Number Theory African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Assignment 1

1.

(a) Show that

- two points in \mathbb{R}^{2} lie on a line,
- five points lie on a conic,
- nine points lie on a cubic,
- 14 points lie on a quartic.
- How many points for a plane curve of degree d ?

Hint. A plane curve of degree d is the set of points $(x, y) \in \mathbb{R}^{2}$ for which a polynomial

$$
P(x, y)=\sum_{i+j \leq d} a_{i j} x^{i} y^{j}
$$

of degree d vanishes. A line is a curve of degree 1

$$
a_{00}+a_{10} x+a_{01} y=0,
$$

a conic is a curve of degree 2

$$
a_{00}+a_{10} x+a_{01} y+a_{20} x^{2}+a_{11} x y+a_{02} y^{2}=0
$$

a cubic is a curve of degree 3

$$
a_{00}+a_{10} x+a_{01} y+a_{20} x^{2}+a_{11} x y+a_{02} y^{2}+a_{30} x^{3}+a_{21} x^{2} y+a_{12} x y^{2}+a_{03} y^{3}=0,
$$ a quartic is a curve of degree 4

$$
\begin{aligned}
a_{00}+a_{10} x+a_{01} y+a_{20} x^{2}+a_{11} x y & +a_{02} y^{2}+a_{30} x^{3}+a_{21} x^{2} y+a_{12} x y^{2}+a_{03} y^{3} \\
& +a_{40} x^{4}+a_{31} x^{3} y+a_{22} x^{2} y^{2}+a_{13} x y^{3}+a_{04} y^{4}=0 .
\end{aligned}
$$

How many coefficients has a polynomial of degree d in two variables?
(b) Let d and n be two positive integers.

Show that the number of $\left(i_{1}, i_{2} \ldots, i_{n}\right)$ with $i_{k} \geq 0$ for $k=1,2, \ldots, n$ and $i_{1}+i_{2}+\cdots+i_{n} \leq d$ is the binomial coefficient

$$
\binom{d+n}{n}=\frac{(d+n)!}{d!n!} .
$$

Show that the number of $\left(i_{1}, i_{2} \ldots, i_{n}\right)$ with $i_{k} \geq 0$ for $k=1,2, \ldots, n$ and $i_{1}+i_{2}+\cdots+i_{n}=d$ is the binomial coefficient

$$
\binom{d+n-1}{n-1}=\frac{(d+n-1)!}{d!(n-1)!}
$$

Hint. One can prove the result by induction using the fact that a polynomial of degree $\leq d$ is the sum of a polynomial of degree $\leq d-1$ and a homogeneous polynomial of degree d in a unique way.
A different combinatorial proof rests on the fact that for $0 \leq k \leq m$, the number of subsets with k elements in a set with m elements is the binomial coefficient

$$
\binom{m}{k}=\frac{m!}{k!(m-k)!} .
$$

Select $n-1$ elements in a set with $d+n-1$ elements.
2. Check
$3=1+2, \quad 5=2+3, \quad 6=1+2+3, \quad 7=3+4, \quad 9=4+5, \quad 10=1+2+3+4$.
Prove that a positive integer m is the sum of two or more consecutive positive integers if and only if m is not a power of 2 .
3. Compute the gcd of $10^{100}-100$ and $10^{10}-1000$. Give explicitly a common divisor to these two numbers between 500 and 1000 .

Number Theory African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Assignment 1 - Solution

1. We start with the second part of (b).

Denote by $f(n, d)$ the dimension of the vector space of polynomials in n variables of degree $\leq d$ and by $\tilde{f}(n, d)$ the dimension of the vector space of homogeneous polynomials in n variables of degree d (including 0).

By sending one of the variables to 1 , we obtain a biojective map between the vector space of homogeneous polynomials in n variables of degree d and the vector space of polynomials in $n-1$ variables of degree $\leq d$; hence

$$
\tilde{f}(n, d)=f(n-1, d)
$$

- First proof of (b) by induction.

A polynomial of degree $\leq d$ is the sum of a polynomial of degree $\leq d-1$ and a homogeneous polynomial of degree d in a unique way
$\sum_{j_{1}+\cdots+j_{n} \leq d} a_{j_{1} \ldots j_{n}} X_{1}^{j_{1}} \cdots X_{n}^{j_{n}}=\sum_{j_{1}+\cdots+j_{n}<d} a_{j_{1} \ldots j_{n}} X_{1}^{j_{1}} \cdots X_{n}^{j_{n}}+\sum_{j_{1}+\cdots+j_{n}=d} a_{j_{1} \ldots j_{n}} X_{1}^{j_{1}} \cdots X_{n}^{j_{n}}$.
Hence

$$
f(n, d)=f(n, d-1)+\tilde{f}(n, d) .
$$

Since $\tilde{f}(n, d)=f(n-1, d)$ we deduce

$$
f(n, d)=f(n, d-1)+f(n-1, d) .
$$

Since

$$
\binom{n+d-1}{d-1}=\frac{(n+d-1)!}{n!(d-1)!}=d \frac{(n+d-1)!}{n!d!}
$$

and

$$
\binom{n-1+d}{d}=\frac{(n-1+d)!}{(n-1)!d!}=n \frac{(n+d-1)!}{n!d!}
$$

the binomial coefficient $\binom{n+d}{d}$ satisfies the same relation

$$
\binom{n+d}{d}=\binom{n+d-1}{d-1}+\binom{n-1+d}{d} .
$$

By induction on $n+d$, starting with $f(1,1)=1$, we deduce

$$
f(n, d)=\binom{n+d}{d}
$$

- Second proof of (b) (combinatoric).

