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POLYA’S THEOREM BY SCHNEIDER’S METHOD
By
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Dedicated to Professor Th. Schneider on his 65th birthday

A well known theorem of G. Pélya states that 27 is the smallest transcendental
entire function with integral values at all positive integral points z; more precisely,
if fis an entire function satisfying f(m)€Z for all n€N, and

. 1
M lia sup - Log |f|x = Log2,

(where |flg=sup |f(z)]), then f is a polynomial.
[z}=R
We give here a new proof of this theorem, with a somewhat worse constant
in place of Log?2, but which allows some further generalisations.

Notations. We denote by N, Z, Q, C the non-negative rational integers, the
rational integers, the rational numbers and the complex numbers, respectively.
When « is an algebraic number, we denote by s(x)=max {Log |&|, Log d(x)} the
size of o (see for instance [3], § 1.2). For R>0, By is the set {z€C; [z|=R}. Finally,

when A¢N and z€C, we define [i] by

(;) _ z(z—l)..’.l(!z——h+1) .

We shall use only the trivial bounds

z
k
for |zZ|=R and 1=h=H.

The main result of this paper is the following.

h H

THEOREM 1. Let K be a number field, and y,, vy two positive real numbers. Then
there exists an effectively computable number C, depending only on vy, y, and [K: Q],
with the following property:

Let S be a subset of Z, with Card SN Br=y,R for all sufficiently large R;
let f,g be two entire functions satisfying

f)
g(n)
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g(n) =0 and €K forall ncS,
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such that for all sufficiently large R,
1 (f (n))
Logi——; s|—=|t =
SN B "g{lg(n)!’ el = 1%

max {Log |g|z; Log!|f[z} = R/C.

Then flg is a rational function.

and

We obtain Pdlya’s theorem (with the constant Log 2 in (1) replaced by 1/C)
by setting
S=N;p=7=1,g=1; K=Q.
(When m€Z, then s(m)=Log |m|). A computation® of C by the present method
leads to C=283, and it is an interesting problem to obtain by this way the best

possible constant =1.44....

1
Log2

ProoF oF THEOREM 1. Let k, be an integer with k,>24/y,, where d=[K:Q],
and let /, be a real number with 25/ky<hy<7y, (for instance ko=[25/y5]+1, hy=
=(y4/2)+(8/ky)). Let N be a sufficiently large integer; ¢,, ¢,, c; will denote positive

constants which are effectively (and easily) computable in terms of y,, y;, 9
(and hg, ky).

First step. We construct rational integers
Ay ke (O§h<h0N; Oékéko"“l),
of absolute value less than exp (¢; N), not all zero, such that the meromorphic function

Fiz)= 2 2 Gk (Z;;) (jg"((zz))]k

0sh<hyN 0=k<k,

satisfies
F@m)=0 forall ncSNBy.

We have to solve a system of at most 2N+ 1 linear equations, with at least
hokoN unknowns, and with coefficients in K; for n€SM By, the numbers

n) (£ ]
— = ; 0= k
(h)[g(n) O=h<hN k= ko)
have a common denominator bounded by y,kN, and a size bounded by
(ho+1+kop,) N. Hence Lemma 1.3.1 of [3] gives a non trivial solution @, , with
Log max |an, il <N

Second step. For mcS, either F(m)=0, or Log|F(m)|=—c,lm]|.

The denominator of F(m) is bounded by y;k,|m|, and the size of F(m) is
bounded by
Log[ko(ho N+ D]+ c; N+(jm|+ho N) Log 2+, ko [m].

i Made by A. Escassut and M. Mignotte.
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The basic inequality
—20s(e) =Loglx| forall wckK, a0

(see [3], (1.2.3)) for |m|=N, and the first step for [m|=N, give the result.
Third step: induction. Define G(z)=(g(z))**- F(z). Then, for all integers M =N,

Dy F(m)y=10 for all meSNBy,
and
(II)M: LOg [G'M - —C3M7 With 63 = ko'y1+C2.

The first step proves (I)y, and (II),= (1), is a consequence of the second step
and of the hypothesis on the lower bound for |g(m)|. The property “(I),, for all M
implies F=0, which means that f/g is an algebraic function (and consequently
a rational function, because f/g is meromorphic in C). Now, to conclude the proof
of Theorem 1, it is sufficient to prove (I)y=ID)x 1.

