , Ωp−1).

These two structures interact (“the Newton polygon lies above the Hodge polygon”)
but we don’t need to know that.

What we do need to know, at least for a few seconds, is that there is a way to
obtain HdR from Hℓ, with all the structure, and vice versa. The following theorem
contains a part of ℓ-adic Hodge theory, and is due to many people.

Theorem. There are fields Bcrys ⊂ BdR containing Qunr
ℓ , the maximal unramified

extension of Qℓ, with compatible actions of Γℓ, and with the following additional
structures:

(1) BdR is a complete discrete valuation field, containing Qℓ and with residue
field Cℓ, the completion of Qℓ (via the residue map), and

(a) The valuation defines a Γℓ-stable (decreasing) filtration FiliBdR;
(b) There is a map Qℓ(1) → Fil1BdR of Gv-modules whose image contains a

uniformizer;
(c) BGv

dR = Fv

(2) Bcrys is a subring containing Qℓ(1) and endowed with a Frob-linear injective
automorphism φ satisfying

(a) φ commutes with Gv;
(b) φ(t) = ℓ · t for t ∈ Qℓ(1) ⊂ Bcrys ∩ Fil1BdR

(c) Fil0BdR ∩Bφ=1
crys = Qℓ

(d) BGv
crys = Qℓ

These fields, constructed by Fontaine according to an explicit and very complicated
recipe, turn out to be of the highest importance for a huge variety of applications.
They are called the ℓ-adic period rings (usually called p-adic, but not in our papers)
because their main application is comparison between ℓ-adic topological cohomology
and ℓ-adic de Rham (analytic) cohomology. We state the main theorem only for
cohomology with trivial coefficients:

Theorem (Fontaine-Messing, Faltings, Tsuji). (a) There is a natural isomor-
phism

[Hℓ(Sh(G))⊗BdR]Γℓ
∼
−→ HdR(Sh(G)/Qℓ)

where Γℓ acts diagonally and the filtration on the right-hand side is inherited from
BdR;

(b) Suppose Sh(G) is smooth. Assume π contains a fixed vector under GL(n, Zℓ).
(This implies the existence of a smooth model S over Zℓ, as indicated above.) Then
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there is a natural isomorphism

[Hℓ(Sh(G))⊗Bcrys]
Γℓ

∼
−→ HdR(Sh(G)/Zℓ)

(actually with crystalline cohomology) and the action of φ on the right-hand side is
inherited from Bcrys.

(c) Assume ℓ > n and ℓ is unramified in F . Then (b) is even true integrally: there
is a Zunr

ℓ -subalgebra Acrys ⊂ Bcrys and the isomorphism in (b) is valid over Zℓ (in
a modified sense, see below).

2. Fontaine-Laffaille modules.

In (c) above, it is not true that

[Hn−1(Sh(G), Zℓ)⊗ Acrys]
Γℓ

∼
−→ HdR(Sh(G)/Zℓ).

because Hn−1(Sh(G), Zℓ) is not the right lattice. What we need to know is that
one can construct a lattice Mcrys(Sh(G)) ⊂ HdR(Sh(G)/Zℓ) as a union of the Γℓ-
invariants in certain lattices in Hn−1(Sh(G), Qℓ) ⊗ Acrys, and that the reduction
modulo ℓm of Mcrys for all m is a Fontaine-Laffaille module, to be discussed in this
section. We will only use the Fontaine-Laffaille property to define the deformation
ring and to determine its numerical invariants.

Let F be an unramified extension of Qℓ, with residue field k = Fq with q = ℓf

for some integer f . Let OF its integer ring, which we also denote W (k) (the Witt
ring of k), σ the absolute Frobenius map on Qℓ or on any integer ring or quotient
thereof, τ = σf . Let A be a local OF algebra with residue field k, M an A-module.
A map φ : M → M is τ -linear if it is additive and if

φ(am) = τ(a)φ(m) ∀a ∈ A, m ∈M.

