
Patching theorems

Introduction.

The Taylor-Wiles method to prove that the surjective map R → T is an isomor-
phism is based on the analysis of a system of diagrams

RQ −−−−→ TQ




y





y

R −−−−→ T

where Q varies over sets of auxiliary primes, all of the same cardinality u, and
all arrows are surjective. One lets Q “tend to infinity” in an ad hoc way, and in
the limit R∞ turns out to be an algebra over a power series ring A in u variables.
Because R∞ is known to be of dimension u, and because each TQ is known to be

free over an appropriate quotient of A, this leads to the conclusion that R
∼
−→ T .

This was the original theorem, as proved by Taylor and Wiles (and improved by
Faltings). I will state this theorem below. A more versatile theorem of the same
sort was found a few years later independently by F. Diamond and K. Fujiwara.
I will give a complete proof of the latter theorem, in Diamond’s version. More
recently still, Kisin discovered a relative version of this theorem over deformation
rings at primes of bad reduction. This was strengthened by Taylor and is at the
heart of the last paper on the Sato-Tate conjecture.

0. Complete intersections and commutative algebra.

We fix ℓ and the ring O that at first approximation one may think of as the ring of
integers in a finite extension of Qℓ. However, for the time being it suffices that O
be a complete noetherian local ring with maximal ideal m and finite residue field k
of characteristic ℓ. In particular, O need not be a discrete valuation ring. This is
the generality in which we ultimately work, following Kisin, and everything is true
in this generality. All the rings in this section will be local O algebras with residue
field k.

Another warning: it is standard in the literature to let O be a fixed ℓ-adic integer
ring, and so the ring labelled O here will be called O•, where the subscript varies
depending on the situation. We introduce this convention in §2.2.

Definition 0.1. Let R be a local O-algebra that is of finite type as O-module. Let
B = O[[X1, . . . , Xn]]. We say that R is a complete intersection over O if it is
of the form

R
∼
−→ B/(f1, . . . , fn)

where fi belongs to the maximal ideal of B.

More generally, a complete intersection R in B is a quotient of B by dimB−dimR
elements. We only need R of dimension = dimO.
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Definition 0.2. Let R be a ring and M an R-module. Let (x1, . . . , xr) be a
sequence of elements of R, Ji the ideal (x1, . . . , xi) and Mi = M/JiM . Then
(x1, . . . , xr) is said to be an M-regular sequence if the map

xi+1 : Mi → Mi

(multiplication) is injective for i = 0, . . . , r − 1.

Definition 0.3. Let R be a noetherian ring, I an ideal of R, and M a finitely
generated R-module. The depth of M with respect to I, denoted depthI (M), is the
supremum of integers r such that there exists an M -regular sequence of length r of
elements in I.

If R is a local ring with maximal ideal m, we write depthR(M) = depthm(M).

Definition 0.4. Let R be a noetherian local ring with maximal ideal m. Then R
is regular if m is generated by r elements, where r = dimR.

In particular, k[[x1, . . . , xr]] is a regular local ring if k is a field.

Theorem 0.5 (Auslander-Buchsbaum). Let R be a regular local ring and M a
non-zero finite R-module. Then

depthR(M) + proj.dimR(M) = dim(R).

Regarding projective dimension, we need only

Proposition 0.6. Let R be a regular local ring and M a non-zero finite R-module.
Then proj.dimR(M) = 0 if and only if M is free.

Here we note that any projective module over a noetherian local ring is free (by
Nakayama’s Lemma).

1. Isomorphism theorems.

In this section O is an ℓ-adic integer ring. We introduce another copy of B called
A = O[[S1, . . . , Sn]]. In A we define a sequence of ideals Jm, m = 0, 1, . . . ,

Jm = (((1 + S1)
ℓm − 1), ((1 + S2)

ℓm − 1) . . . , ((1 + Sn)ℓ
m

− 1)).

We have

(1.1) J0 = (S1, . . . , Sn), A/J0 = O;

(1.2) · · · ⊂ Jm ⊂ Jm+1 ⊂ . . . ,

because ((1 + Si)
ℓm − 1) divides ((1 + Si)

ℓm+1

− 1) for each i;

(1.3)
⋂

m≥0

Jm = (0).

Here is the Taylor-Wiles isomorphism criterion, used to prove R = T theorems.
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Theorem 1.4 (Taylor-Wiles). Suppose that for every m > 0 there is a commu-
tative diagram of complete O-algebras

A −−−−→ Rm
φm

−−−−→ Tm




y





y

R
φ

−−−−→ T

with the following properties:

(i) There is a surjection of O-algebras B → Rm for all m.
(ii) The map φm : Rm → Tm is surjective for all m.
(iii) The vertical arrows are surjective and induce isomorphisms

Rm/J0Rm
∼
−→ R; Tm/J0Tm

∼
−→ T.

(iv) The quotient ring Tm/JmTm is finite flat over A/Jm for each m.

Then φ : R → T is an isomorphism of complete intersections over O.

Note that (ii) and (iii) imply already that φ is surjective; the theorem asserts that
φ is injective and that both R and T are complete intersections.

