National University of Singapore (NUS)

February 9, 2017

On a question of B. Mazur and the density of rational points on Abelian varieties

Michel Waldschmidt

A question raised by B. Mazur suggests the following conjecture: Let A be a simple Abelian variety defined over a real number field K. Denote by $A(\mathbf{R})$ the Lie group of its real points and by $A(\mathbf{R})^0$ the connected component of the origin. Then the group $\mathbf{Z}P$ generated by any point P of infinite order in $A(K) \cap A(\mathbf{R})^0$ is dense in $A(\mathbf{R})^0$.

Transcendence methods yield weaker statements like the following: Let A be a simple Abelian variety of dimension d defined over a number field K embedded in \mathbf{R} . Let Γ be a subgroup of $A(K) \cap A(\mathbf{R})^0$ of rank $\geq d^2 - d + 1$. Then Γ is dense in $A(\mathbf{R})^0$.

Some results can also be obtained on the density in $A(\mathbf{C})$ of subgroups of A(K), when K is any number field embedded into the field \mathbf{C} of complex numbers.

Michel WALDSCHMIDT Sorbonne Universités UPMC Univ Paris 06 UMR 7586 IMJ-PRG F - 75005 Paris, FRANCE michel.waldschmidt@imj-prg.fr http://www.imj-prg.fr/~michel.waldschmidt/