Definition 2.1. A Fontaine-Laffaille module over W (k) (“module filtré”, in the
terminology of [FL]) is a torsion W (k)-module of finite type with a decreasing fil-
tration FiliM , with Fil0M = M , FilℓM = 0, and a family of τ -linear maps

φi : Fili(M) → M

such that for all i

(F) φi |Fili+1= ℓφi+1

and

(L) M =
∑

i

Im(φi).

For example, if ℓ > n, the ℓ-torsion quotients of HdR(Sh(G)/Zℓ) have structures of
this type. The φi are derived from ℓ−i · φ in crystalline cohomology and the lattice
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in the remark in the first paragraph of this section is the smallest one for which
this makes sense. Examples will be discussed in the next section.

The Fontaine-Laffaille modules over W (k) form an abelian W (k)-linear category

denoted MF f
tor (or using more complicated notation). So is the category RepΓF

of representations of ΓF = Gal(Qℓ/F ) on torsion W (k)-modules. One of the main

points of [FL] is to construct an exact faithful functor from MF f
tor to RepΓF

. The
representations belonging to the (essential) image of this functor are said to be of
Fontaine-Laffaille type. For ℓ > n, any subquotient of the representation of ΓQℓ

on
Hn−1(Sh(G), Z/ℓmZ) (any m) is of Fontaine-Laffaille type. For general ℓ (or for
more general automorphic Galois representations, e.g. the representations attached
to modular forms of weight k > ℓ, the condition is still quite restrictive, and other
approaches to ℓ-adic Hodge theory seem to be necessary (for example, Fontaine’s
theory of (φ, Γ)-modules).

To state this equivalence more precisely, we introduce the following notation. We
let OCℓ

denote the ring of integers in the completion Cℓ of the algebraic closure of
the fraction field of W (k). Let Acris = Acris(OCℓ

) be the ring defined in [Fo, 2.3],
an ℓ-integral form of Bcris. The W (k)-algebra Acris is endowed with a decreasing
filtration FiliAcris, i ≥ 0 and with a σ-linear operator φ such that

(2.2) φ(FiliAcris) ⊂ ℓiAcris, 0 ≤ i ≤ ℓ− 1.

Let O be any ℓ-adic integer ring with residue field kO. To avoid complications
we assume O is unramified over Zℓ, although this is certainly unnecessary. Let
RepW (k)⊗O denote the category ofO[ΓF ]-modules of finite type. We define RepW (k)⊗O,cris,[0,ℓ−1[

to be the full subcategory of RepW (k)⊗O whose objects are isomorphic to subquo-

tients of crystalline Qℓ⊗Zℓ
O[ΓF ]-modules. For any object Λ of RepW (k)⊗O,cris,[0,ℓ−1[

we can explicitly define the Fontaine-Laffaille module Mcris(Λ). It is an object of
the category MFW (k)⊗O,[0,ℓ−1[ consisting of

(i) a W (k)⊗O-module M of finite type, a decreasing filtration Fili(M) by W (k)⊗O-
submodules which are direct factors, with Fil0M = M , FilℓM = 0; and

(ii) a family φi : Fili(M)→M of τ ⊗ 1O-linear maps such that

(F) φi(x) = ℓφi+1(x)∀x ∈ Fili+1M,

and such that

(L) M =
∑

i∈Z

im(φi).

It is further assumed that M contains no non-trivial subobject M ′ with Filℓ−1M ′ =
M ′.

The definition is

(2.3) Mcris(Λ) =
⋃

M | M ⊂ Acris ⊗W (k) Λ)ΓF ; M ∈MFW (k),[0,ℓ−1[
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(cf. [Niz, p. 750]; [Wa,Remarque 2.4.4]). The filtration is inherited from the filtra-
tion on Acris, the O-action on Λ is left undisturbed, and φi is inherited from ℓ−iφ on
FiliAcris, which makes sense by condition (F). Then Mcris : RepW (k),cris,[0,ℓ−1[ →

MFW (k),[0,ℓ−1[ is an equivalence of categories. An inverse equivalence [FL] is given
by the formula

(2.4) Λ(M) = Fil0(Acris ⊗W (k) M)φ=1.

