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Assignment 1

Let d ≥ 1 be an integer and c1, . . . , cd complex numbers with cd 6= 0.
Define

P (T ) = T d − c1T d−1 − · · · − cd−1T − cd ∈ C[T ].

Denote by γ1, . . . , γ` the distinct roots of P in C, and, for 1 ≤ j ≤ `, by tj
the multiplicity of the root γj, so that

P (T ) =
∏̀
j=1

(T − γj)tj

with tj ≥ 1, t1 + · · ·+ t` = d .
Denote by E the vector space over C of the sequences which satisfy the

linear recurrence relation of order d given by

un+d = c1un+d−1 + · · ·+ cdun for n ≥ 0. (1)

(1). Prove that E is a complex vector subspace of CN of dimension d.
(2). The goal of this exercise is to prove that a basis of E is given by the d
sequences (

niγnj
)
n∈N (1 ≤ j ≤ `, 0 ≤ i ≤ tj − 1). (2)

(a) Prove this result in the special case t1 = · · · = t` = 1.
(b) Prove this result in the special case ` = 1.

Hint.

Check, for n ≥ 0 and 0 ≤ i ≤ d− 1,

d∑
k=0

(−1)k
(
d

k

)
(d+ n− k)i = 0.



(c) From (a) and (b), deduce this result in the special case d = 2.
Consider now the general case.
(d) Prove that the d sequences (2) satisfy (1).
(e) Prove that the d sequences (2) give a basis of E.

Hint. There are several ways of proving (b), (d) and (e). You may use some
of the following suggestions.

(i) For i ≥ 0, check that the map

C[T ] −→ C[T ](
T d

dT

)i
:
∑

h≥0 ahT
h 7−→

∑
h≥0 ahh

iT h

is a linear map. We agree that hi = 1 for i = h = 0. Check, for n ≥ 0,
1 ≤ j ≤ ` and 0 ≤ i ≤ tj − 1 ,(

T
d

dT

)i
(T nP )(γj) = 0.

Deduce

(n+ d)iγn+dj =
d∑

k=1

(n+ d− k)ickγ
n+d−k
j (n ≥ 0),

with the convention that for k = n + d, the term (n + d − k)i takes the
value 1 for i = 0 and the value 0 for i ≥ 1. Deduce that for 1 ≤ j ≤ ` and
0 ≤ i ≤ tj − 1, the sequence

(
niγaj

)
n≥0 satisfies (1).

(ii) Write the linear recurrence relation in a matrix form

Un+1 = CUn

with

Un =


un
un+1

...
un+d−1

 , C =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
cd cd−1 cd−2 · · · c1

 .

Write the matrix C in its Jordan normal form.
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(iii) Introduce the formal power series

U(T ) =
∑
n≥0

unT
n.

Check that U(T ) is a rational fraction, with denominator

1−
d∑
i=1

ciT
i = T dP (1/T ) =

∏̀
j=1

(1− γjT )tj ,

while the numerator is of degree < d. Use a partial fraction decomposition.
Develop (1− γjT )−i−1 for 0 ≤ i ≤ tj − 1 as a power series expansion. Deduce
that the d sequences (2) generate E.

(iv) Consider the matrix A made of ` vertical blocks A1, A2, . . . , A` where for
1 ≤ j ≤ `, Aj is the tj × d matrix

Aj =



1 γj γ2j · · · γ
tj−1
j γ

tj
j · · · γd−1j

0 1
(
2
1

)
γj . . .

(
tj−1
1

)
γ
tj−2
j

(
tj
1

)
γ
tj−1
j . . .

(
d−1
1

)
γd−2j

0 0 1 . . .
(
tj−1
2

)
γ
tj−3
j

(
tj
2

)
γ
tj−2
j . . .

(
d−1
2

)
γd−3j

...
...

...
. . .

...
...

. . .
...

0 0 0 . . . 1
(
tj
tj−1

)
γj · · ·

(
d−1
tj−1

)
γ
d−tj
j


.

