A course on linear recurrent sequences

African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Assignment

- 1. Prove the irrationality of $\sqrt{6}$ using the following picture

Explain the connection with question 1 of the first tutorial.
-2. Define a sequence $\left(u_{n}\right)_{n \geq 0}$ of numbers by the condition

$$
\sum_{n \geq 0} u_{n} z^{n}=\frac{1}{(1-z)^{2}}
$$

Let

$$
\varphi(z)=\sum_{n \geq 0} u_{n} \frac{z^{n}}{n!}
$$

Show that φ is a solution of a differential equation. Give all the solution of this differential equation.

- 3. A triangular number is a positive integer of the form $m(m+1) / 2$. The sequence of triangular numbers starts with

$$
1,3,6,10,15,21,28,36,45,55,66,78,91,105, \ldots
$$

Let $\left(u_{n}\right)_{n \geq 0}$ be the sequence of integers such that u_{n}^{2} is a triangular number. Check that

$$
u_{1}=1 \quad\left(u_{1}^{2}=1, m=1\right) \quad \text { and } \quad u_{2}=6 \quad\left(u_{2}^{2}=36, m=8\right) .
$$

For $n \geq 3$, write u_{n} as a linear combination of u_{n-1} and u_{n-2}. Compute u_{3} and u_{4}.

- 4. Let $a \geq 1$ be a positive integer. Let

$$
\theta=\frac{a+\sqrt{a^{2}+4}}{2}
$$

be the positive root of the quadratic polynomial $X^{2}-a X-1$.
Write the continued fraction expansion of θ.
Define a recurrence linear sequence $\left(u_{n}\right)_{n \geq 0}$ by $u_{n}=a u_{n-1}+u_{n-2}$ for $n \geq 2$ with the initial conditions $u_{0}=0$ and $u_{1}=1$. Check that u_{n} is the nearest integer to

$$
\frac{\theta^{n}}{\sqrt{a^{2}+4}}
$$

Write the rational fraction having the Taylor expansion at the origin

$$
\sum_{n \geq 0} u_{n} z^{n}
$$

Write a differential equation satisfied by the power series

$$
\varphi(z)=\sum_{n \geq 0} u_{n} \frac{z^{n}}{n!}
$$

Give all the solutions of this differential equation.