For our purposes, crystalline Galois representations are those of the form Λ(M), for
some M ∈ MFW (k),[0,ℓ−1[. More generally, let A be a W (k) algebra of finite type
with a σ-linear automorphism σA. Then we can define the categories MFA,[0,ℓ−1[

and RepA,cris,[0,ℓ−1[ by analogy with (i), (ii) above, taking A as coefficient ring.
The functors Mcris and Λ can be defined as inverse equivalences between these two
categories. In the applications, A will be a W (k)⊗O-algebra, where τW (k)⊗O is
defined to be τ ⊗ 1 : W (k)⊗O → W (k)⊗O.

Let MFtor,[0,ℓ−1[ denote the subcategory of MFW (k),[0,ℓ−1[ of objects of finite length
(as W (k)-modules). By [FL,Prop. 1.8], MFtor,[0,ℓ−1[ is an abelian category. Let

Reptor,cris,[0,ℓ−1[ ⊂ RepW (k),cris,[0,ℓ−1[

denote the essential image of the functor Λ, restricted to MFtor,[0,ℓ−1[. Then
Reptor,cris,[0,ℓ−1[ is a full subcategory of RepW (k),cris,[0,ℓ−1[, itself a full subcate-
gory of RepW (k). The functors Mcris and Λ define inverse equivalences between
the abelian categories Reptor,cris,[0,ℓ−1[ and MFtor,[0,ℓ−1[. The important point is
the following Lemma, an immediate consequence of the equivalence of categories:

Lemma 2.5. Given two objects M, N ∈ MFtor,[0,ℓ−1[, there is a natural isomor-
phism

(2.6) Ext1MF (M, N)
∼
−→ Ext1cris(Λ(M), Λ(N)),

where Ext1MF (resp. Ext1cris) is shorthand for extensions in MFtor,[0,ℓ−1[ (resp.
Reptor,cris,[0,ℓ−1[).

3. Examples in dimensions 1 and 2.

Let f ≥ 1 be an integer and let Ff be the unramified extension of Qℓ of degree f .
Let M be a one-dimensional vector space over k = kf = Fℓf . In order to endow it
with the structure of Fontaine-Laffaille module, the only variable is the filtration:
there is a unique i such that FiliM = M , Fili+1M = (0), the map φi being
uniquely determined up to isomorphism by τ -linearity. We call the corresponding
module Mk,i.

If F = Qℓ, the functor Λ takes MFℓ,i to the representation Fℓ(i) = Fℓ(1)⊗i, the ith

power of the cyclotomic character. In general, the field F (p
1

q−1 ) is a cyclic abelian
tamely ramified extension of F of degree q − 1, and if ̟ is a chosen q− 1st root of
p, then there is an isomorphism

χh : Gal(F (p
1

q−1 )/F )
∼
−→ k×; g 7→ g(̟)/̟.
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The character χh is called the hth fundamental character, and Λ(Mk,i) = χ⊗i
h .

Let M be a rank 2 Fontaine-Laffaille module over Fℓ. First, suppose M is reducible,
hence contains a rank 1 submodule N . Thus there is a short exact sequence

0 → N = MFℓ,i → M
h
→ N ′ = MFℓ,i′ → 0.

Shifting all filtration indices by a fixed constant j is equivalent to tensoring by
MFℓ,j , which on the Galois side is equivalent to twisting by Fℓ(j). We thus lose
no generality by assuming M = Fil0M , M 6= Fil1M . Let e be a basis of N and
e′ ∈ M an element not in N , hence mapping to a basis of N ′. Without loss of
generality (up to extending coefficients to Fℓ) we may assume

(3.1) φi(e) = e, φi′

N ′(h(e′)) = h(e′),

where φ∗
N ′ is the map φ∗ on N ′. We leave the case M = gr0M as an exercise; thus

there is a maximum index j > 0 such that 0 6= FiljM 6= M ; in particular FiljM
is of dimension 1 . Then φ : gr•M = gr0M ⊕ grjM → M is an isomorphism.
If FiljM is in the kernel of the map h : M → N ′, then FiljM = N , i = j,
i′ = 0, and the extension is determined up to isomorphism by the scalar a such
that φ0(e′) = e′ + ae.