Note that

(
r

k

)
= 0 for r < k.

Show that the d columns of A are linearly independent over C.
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Assignment 1 — Solution

(1). We have seen in the course that E is a vector subspace of CN of dimension
d. Let us repeat the proofs. The sum of two elements in E is in E, the product
of an element in E with a constant is in E, hence E is a vector subspace of
CN. We now check that a basis of E is given by the d so–called impulse
sequences e(0), . . . , e(d−1) defined by the initial conditions

e(j)n = δjn (0 ≤ j, n ≤ d− 1),

δjn being the Kronecker symbol

δjn =

{
1 if j = n,

0 if j 6= n.

We first check that {e(0), . . . , e(d−1)} is a generating set for E. Let (un)n≥0 be
in E. By the definition of e(0), . . . , e(d−1), for 0 ≤ n ≤ d− 1 we have

un = u0e
(0)
n + u1e

(1)
n + · · ·+ ud−1e

(d−1)
n .

Since both u and u0e
(0) + u1e

(1) + · · · + ud−1e
(d−1) are in E, it follows that

there relations are true for all n ≥ 0. In other words we have

u = u0e
(0) + u1e

(1) + · · ·+ ud−1e
(d−1).

Hence {e(0), . . . , e(d−1)} is a generating set for E.

Since the matrix
(
e
(n)
i

)
0≤i,n≤d−1 is the identity matrix, the d sequences

e(0), . . . , e(d−1) are linearly independent.
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(2) The answers have also been given during the course. Here they are.
(a) When t1 = · · · = t` = 1 we have ` = d and γ1, . . . , γd are d distinct roots
of P . In this case the d sequences (γnj )n≥0 satisfy (1) :

γn+dj = c1γ
n+d−1
j + · · ·+ cdγ

n
j for n ≥ 0 and 1 ≤ j ≤ d

and are linearly independent since the determinant
1 γ1 γ21 · · · γd−11

1 γ2 γ22 · · · γd−12
...

...
...

. . .
...

1 γd γ2d · · · γd−1d


is not zero (Vandermonde).
(b) When ` = 1 we have t1 = d, P (T ) = (T − γ1)d. We want to prove that
the d sequences

(niγn1 )n≥0 0 ≤ i ≤ d− 1 (3)

give a basis for E. We first check that they belong to E. Since

(T−γ1)d = T d−dT d−1γ1+
(
d

2

)
T d−2γ21−· · ·+(−1)k

(
d

k

)
T d−kγk1+· · ·+(−1)dγd1 ,

the linear recurrence relations of which this polynomial is the characteristic
polynomial is

un+d = dun+d−1γ1−
(
d

2

)
un+d−2γ

2
1+· · ·+(−1)k−1

(
d

k

)
un+d−kγ

k
1+· · ·+(−1)d+1unγ

n
1 .

Hence the relation that we need to prove is

(n+d)i = d(n+d−1)i−
(
d

2

)
(n+d−2)i+· · ·+(−1)k−1

(
d

k

)
(n+d−k)i+· · ·+(−1)d+1ni

(4)
for 0 ≤ i ≤ d− 1 and n ≥ 0. Here is a proof.

For n ≥ 0 the polynomial T n(T − 1)d has a zero at T = 1 of multiplicity
d, hence for 1 ≤ i ≤ d− 1 and n ≥ 0 the polynomial(

T
d

dT

)i (
T n(T − 1)d

)
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vanishes at T = 1. From

T n(T−1)d = T n+d−dT n+d−1+
(
d

2

)
T n+d−2−· · ·+(−1)k

(
d

k

)
T n+d−k+· · ·+(−1)dT n

and (
T

d

dT

)i
(T h) = hiT h

we deduce(
T

d

dT

)i (
T n(T − 1)d

)
= (n+ d)iT n+d − d(n+ d− 1)iT n+d−1

+

(
d

2

)
(n+ d− 2)iT n+d−2 − · · ·+ (−1)k

(
d

k

)
(n+ d− k)iT n+d−k + · · ·+ (−1)dniT n.

