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Assignment 1

Let d > 1 be an integer and cq,...,cq complex numbers with ¢; # 0.
Define
P(T)=T"—e,T" — -+ — ¢y 1T — cq € C[T).
Denote by 71,..., 7 the distinct roots of P in C, and, for 1 < j </, by ¢;
the multiplicity of the root ;, so that

¢
P(T) = [ (T = )"
j=1
Denote by E the vector space over C of the sequences which satisfy the
linear recurrence relation of order d given by

Uptg = ClUptd—1 + -+ - + cqu, forn > 0. (1)

(1). Prove that E is a complex vector subspace of CY of dimension d.
(2). The goal of this exercise is to prove that a basis of E is given by the d
sequences '

(']), ey A<G<t 0<i<t;—1) (2)
(a) Prove this result in the special case t; = --- =t, = 1.

(b) Prove this result in the special case ¢ = 1.

Hint.
Check, forn >0and 0 <i:<d-—1,

g(—l)"’ (Z) (d+n—k) =0.

0



(c) From (a) and (b), deduce this result in the special case d = 2.

Consider now the general case.

(d) Prove that the d sequences (2) satisfy (I).
(e) Prove that the d sequences give a basis of E.

Hint. There are several ways of proving (b), (d) and (e). You may use some
of the following suggestions.

(i) For ¢ > 0, check that the map

' C[T) — C[T]
(TdiT)Z DD a, T — > h>0 aph'T"

is a linear map. We agree that h* = 1 for i = h = 0. Check, for n > 0,
1<j<fland 0<e<t; -1,

(T%) (T"P)(;) = 0.

Deduce
d

(n+d)yy = (n+d-k)igy ™ (n>0),
k=1
with the convention that for & = n + d, the term (n + d — k)" takes the
value 1 for ¢ = 0 and the value 0 for + > 1. Deduce that for 1 < j < ¢ and
0 <14 <t; — 1, the sequence (ni%‘fb)mo satisfies .

(ii) Write the linear recurrence relation in a matrix form

Un+1 = CUn
with
" 0 1 0 0
Un = : , C=1": : : S
. : 0O 0 0 - 1
et Cq Cqg-1 C4—2 "+ C

Write the matrix C' in its Jordan normal form.



(iii) Introduce the formal power series

= Z up, ™.

n>0

Check that U(T') is a rational fraction, with denominator
d ¢
1= T =T'P(1/T) = [[(1 — 1),
i=1 j=1

while the numerator is of degree < d. Use a partial fraction decomposition.
Develop (1 —~;T)~"! for 0 < i < t; —1 as a power series expansion. Deduce
that the d sequences generate E.

(iv) Consider the matrix A made of ¢ vertical blocks Ay, As, ..., A, where for
1 <5 <4, Ajis the t; x d matrix

Loy 2 e v At

0 1 Dy o (T (T (7
S K S o e 1 (D

00 0 1 (") ()"

Note that Z =0forr <k.

Show that the d columns of A are linearly independent over C.
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Assignment 1 — Solution

(1). We have seen in the course that E is a vector subspace of CY of dimension
d. Let us repeat the proofs. The sum of two elements in F is in F, the product
of an element in E with a constant is in F, hence F is a vector subspace of
CN. We now check that a basis of E is given by the d so-called impulse
sequences e(® ... el defined by the initial conditions

eld) = din (0<j,n<d-1),

n

d;n being the Kronecker symbol

1 if j=mn,
6jn: . .
0 if j#n.

We first check that {e®, ... e(4=11 is a generating set for E. Let (uy)n>0 be
in E. By the definition of e, ..., e@ D for 0 <n < d— 1 we have

(d-1)

n .

Uy = qug‘” + ule,(ll) + -t uge

Since both u and upe® + ue® + -« 4+ ug_1€@ Y are in E, it follows that
there relations are true for all n > 0. In other words we have

u = uoe(o) + u1e(1) + o o _|_ udfle(dil),

Hence {e®, ... e@D} is a generating set for E.
(n)

i )ogi,ngdq
., €%V are linearly independent.