Let B̄ = B/m = k[[X1, . . . , Xn]], Ā = k[[S1, . . . , Sn]], n the maximal ideal of Ā.
Here is Diamond’s version of the isomorphism theorem.

Theorem 1.5 (Diamond). Suppose R is a k-algebra and H is a non-zero R-
module, finite-dimensional over k, T the image of R in End(H). Suppose that for
each m > 0, there is a quotient B̄m of B̄, a B̄m-module Hm and a commutative
diagram

Ā −−−−→ B̄m
φm

−−−−→ Tm ⊂ End(Hm)

ψm





y





y

πm

R
φ

−−−−→ T ⊂ End(H)

with the following properties:

(a) The horizontal maps φm and φ are surjections;
(b) There is a homomorphism cm : Ā → B̄ so that B̄m = B̄/cm(nm), and

surjection ψm : B̄m → R such that ψm ◦ cm((n)) = 0;

(c) πm is a B̄m-homomorphism that induces an isomorphism Hm/nHm
∼

−→ H;
(d) AnnĀHm = n

m and Hm is free over Ām = Ā/nm.

Here Hm is an A-module via cm.

Then R is a complete intersection of dimension zero, and H is free over R.

Remark. The Tm are completely superfluous in the statement and indeed are absent
from Diamond’s formulation. The present version has been adapted to emphasize
the parallel with Taylor-Wiles; the commutative diagram is an icon of the theory
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and is recycled in each of its variants. Moreover, Diamond’s theorem is stated
entirely in characteristic ℓ, without reference to O.

Proof. Let d = dimkH and choose a k-basis x1, . . . , xd of H. For each m ≥ 1 and
i = 1, . . . , d, choose an element xi,m ∈ π−1

m (xi) ⊂ Hm. By Nakayama’s lemma,
{xi,m, i = 1, . . . , d} is an Ām-basis of Hm. The algebra Tm ⊂ End(Hm) is in fact
a subalgebra of the matrix algebra M(d, Ām) and thus φm can be viewed as a
homomorphism

µm : B̄ → M(d, Ām)

of Ā-algebras. Now for each m ≥ 1 and j = 1, . . . , n, choose a lift νm(Xj) of µm(Xj)
in M(d, Ā). Now B̄n ×Rn ×M(d, Ā)n is compact, hence the sequence

sm = (cm(S1), . . . , cm(Sn), ψm(X1), . . . , ψm(Xn), νm(X1), . . . , νm(Xn))

has a convergent subsequence smα
. Denote the limit of this convergent subsequence

(c∞(S1), . . . , c∞(Sn), ψ∞(X1), . . . , ψ∞(Xn), ν∞(X1), . . . , ν∞(Xn)).

Obviously c∞ and ψ∞ define k-algebra homomorphisms c∞ : Ā → B̄ and ψ∞ :
B̄ → R. I claim that ν∞ also extends, necessarily uniquely, to a k-algebra homo-
morphism ν∞ : B̄ → M(d, Ā). It suffices to show that the ν∞(Xj) commute as
operators on H, and this is clear, because modulo any mα power of the maximal
ideal of Ā, ν∞(Xj) is congruent to µmα

(Xj) for all j. We thus have a Ā-algebra
action of B̄ on H∞ = Ād; this just says that

ν∞ ◦ φ∞ : Ā → M(d, Ā)

is the natural inclusion, which is obvious by construction. Moreover ψ∞ is surjec-
tive, ψ∞ ◦ c∞(n) = 0, and H∞/nH∞ is isomorphic to H as B̄-module.

Now H∞ is a free Ā-module, hence c∞(S1), . . . , c∞(Sn) is an H∞-regular sequence.
Thus the B̄ depth of H∞ is at least n; but since B̄ is itself regular of dimension n,
depthB̄H∞ = n. The Auslander-Buchsbaum-Serre theorem implies H∞ has finite
projective dimension over B̄. Now we apply the Auslander-Buchsbaum formula:

depthB̄H∞ + proj. dimB̄H∞ = depth B̄

which implies proj. dimB̄H∞ = 0, hence that H∞ is free over B̄. But this in turn
implies that H is free over B̄/φ∞(n)B̄, thus that the latter ring is zero-dimensional,
since H is finite-dimensional over k. In particular, AnnB̄H = φ∞(n)B̄, hence the
map ψ∞ : B̄ → R factors through an isomorphism

B̄/φ∞(n)B̄
∼
−→ R

which means both that H is free over R and that R is the zero-dimensional quotient
of the n-dimensional local ring B̄ by an ideal generated by n-elements, hence that
R is a complete intersection.