Substituting T = 1 gives (4).
That these d sequences (3) give a basis for E amounts to saying that the

matrix 
1 γ1 γ21 γ31 · · · γn1 · · · γd−11

0 γ1 2γ21 3γ31 · · · nγn1 · · · (d− 1)γd−11

0 γ1 4γ21 9γ31 · · · n2γn1 · · · (d− 1)2γd−11
...

...
...

. . . . . .
...

. . .
...

0 γ1 2d−1γ21 3d−1γ31 · · · nd−1γn1 · · · (d− 1)d−1γd−11


is regular. Since γ1 is not zero, this is equivalent to saying that the determi-
nant of the matrix

1 1 1 1 · · · 1 · · · 1
0 1 2 3 · · · n · · · (d− 1)
0 1 4 9 · · · n2 · · · (d− 1)2

...
...

...
. . . . . .

...
. . .

...
0 1 2d−1 3d−1 · · · nd−1 · · · (d− 1)d−1


is nonzero. Since the polynomial

X(X − 1) · · · (X − n+ 1)

n!
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has degree n, by linear combinations of the rows we see that this determinant
is the product by 1!2! · · · (d−1)! with the determinant of the upper triangular
matrix 

1 1 1 1 · · · 1 · · · 1

0 1
(
2
1

) (
3
1

)
· · ·

(
n
1

)
· · ·

(
d−1
1

)
0 0 1

(
3
2

)
· · ·

(
n
2

)
· · ·

(
d−1
2

)
...

...
...

. . . . . .
...

. . .
...

0 0 0 0 · · ·
(
n
k

)
· · ·

(
d−1
k

)
...

...
...

. . . . . .
...

. . .
...

0 0 0 0 · · · 0 · · · 1


hence it is not zero.
(c) When d = 2, the polynomial P has degree 2, and either
• P has two distinct roots γ1 and γ2, which means ` = d = 2, t1 = t2 = 1.
In this case we are in the situation of (a), the two sequences (γn1 )n≥0 and
(γn2 )n≥0 give a basis of E,
or
• P has a double root γ, which means ` = 1, t1 = 2, and in this case we
are in the situation of (b). The sequence (nγn1 )n≥0 satisfies (1) and the two
sequences (γn1 )n≥0 and (nγn1 )n≥0 give a basis of E.

In fact Quizz 1 gives a direct answer to (c).

(e) We use the method suggested by (i) to prove that the d sequences (2) are
in E.

Since γj is a root of multiplicity tj of T nP (T ), γj is a root of the polyno-
mials (

d

dT

)i
(T nP (T ))

for 0 ≤ i ≤ tj − 1. For 0 ≤ i ≤ tj − 1, the polynomial
(
T d

dT

)i
(T nP (T )) is

a linear combinations of the polynomials
(

d
dT

)k
(T nP (T )) with 0 ≤ k ≤ i.

Hence for 1 ≤ j ≤ ` and 0 ≤ i ≤ tj − 1 the number γj is a root of the
polynomials (

T
d

dT

)i
(T nP (T )).

From
T nP (T ) = T n+d − c1T n+d−1 − · · · − cdT n
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we deduce(
T

d

dT

)i
(T nP (T )) = (n+ d)iT n+d − c1(n+ d− 1)iT n+d−1 − · · · − cdniT n.

Since γj is a root of this polynomial, we get, for n ≥ 0, 1 ≤ j ≤ ` and
0 ≤ i ≤ tj,

(n+ d)iγn+dj = c1(n+ d− 1)iγn+d−1j − · · · − cdniγnj .

This means that the sequences (niγnj )n≥0 for 1 ≤ j ≤ `, 0 ≤ i ≤ tj satisfy
(1).

(e) We use the method suggested by (ii) to prove that the d sequences (2)
generate E.