If N 6= FiljM , then we may take e′ ∈ FiljM , and then φj(e′) is not equal to zero,
say φj(e′) = ae + be′. Moreover, φ0(e′) = ℓjφj(e′) = 0, which means φ0(e) 6= 0 by
condition (L). On the other hand, φi(e) = e, so i = 0. Then

bh(e′) = h ◦ φj(e′) = φj
N ′ ◦ h(e′).

If j 6= i′ then b = 0; but then (3.1) implies Im(φj + φi) ⊂ N which contradicts
condition (L). Thus j = i′. Then we may assume b = 1, and the extension is
determined up to isomorphism by a.

In either case, the functor Λ takes reducible 2-dimensional M to reducible 2-
dimensional Galois representations; the coefficient a equals zero if and only if Λ(M)
is split.

Now suppose M is irreducible, with j > 0 maximal such that dim FiljM =
dim Fil1M = 1, M = Fil0M . Take F a basis of FiljM , and let e = φj(f). Since
M is irreducible, e /∈ FiljM , so φ0(e) = ae + bf . Suppose a 6= 0; then over the al-
gebraic closure we may arrange that φ0(e) = e+bf = e∗. But φ0(f) = ℓjφj(f) = 0,
hence φ0(e∗) = e∗, and then e∗ generates a non-trivial subobject. Thus a = 0, and
we may assume b = 1. Thus the only invariant of M is the index j, and we denote
the corresponding M by M(2, j). Then for 0 < j ≤ p− 1 Λ(M(2, j)) = IndF/Qℓ

χj
2

where F is the unramified quadratic extension of Qℓ and χ2 is the fundamental
character defined above.

4. Galois cohomology of Fontaine-Laffaille representations.

The advantage of the Fontaine-Laffaille category is that it can be used to simplify
calculations of Galois cohomology. More precisely, in the study of deformations one
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needs to work with Hi(ΓF , ρπ ⊗ Fℓ) = ExtiΓF
(Fℓ, ρπ ⊗ Fℓ) where ΓF acts trivially

on Fℓ. But these Ext groups, or at least their Euler characteristics, which are all
we really need, can be calculated explicitly in terms of the Fontaine-Laffaille data,
using Lemma 2.5. The result is quite simple, using the following observation:

Lemma 4.1. Let k be a finite field of characteristic ℓ. Then the category of
Fontaine-Laffaille modules over k is equivalent to the category of k-vector spaces
M with decreasing filtrations FiliM and σ-linear isomorphisms

φ : gr•M = ⊕jFiljM/Filj+1M
∼
−→ M.

Proof. The condition (F) that φj |Filj+1= ℓφj+1 just means that φj |Filj+1= 0,
so the collection of φj is equivalent to a single φ as indicated. But condition (L)
implies that φ is surjective, and since the two sides have the same dimension the
lemma is clear.

Write k⊗kO = k⊗Zℓ
kO, and suppose now that M and N are free k⊗kO-modules.

In particular, ℓ ·M = 0, ℓ ·N = 0. Let Ext1MF,k⊗kO
(M, N) ⊂ Ext1MF,k⊗kO

(M, N)
denote the subgroup of extensions in the category of Fontaine-Laffaille modules
which are free k ⊗ kO-modules. Likewise, let Repk⊗kO

denote the category of
k ⊗ kO[ΓF ]-modules free over k ⊗ kO, and define

Repk⊗kO ,cris,[0,ℓ−1[ ⊂ Repk⊗kO

to be the intersection of Repk⊗kO
with Reptor,cris,[0,ℓ−1[.

By the usual arguments, we can calculate Ext1 of group representations in terms
of group cohomology:
(4.2)

Ext1Repk⊗kO

(Λ(M), Λ(N))
∼
−→ Ext1Repk⊗kO

(k ⊗ kO, Homk⊗kO
(Λ(M), Λ(N)))

∼
−→ H1(ΓF , Homk⊗kO

(Λ(M), Λ(N))).