The hypotheses can be relaxed in various ways. For example, it suffices to have the
modules Hm and the maps πm and so forth as m runs over powers of p, the missing
Hm being obtained by reducing an appropriate one modulo n

m, so that conditions
(c) and (d) remain valid. In particular, one can restore the ℓ-adic integer ring O to
the construction to obtain the following variant:
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Corollary 1.6 (Diamond). Suppose R is a complete O-algebra and H is a non-
zero R-module, finite and flat over O, T the image of R in End(H). Suppose that
for each m > 0, there is a quotient Rm of B, a Bm-module Hm and a commutative
diagram

A −−−−→ Rm
φm

−−−−→ Tm ⊂ End(Hm)

ψm





y





y

πm

R
φ

−−−−→ T ⊂ End(H)

with the following properties:

(a) The horizontal maps φm and φ are surjections;
(b) There is a homomorphism cm : A → B so that Rm = B/cm(Jm), and

surjection ψm : Rm → R such that ψm ◦ cm(J0) = 0;

(c) πm is a Bm-homomorphism that induces an isomorphismHm/J0Hm
∼
−→ H;

(d) AnnĀHm = Jm and Hm is free over Ām = Ā/Jm.

Here Hm is an A-module via cm.

Then R is a complete intersection over O in B of dimension = dimO, and H is
free over R.

I have changed Bm to Rm to conform with Taylor-Wiles. Note that the image of
Jm in Ā = A/ℓA is n

ℓm , so that reduction modulo ℓ recovers the hypotheses of
Theorem 1.5, with Hm replaced by Hm/ℓHm. The conclusion then follows from
the conclusion of Theorem 1.5 by Nakayama’s Lemma.

2. Variants.

2.1. Patching. It should be clear from the statement that A arises in the appli-
cations naturally, in terms of group theory, whereas B is ad hoc. In practice, the
local O-algebras Rm are given naturally, together with maps cAm : A → Rm for all
m factoring through A/Jm. We assume all have the numerical property that

(2.2) dimk mm/(m + (mm)2) = n,

where mm is the maximal ideal of Rm. The set of isomorphism classes of Artinian O-
algebras of fixed dimension is finite, because k is finite. By the pigeonhole principle
it follows that one can extract a subsequence Rmα

ofRm such that each Rmα
/mmα−1

maps surjectively onto Rmα−1
/mmα−1 . Here one can replace mα−1 by any smaller

integer uα; the point is just that we are working with objects of finite cardinality.
Since each Rm has embedding dimension n, as in (2.2), one can choose a compatible
system of generators Xmα,j of the mmα

(modulo the maximal ideal of O) and define
maps B → Rmα

by sending each Xj to Xmα,j . In this way we construct B and the
maps ψm; the maps cm are any lifts to B of cAm.

2.3. Double patching.

An important variant was introduced by Taylor in his article [T]. In this situation
it is convenient to fix an ℓ-adic integer ring O and two complete (commutative) O-

algebras O• and O′
• of finite type such that O•/m

∼
−→ O′

•/m as k = O/m-algebras.
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We define A = O•[[S1, . . . , Sn]], A
′ = O′

•[[S1, . . . , Sn]], so that we have a fixed
isomorphism

(2.3.1) a : Ā
∼
−→ Ā′

Finally, we assume we are given two families of diagrams:

A
cA

m−−−−→ Rm
φm

−−−−→ End(Hm)

A′
cA,′

m−−−−→ R′
m

φ′

m−−−−→ End(H ′
m)

where cAm (resp. cA,′m ) factors through A/Jm (resp. A′/J ′
m), together with natural

isomorphisms
rm : R̄m

∼
−→ R̄′

m

satisfying
c̄A,′m ◦ a = c̄Am

for all m, with the obvious notation. We also assume we are given isomorphisms

hm : H̄m
∼
−→ H̄ ′

m

that are compatible with the previous maps in the obvious sense that

ehm ◦ φ̄m = φ̄′m ◦ rm

where ehm : End(H̄m)
∼

−→ End(H̄ ′
m) is the map induced from hm. Finally, we

assume that for all m,

(2.3.2) dimk mm/(m• + (mm)2) = dimk m
′
m/(m

′
• + (m′

m)2) = n,

where here m
′
m is the maximal ideal of R′

m.

Proposition 2.3.3. Under the above hypotheses, we can find an infinite sequence
of integers mα such that there are surjective maps

Rmα
→ Rmα−1

; R′
mα

→ R′
mα−1

;

Hmα
→ Hmα−1

; H ′
mα

→ H ′
mα−1

;

compatible with each other and with the isomorphisms rmα
, hmα

in characteristic ℓ.
In this way, as m runs through the mα, we obtain compatible families of diagrams

A
cA

m−−−−→ Rm
φm

−−−−→ End(Hm)

ψm





y





y

πm

R
φ

−−−−→ End(H)
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A′
cA,′

m−−−−→ R′
m

φ′

m−−−−→ End(H ′
m)

ψ′

m





y





y

πm

R′ φ
−−−−→ End(H ′)

satisfying
ψ̄′
m ◦ rm = ψ̄m.

Finally, Rm and R′
m can be replaced by quotients Bm and B′

m of B and B′, respec-
tively, with the obvious notation.

Since O• and O′
• are not local rings, the depth arguments above cannot be applied

as such. Taylor’s patching construction is more complicated than the one indicated
here, since additional structures need to be respected, but the main point is that
he considers a situation in which the depth argument does not apply to the Rm
but does apply to the R′

m. This will be explained later.