Since the matrix (e is the identity matrix, the d sequences

£(0)

P



(2) The answers have also been given during the course. Here they are.
(a) When t; =--- =t, =1 we have £ = d and 7,...,7,4 are d distinct roots
of P. In this case the d sequences (7}),>0 satisfy :

7;7+d2017;‘+d_1+---+cd7f forn>0and 1< j5<d

and are linearly independent since the determinant

1L v v - 7
1oy 73 - !

is not zero (Vandermonde).
(b) When ¢ = 1 we have t; = d, P(T) = (T — v,)%. We want to prove that
the d sequences

(Mo 0<i<d—1 (3)

give a basis for E. We first check that they belong to E. Since

. A d\ ..,
(T—m)* = T?—dT? 171+(2)Td 27?—~~+(—1)’“(k)Td it (=1 N,

the linear recurrence relations of which this polynomial is the characteristic
polynomial is

d . fd n
Untd = AUptd—171— (2) un+d72ﬁ)/%+' : ‘+(—1)k ! (k) un+dfk7f‘|" : ’+<_1)d+1un71 .

Hence the relation that we need to prove is

(n+d)" = d(n+d—1)"— (;i) (n+d—2)"+- - ._|_(_1)k—1 (Z) (nt+d—Fk)i+-- _+(_1)d+1ni
(4)

for 0 <i<d-—1and n > 0. Here is a proof.
For n > 0 the polynomial 7"(T — 1)¢ has a zero at T = 1 of multiplicity
d, hence for 1 <7 < d— 1 and n > 0 the polynomial

(T(%)i (T™(T — 1))

2



vanishes at 7' = 1. From

Tn(T—l)d — Tn+d_dTn+d—l+ (;l) Tn+d—2_. . _+(_1)k (Z) Tn+d—k+_ . '—i-(—l)dTn
and .
rdY (T") = n'1"
dr
we deduce

(T%) (Tn(T — 1)d) — (n + d)iTn+d _ d(n +d— 1)iTn+d,1

d , d , .
+<2> (n +d— 2)2Tn+d72 o (_1)k (k> (n +d— k)zTn+dfk 4 (_1)dnzTn.
Substituting 7' = 1 gives .

That these d sequences give a basis for £ amounts to saying that the
matrix

1y oo o

0 m 29 33 - mp e (A=
0 m 4yf  9F - oty (d-1)
0y 297197 39143 o pdtlyn o (d— 1)t

is regular. Since 7, is not zero, this is equivalent to saying that the determi-
nant of the matrix

01 2 3 - n - (d=1)
01 4 9 -« n2 o (d—1)?
0 1 2d—1 3d—1 nd—l (d_l)d—l

is nonzero. Since the polynomial

XX-1)--(X—=—n+1)
n!




has degree n, by linear combinations of the rows we see that this determinant
is the product by 112! - - - (d—1)! with the determinant of the upper triangular

matrix
1 1 1

00 0 0 o (1) o (4
0060 0 1

hence it is not zero.
(¢) When d = 2, the polynomial P has degree 2, and either
e P has two distinct roots v; and 7., which means ¢ = d = 2, t; =ty = 1.
In this case we are in the situation of (a), the two sequences (7]),>0 and
(78 )n>0 give a basis of F,
or
e P has a double root 7, which means ¢ = 1, t; = 2, and in this case we
are in the situation of (b). The sequence (nv]),>o satisfies (1) and the two
sequences (77)n>0 and (n3]),>o give a basis of E.

In fact Quizz 1 gives a direct answer to (c).

(e) We use the method suggested by (i) to prove that the d sequences (2)) are
in E.

Since v, is a root of multiplicity t; of T"P(T'), y; is a root of the polyno-
mials

(d%) (" P(T))

for 0 <7 <t; —1. For 0 <i <t; — 1, the polynomial (Td%)i (T"P(T)) is

a linear combinations of the polynomials (d%)k (T"P(T)) with 0 < k < 4.
Hence for 1 < j < £ and 0 < ¢ < t; — 1 the number v; is a root of the

polynomials ‘
d 7

T— ) (T"P(T)).