Let (un)n≥0 be an element in E. Write the linear recurrence relation in a
matrix form

Un+1 = CUn

with

Un =


un
un+1

...
un+d−1

 , C =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
cd cd−1 cd−2 · · · c1

 .

Write the matrix C in its Jordan normal form :

P−1CP = J where J =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · J`


and

Jj =



γj 1 0 · · · 0 0
0 γj 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · γj 1
0 0 0 · · · 0 γj


(1 ≤ j ≤ `)
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For n ≥ 0 we have

Jn =


Jn1 0 · · · 0
0 Jn2 · · · 0
...

...
. . .

...
0 0 · · · Jn`


and, for 1 ≤ j ≤ `,

Jnj =



γnj
(
n
1

)
γn−1j

(
n
2

)
γn−2j · · ·

(
n

tj−2

)
γ
n−tj+2
j

(
n

tj−1

)
γ
n−tj+1
j

0 γnj
(
n
1

)
γn−1j · · ·

(
n

tj−3

)
γ
n−tj+3
j

(
n

tj−2

)
γ
n−tj+2
j

...
...

...
. . .

...
...

0 0 0 · · ·
(
n
1

)
γn−1j

(
n
2

)
γn−2j

0 0 0 · · · γnj
(
n
1

)
γn−1j

0 0 0 · · · 0 γnj


.

From the matrix relation Un = CnU0 we deduce

Un = P−1JnPU0.

Hence there exist complex numbers cij such that, for all n ≥ 0,

un =
∑̀
j=1

tj−1∑
i=0

cijn
iγnj .

This proves that any element of E is a linear combination of the sequences
(2), hence that these d sequences are a system of generators of E. Since E
has dimension d, it shows that these sequences (2) are a basis of E.

(e) We use the method suggested by (iii) to prove again that the d sequences
(2) generate E.

The left hand side of the product
(

1−
∑d

i=1 ciT
i
)
U(T ) is a telescoping

series (
1−

d∑
i=1

ciT
i

)
U(T ) =

d−1∑
j=0

(
uj −

j∑
i=1

ciuj−i

)
T j.

Hence U(T ) is a rational fraction, with denominator

1−
d∑
i=1

ciT
i = T dP (1/T ) =

∏̀
j=1

(1− γjT )tj ,
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while the numerator is of degree < d. Using a partial fraction decomposition,
we write this rational fraction as

U(T ) =
∑̀
j=1

tj−1∑
i=0

qij
(1− γjT )i+1

·

For 1 ≤ j ≤ ` , we develop (1− γjT )−i−1 as a power series expansion :

1

(1− γjT )i+1
=

1

i!γij

(
d

dT

)i
1

1− γjT
=
∑
n≥0

(n+ 1)(n+ 2) · · · (n+ i)

i!
γnj T

n.

It follows that un is a linear combination of the elements γnj with coefficients
being polynomials of degree < tj evaluated at n.

(e) We use the method suggested by (iii) to prove again that the d sequences
(2) are linearly independent.

This amounts to showing that the determinant of the matrix A is different
from 0. Let us define sj to be

sj = t1 + · · ·+ tj−1 for 1 ≤ j ≤ ` with s1 = 0.

For 1 ≤ j ≤ `, 0 ≤ i ≤ tj − 1, 0 ≤ k ≤ d − 1, the (sj + i, k) entry of the
matrix A is

1

i!

(
d

dT

)i
T k

∣∣∣∣∣
T=γj

=

(
k

i

)
γk−ij .

Let C0, . . . , Cd−1 denote the d columns of A and let b0, . . . , bd−1 be complex
numbers such that

b0C0 + · · ·+ bd−1Cd−1 = 0.

The left side of this equality is an element of Cd, the d components of which
are all 0, and these d relations mean that the polynomial

b0 + b1T + · · ·+ bd−1T
d−1

vanishes at the point γj with multiplicity at least tj for 1 ≤ j ≤ `. Since
t1 + · · ·+ t` = d, we deduce that b0 = · · · = bd−1 = 0.
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