Assume (1), is true. Then, for R>M, we get from Schwarz lemma

R +(M+1)

Log |Glay11 = Log QGIR—)’oMLOgm-
[Cf. Lemma 6.2.1 of [3], where the inequality

Rg-—ZEj
Ry(z—2z;)

- Ri—Rye
- Ry(Ry+0)’

[Z! = Rl: Izjl = g,

can be sharpened to?
Rg - ZZj
Ry(z—2z))

- R+ R0 ]
~ R(R+0)’

We bound |G|y for R=M:

R
Log |G|z = Log[(he N+ 1)k0]+c1N+hoN[1+Log[h &
0

R
Choose R=[l(M+1), with /, sufficiently large, say
z‘%ﬁ—? Log Iy = max {cg; 2hy+c;+7y,—hy Log hy}.
Then

R+(M+1)? A

%Log?._R(A_lTI)— %)’nLogi,

and we obtain

2 2kl
Log [Glurs1 =<~ {2 Go—ho) Log lp—2eled g,

which is < —c; M when C is sufficiently large. This proves Theorem 1.

* This was pointed out to me by J. Dufresnoy and H. L. Montgomery.

Acta Mathematica Academiae Scientiarum Hungaricae 31, 1978



24 M. WALDSCHMIDT

It would be interesting to generalize Theorem 1 to more general sets S, for
example to SCZ[i]; the corresponding generalisation of Pdlya’s theorem is due
to FukAsawa and GEL’FOND [2]: if f is an entire function satisfying f(a+ib)€Z[i],
when a-+ibeZ[i], and
. . 1 v
2 limsup -5 Log |f]x < e
then f is a polynomial.

With the present method, we can deal only with a stronger hypothesis (where
1/R? is replaced by (Log R)/R? in (2)), because we do not know interpolation poly-

nomials in Z[{] generalizing the polynomials i in Z; this problem?® is connected

with those of the measure of irrationality (or transcendence) of ¢, and of the al-
gebraic independence of 7 and €™

On the other hand, we can consider more general sets of algebraic numbers.
Using the method of proof of Theorem 1, we get:

TeeorEM 2. Let K be a number field, v,, y, positive real numbers, and
Y(AR)

for all A=1. Then there exists a constant C=>=0 with the following property: Let
S be a subset of K with

Y:[0, + =)=[0, + o) a positive real valued function satisfying li%l sup

Card SNBg = ¥(R)
and

aen;%igk s(@)=7y,LogR

Jor all sufficiently large R. Let f, g be two entire functions, satisfying

gy =0 and %EK for a€S,

such that for all sufficiently large R,

L (O . ¥®
<2905, {Log lg(@)]’ S(g(a) ]} =N TogR’

¥ (R)
ClLogR’

and

max {Log |f|x; Log lglz} =
Then f|g is a rational function.

We obtain as a corollary Gel'fond Schneider’s theorem on the transcendence
of a® (choose: f(z)=a*; g(z)=1; Y (R)=R® Sc{h+kb, h,kcZ}.)

The proof of Theorem 2 is essentially the same as that of Theorem 1; first
we assume that the function R—¥(R)/Log R is non decreasing (otherwise we
replace P (R) by (Log R)-Rigg P(R)/Log R’); then we replace the polynomials

3 Concerning this problem, see a forthcoming paper by Douglas Hensley: “Polynomials with
Gaussian integer values at Gaussian integers,”
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[:‘Zz) by z" in the preceeding proof, and the parameters 4, N, ko by [h, ¥ (N)/Log N1,
[k, Log N1, respectively.

Finally, we mention two possible generalisations of Theorems 1 and 2. Firstly
Polya’s theorem has been generalized to functions of several variables by A. BAKER
[1]; using the interpolation formulas in [1], it is easy to derive the corresponding
generalisation of the present paper. Secondly, it is possible to replace the number
field K by the field of algebraic numbers, provided that we assume a growth con-

dition on the function
R max [Q(cx f(:Q],
(see {3], Exercise 2.2.).
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