January 25 - February 13, 2021.

Limbe (Cameroun) - online

A course on linear recurrent sequences African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Assignment

• 1. Prove the irrationality of $\sqrt{6}$ using the following picture

Explain the connection with question 1 of the first tutorial.

• 2. Define a sequence $(u_n)_{n\geq 0}$ of numbers by the condition

$$\sum_{n \ge 0} u_n z^n = \frac{1}{(1-z)^2} \cdot$$

Let

$$\varphi(z) = \sum_{n \ge 0} u_n \frac{z^n}{n!} \cdot$$

Show that φ is a solution of a differential equation. Give all the solution of this differential equation.

• 3. A triangular number is a positive integer of the form m(m+1)/2. The sequence of triangular numbers starts with

$$1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, \ldots$$

Let $(u_n)_{n\geq 0}$ be the sequence of integers such that u_n^2 is a triangular number. Check that

$$u_1 = 1$$
 $(u_1^2 = 1, m = 1)$ and $u_2 = 6$ $(u_2^2 = 36, m = 8).$

For $n \geq 3$, write u_n as a linear combination of u_{n-1} and u_{n-2} . Compute u_3 and u_4 .

• 4. Let $a \ge 1$ be a positive integer. Let

$$\theta = \frac{a + \sqrt{a^2 + 4}}{2}$$

be the positive root of the quadratic polynomial $X^2 - aX - 1$. Write the continued fraction expansion of θ .

Define a recurrence linear sequence $(u_n)_{n\geq 0}$ by $u_n = au_{n-1} + u_{n-2}$ for $n \geq 2$ with the initial conditions $u_0 = 0$ and $u_1 = 1$. Check that u_n is the nearest integer to

$$\frac{\theta^n}{\sqrt{a^2+4}}.$$

Write the rational fraction having the Taylor expansion at the origin

$$\sum_{n\geq 0} u_n z^n.$$

Write a differential equation satisfied by the power series

$$\varphi(z) = \sum_{n \ge 0} u_n \frac{z^n}{n!}$$

Give all the solutions of this differential equation.