On the other hand, composing the isomorphism (2.6) with the forgetful functor, we
obtain a homomorphism for any Fontaine-Laffaille modules M, N :

(4.3) Ext1MF (M, N)→ Ext1RepW (k)
(Λ(M), Λ(N)).

Now let V, V ′ ∈ Repk⊗kO,cris,[0,ℓ−1], so that V = Λ(M), V ′ = Λ(M ′) for two

k⊗ kO-Fontaine-Laffaille modules in the range [0, ℓ− 1]. With respect to (4.3) and
(4.2), we let

H1
f (ΓF , Homk⊗kO

(V, V ′) ⊂ H1(ΓF , Homk⊗kO
(V, V ′))

denote the image of Ext1MF,k⊗kO
(M, M ′), which is also the image of Ext1RepW (k),cris,[0,ℓ−1]

(V, V ′)

as in Lemma 2.5. The notation H1
f is taken from Bloch-Kato. ‘

Say M ∈ MFW (k)⊗O,[0,ℓ−1[ is regular if gri(M) = Fili(M)/F ili+1(M) is a free
k ⊗ kO-module of rank ≤ 1 for all i.
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Lemma 4.4. Let Λ be a crystalline k ⊗ kO[ΓF ]-module, and let Ad(Λ) denote
the k ⊗ kO[ΓF ]-module Homk⊗kO

(Λ, Λ). Suppose Λ = Λ(M), with M a regular
Fontaine-Laffaille module of rank n over k ⊗ kO. Then

rankk⊗kO
H1

f (ΓF , Ad(Λ))− dimH0(ΓF , Ad(Λ)) =
1

2
n(n− 1).

Proof. By Lemma 2.5 and (4.2), the left-hand side equals

rankk⊗kO
Ext1MF,rankk⊗kO

(M, M)− rankk⊗kO
HomMF,rankk⊗kO

(M, M).

This is unchanged when we extend scalars from kO to a finite extension k′ and
replace M by Mk′ . We thus may assume k ⊂ k′, and then by projecting on
irreducible components we may replace k ⊗ kO by k′.

Since M is a k′-module, its structure as Fontaine-Laffaille module reduces to a triple
consisting of a k′-vector space V , a decreasing filtration Fil•V , and an isomorphism
φV : gr•V

∼
−→ V . Let gr•V = ⊕n

i=1graiV , where 0 ≤ a1 < a2 · · · < an ≤ ℓ − 1 is
an n-tuple of positive integers. Fix a basis e1, . . . , en of V such that FiliV is the
span of ei+1, . . . , en. Suppose E is an extension of M by itself in Ext1MF,k′(M, M)

and let E be the underlying k′-module. There is a short exact sequence

0→ V
i
→ E

π
→ V → 0

compatible with filtrations and the morphisms φE and φV . Let s : V → E denote
any splitting of π as filtered module; s is determined uniquely up to an element
α ∈ F 0End(V ), where F 0End(V ) ⊂ Endk(V ) denotes the subspace of filtration-
preserving endomorphisms. Then gr•E = gr(i)(gr•V )⊕ gr(π)(gr•V ). In terms of

this basis, φE can be written

(

φV µ
0 φV

)

, for some µ ∈ Hom(gr•V, V ). We have

µ = φE ◦ gr(s)− s ◦ φV .

Moreover, replacing s by s+α changes µ to µ+φV ◦ gr(α)−α ◦φV . Thus the map
M 7→ µ (mod equivalence) defines an isomorphism

Ext1MF,k′(M, M)→ {φ ∈ Hom(V, V )}/{φ ◦ gr(α)− α ◦ φ|α ∈ F 0End(V ))}.

Moreover,

HomMF,k′(M, M)→ {α ∈ F 0End(V )|φ ◦ gr(α) = α ◦ φ}.

This yields an exact sequence

0→ HomMF,k′(M, M)→ F 0End(V )
j
→ Homk(gr•V, V )→ Ext1MF,k′(M, M)→ 0,

where the map j takes α to φ ◦ gr(α)− α ◦ φ.