(747) @p)

From
TnP(T) — Tn-‘rd o ClTn—i—d—l L CdTn



we deduce

d\’ ‘ | |
(T_dT> (TnP(T)) = (n + d)lT’rH—d _ cl(n +d— 1)2Tn+d—1 e en'T™
Since v; is a root of this polynomial, we get, for n > 0, 1 < j < ¢ and
0<i<ty,

(n+ d)i,y;z-&-d =ci(n+d— 1)z'%n+d—1 o cdni%ﬁ.

This means that the sequences (ni’ﬁ)nzo for 1 < j </, 0<i<t; satisty
(1)-
(e) We use the method suggested by (ii) to prove that the d sequences
generate F.

Let (u,)n>o be an element in E. Write the linear recurrence relation in a
matrix form

Un+1 = CUn
with
U 0 1 0 0
unil U 1 0
U, = . , C=|": : : N
u / 0 0 0o --- 1
et Cq Cd—1 Cqg—o -+ - e}

Write the matrix C' in its Jordan normal form :

J 0 -+ 0
1 0 JQ 0
P—CP=J where J=| . .
o 0 - J
and
o1 0 0 0
0 v 1 0 0
Jj = E 1<i</y
7710 0 o0 Lo | =90
000 - 7 1
0 00 0




For n > 0 we have

Jr 0 0
0 Jp 0
Jn - . . .
0 0 Jr
and, for 1 <5 </,
LG L (Y B (")) Zz
oy (D (1,2 5)
= : : :
0 0 0 ()
0 0 0 7
0 0 0 0

From the matrix relation U, = C"U, we deduce

U, = P LJ"PU,.

Hence there exist complex numbers c¢;; such that, for all n > 0,

¢ tj—1
E Cz]n 7]

j=1 =0

This proves that any element of E is a linear combination of the sequences
, hence that these d sequences are a system of generators of E. Since E

has dimension d, it shows that these sequences are a basis of F.

(e) We use the method suggested by (iii) to prove again that the d sequences

generate F.

The left hand side of the product (1 — Zle ciTi) U(T) is a telescoping

J
E CiUj—

series
d—1

-3

Jj=0

d
(1 - ch-TZ) U(T <uj —
=1

Hence U(T) is a rational fraction, with denominator

=1

d

1— Z CiTi

i=1

6

)1

L
1/T:H1_'YJ ’




while the numerator is of degree < d. Using a partial fraction decomposition,
we write this rational fraction as

¢
qij
U(T) = SR - B
j; i=0 (1= T)

For 1 < j </{, we develop (1 —~,;T)~""! as a power series expansion :

1 1 (d)Z 1 Z(n—l—l)(n—i—ﬂ?)(n—i—z)’nyn

(1—~T)*t iyt \dT ) 1—~T

n>0

It follows that u,, is a linear combination of the elements 7" with coefficients
being polynomials of degree < ¢; evaluated at n.

(e) We use the method suggested by (iii) to prove again that the d sequences
are linearly independent.

This amounts to showing that the determinant of the matrix A is different
from 0. Let us define s; to be

Sj:t1+"'+tj,1 for 1§j§£Wlth 8120.

For1<j</¢,0<i<t;—1, 0<k<d-—1,the (s;+1i,k) entry of the

matrix A is '
1/ d\ .. E\
il <d_2> B (i)vj '

T=~;
Let Cy,...,Cq_1 denote the d columns of A and let by,...,b;_1 be complex
numbers such that

bOCQ + -+ bd_lCd_l =0.

The left side of this equality is an element of C¢, the d components of which
are all 0, and these d relations mean that the polynomial

bo+ b7+ -+ by T

vanishes at the point «; with multiplicity at least ¢; for 1 < j < £. Since
t +---+1t, =d, we deduce that bg=--- =by_1 = 0.
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