Given n and d, consider $d+n-1$ dots on a straight line ; paint $n-1$ of them in blue and the other ones in red. Let i_{1} be the number of dots on the left of the first blue dot, i_{k} the number of dots between the $(k-1)$-th and the k-th blue dots, and i_{n} the number of dots on the right of the $(n-1)$-th blue dot. We have $i_{k} \geq 0$ and $i_{1}+\cdots+i_{k}=d$ (this is the number of red dots).

Conversely, given $\left(i_{1}, i_{2} \ldots, i_{n}\right)$ with $i_{k} \geq 0$ for $k=1,2, \ldots, n$ and $i_{1}+$ $i_{2}+\cdots+i_{n}=d$, paint d dots in red and insert $n-1$ blue dots, one between the $i_{1}+i_{2}+\cdots+i_{k}$-th red dot and the $i_{1}+i_{2}+\cdots+i_{k+1}-$ th red dot for $1 \leq k \leq n-1$. This produces a subset with $n-1$ elements in a set with $d+n-1$ elements, and the number of such subsets is the binomial coefficient.

This shows that the dimension of the vector space of polynomials in n variables of degree $\leq d-1$ is the same as the dimension of the vector space of homogeneous polynomials in n variables of degree $\leq d$, namely

$$
\binom{d+n-1}{n-1}=\frac{(d+n-1)!}{d!(n-1)!}
$$

We deduce the first part of (b): if $i_{1}, i_{2}, \ldots, i_{n-1}$ satisfy $i_{k} \geq 0$ for $k=$ $1,2, \ldots, n-1$ and $i_{1}+i_{2}+\cdots+i_{n-1} \leq d$, then set $i_{n}=d-\left(i_{1}+i_{2}+\cdots+i_{n-1}\right)$ to get $i_{1}+i_{2}+\cdots+i_{n}=d$.

Since

$$
\binom{d+2}{2}=\frac{(d+1)(d+2)}{2}
$$

a polynomial in two variables of degree d has $(d+1)(d+2) / 2$ coefficients. Any subset of \mathbb{R}^{2} with at most

$$
\frac{(d+1)(d+2)}{2}-1=\frac{d^{2}+3 d}{2}
$$

elements is contained in a plane curve of degree d : a system of homogeneous linear equation where the number of unknowns is larger than the number of equations has a non trivial solution. We have

$$
\frac{d^{2}+3 d}{2}= \begin{cases}2 & \text { for } d=1 \\ 5 & \text { for } d=2 \\ 9 & \text { for } d=3 \\ 14 & \text { for } d=4\end{cases}
$$

The sequence

$$
2,5,9,14,20,27,35,44,54,65,77,90,104,119,135, \ldots
$$

is A000096 in Sloane's Online Encyclopedia of Integer Sequences https://oeis.org/A000096.
2. Write $m=2^{a} b$ with $a \geq 0$ and b odd ≥ 1 and

$$
\begin{aligned}
m & =x+(x+1)+\cdots+(x+y) \\
& =1+2+\cdots+(x+y)-(1+2+\cdots+(x-1)) \\
& =\frac{(x+y)(x+y+1)}{2}-\frac{x(x-1)}{2} \\
& =\frac{1}{2} y(2 x+y+1) \\
& =2^{a} b
\end{aligned}
$$

with $x \geq 0$ and $y \geq 1$. If y is odd and ≥ 3 then m has an odd factor, y. If $y=1$ then $m=x(x+1) / 2$ is not a power of 2 . If y is even then $2 x+y+1$ is odd and ≥ 3, hence again m has an odd factor ≥ 3.

Therefore a power of 2 is not the sum of consecutive positive integers. If we drop the assumption that the integers are positive we have the trivial solution
$m=-(m-1)-(m-2)-\cdots+(-1)+0+1+2+\cdots+(m-2)+(m-1)+m$.
Now assume m is not a power of 2 , that is $b \geq 3$. Then we set

$$
\left\{\begin{array}{l}
y=2^{a+1}, x=\frac{b-1}{2}-2^{a} \text { if } b \geq 2^{a+1}+1 \\
y=b, x=2^{a}-\frac{b+1}{2} \text { if } b \leq 2^{a+1}-1
\end{array}\right.
$$

Since b is odd this covers all cases.
3. The answer is $10^{9}-100$ which is divisible by 900 .

Proof: write

$$
10^{100}-100=10^{2}\left(10^{98}-1\right)
$$

and

$$
10^{10}-1000=10^{3}\left(10^{7}-1\right)
$$

Since 7 divides $98,10^{7}-1$ divides $10^{98}-1$ (use the identity $x^{n}-1$ with $x=10^{7}$ and $n=14$). Further $10^{7}-1$ and 10 are relatively prime. Hence the gcd is $10^{2}\left(10^{7}-1\right)=10^{9}-100$ which is a multiple of $900\left(10^{7}-1=999999\right.$ is a multiple of 9).