It follows that

dim Ext1MF,k′(M, M)− dim HomMF,k′(M, M) = dim Homk′(gr•V, V )− dim F 0End(V )

= n2 −
1

2
n(n + 1) =

1

2
n(n− 1).
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5. Crystalline deformations of Fontaine-Laffaille representations.

Let A = k[ε]/(ε2), let Λ ∈ Repk,cris,[0,ℓ−1[, and let Λ̃ be a deformation of Λ to A.
Multiplication by ε defines an isomorphism

Λ ∼= Λ̃/εΛ̃
∼
−→ εΛ̃

of k[ΓF ]-modules. Thus Λ̃ defines an extension

(5.1) 0→ Λ→ Λ̃→ Λ→ 0,

and this correspondence defines a bijection between the equivalence classes of de-
formations of Λ to A and Ext1Repk

(Λ, Λ) (cf. [DDT], p. 67). By definition, the

deformation Λ̃ is crystalline if and only if (5.1) is an extension in the category of
crystalline representations; in other words, crystalline deformations are in bijec-
tion with Ext1cris(Λ, Λ) ∼= H1

f (ΓF , Ad(Λ). We have thus verified the equivalence of

??.2.3.1 and ??.2.1.1 in the definition of H1
D(E, adrr̄).

6. Action of tame inertia for regular Fontaine-Laffaille modules (bonus).

For M ∈MFW (Fℓ),[0,ℓ−1[ the action of tame inertia on Λ(M) is calculated explicitly

in [FL]. As a consequence of that calculation, we can prove

Lemma 6.1. Let M ∈MFW (k),[0,ℓ−1[ and suppose M is regular. Then the eigenspaces

of tame inertia on Λ(M) have dimension 1. More precisely, let Λ(M)ss denote
the semi-simplification of the k[ΓF ]-module Λ/ℓΛ(M). Then the action of the in-
ertia subgroup on Λ(M)ss factors through the tame quotient, and the latter has
dim M/ℓM -distinct eigenvalues.

Proof. The proof is a simple combinatorial exercise, using the results of [FL,§§4-5].
Without loss of generality we may assume M to be a semi-simple ℓ-torsion module,
so that Λ(M) = Λ(M)ss. Let n = dim

Fℓ
M and let bi, i = 1, . . . , n be the integers

such that dim grbi(M) = 1; let B = {b1, . . . , bn} ⊂ Z. Let q = |k| = ℓr, for some r.
Then M is determined, up to isomorphism, by the following set of data:

(a) A partition n = h1 + · · ·+ hs, with hj ≥ 1 for all j;

(b) For each j a map ιj : Z/hjZ→ B, with image Bj, so that B = ∪jBj ;

(c) The period of the map ιj is exactly hj ; i.e. for any h < hj the map ιj(a) 7→
ιj(a + h) is a non-trivial permutation of Bj.

Indeed, we can write M = ⊕jM(j) as a sum of simple objects, and the object M(j)
is determined up to isomorphism by a pair (hj , ιj) as above. Let Λ(j) = Λ(M(j)).

For any positive integer h, let α ∈ Qℓ satisfy

αqh
−1 = ℓ
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and set χh(g) = g(α)/α (mod ℓ) ∈ Fℓ
×

, for g in the tame inertia group It. Let

(5.2) C(j) = {

hj−1
∑

a=0

ιj(a + t)qa | t = 0, 1, . . . , hj − 1}.

It follows from (c) above, and from the fact that B ⊂ {0, . . . , p− 1}, that C(j) has
hj distinct elements. The calculation in [FL] shows that the action of It on Λ(j)
factors through the character χhj

, and g ∈ It has eigenvalues

χhj
(g)c, c ∈ C(j).

The exponents in C(j) being distinct, the action of It on Λ(j) is multiplicity-free.
On the other hand, it is easy to see, that It has no common eigenvalues on Λ(j1)
and Λ(j2), first if hj1 6= hj2 , then in the general case.
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