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On the Brahmagupta—Fermat—Pell equation

The equation 22 — dy? = £1, where the unknowns = and y are positive
integers while d is a fixed positive integer which is not a square, has been
mistakenly called with the name of Pell by Euler. It was investigated by
Indian mathematicians since Brahmagupta (628) who solved the case

d = 92, next by Bhaskara Il (1150) for d = 61 and Narayana (during the
14-th Century) for d = 103. The smallest solution of 2% — dy? = 1 for
these values of d are respectively

11512 —92-120% =1, 17663190492 — 61 - 226 153 980% = 1

and
2275282 — 103 -22419% =1,

hence they have not been found by a brute force search!

After a short introduction to this long story, we explain the connection
with Diophantine approximation and continued fractions, next we say a
few words on more recent developments of the subject.



Archimedes cattle problem

The sun god had a herd of
cattle consisting of bulls and
cows, one part of which was
white, a second black, a third
spotted, and a fourth brown.




The Bovinum Problema

Among the bulls, the number of white ones was one half plus
one third the number of the black greater than the brown.

The number of the black, one quarter plus one fifth the
number of the spotted greater than the brown.

The number of the spotted, one sixth and one seventh the
number of the white greater than the brown.




First system of equations

B = white bulls, N = black bulls,
T = brown bulls , X = spotted bulls
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First system of equations

B = white bulls, N = black bulls,
T = brown bulls , X = spotted bulls

1 1 1 1
B—(-4+-)N=N—(-+-)X
(o) v=n-(i+5)
11
—X-(=4+=)B=T
)

Up to a multiplicative factor, the solution is

By = 2226, Ny = 1602, X, = 1580, Tp, = 891.



The Bovinum Problema

Among the cows, the number of white ones was one third plus
one quarter of the total black cattle.

The number of the black, one quarter plus one fifth the total
of the spotted cattle;

The number of spotted, one fifth plus one sixth the total of
the brown cattle;

The number of the brown, one sixth plus one seventh the total
of the white cattle.

What was the composition of the herd ?
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Second system of equations

b = white cows, n = black cows,
t = brown cows, x = spotted cows

1 1
§+1> (N+n), n

t= (é+%> (B+0b), =

=~ =

(
(



Second system of equations

b = white cows, n = black cows,

t = brown cows, x = spotted cows

b= §+i>(1v+n), n:(i—l—é)(Xva),
t:(é+%>(8+b), x:<%+é)(T+t).

Since the solutions b, n, x,t are requested to be integers, one
deduces

(B,N,X,T) =k x 4657 x (By, No, Xo, Tp).



Archimedes Cattle Problem

If thou canst accurately tell, O stranger, the number of cattle
of the Sun, giving separately the number of well-fed bulls and
again the number of females according to each colour, thou
wouldst not be called unskilled or ignorant of numbers, but
not yet shalt thou be numbered among the wise.
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The Bovinum Problema

But come, understand also all these conditions regarding the
cattle of the Sun.

When the white bulls mingled their number with the black,
they stood firm, equal in depth and breadth, and the plains of
Thrinacia, stretching far in all ways, were filled with their
multitude.

Again, when the yellow and the dappled bulls were gathered
into one herd they stood in such a manner that their number,
beginning from one, grew slowly greater till it completed a
triangular figure, there being no bulls of other colours in their
midst nor none of them lacking.
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Arithmetic constraints

B+ N = asquare,
T+ X = a triangular number.



Arithmetic constraints

B+ N = asquare,
T+ X = a triangular number.

As a function of the integer k, we have B + N = 4 Ak with
A =3-11-29-4657 squarefree. Hence k = AU? with U an
integer.



Arithmetic constraints

B+ N = asquare,

T+ X = a triangular number.
As a function of the integer k, we have B + N = 4 Ak with
A =3-11-29-4657 squarefree. Hence k = AU? with U an

integer. On the other side if 7'+ X is a triangular number
(=m(m+1)/2), then

8(T+X)+1 isasquare (2m+1)*=V2



Pell's equation associated with the cattle problem

Writing T'+ X = Wk with W =7 - 353 - 4657, we get
V?—DU*=1

with D = 8AW = (2-4657)?-2-3-7-11-29 - 353.



Pell's equation associated with the cattle problem

Writing T'+ X = Wk with W =7 - 353 - 4657, we get
V?—DU*=1

with D = 8AW = (2-4657)?-2-3-7-11-29 - 353.

2-3-7-11-29-353 =4729494.



Pell's equation associated with the cattle problem

Writing T'+ X = Wk with W =7 - 353 - 4657, we get
V?—DU*=1

with D = 8AW = (2-4657)?-2-3-7-11-29 - 353.

2-3-7-11-29-353 =4729494.

D = (2-4657)% - 4729494 = 410 286 423 278 424.



Cattle problem

If thou art able, O stranger, to find out all these things and
gather them together in your mind, giving all the relations,
thou shalt depart crowned with glory and knowing that thou
hast been adjudged perfect in this species of wisdom.




History : letter from Archimedes to Eratosthenes

Archimedes Eratosthenes of Cyrene
(287 BC —212 BCQ) (276 BC - 194 BC)




History (continued)

Odyssey of Homer - the Sun God Herd
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Gotthold Ephraim Lessing : 1729-1781 — Library Herzog
August, Wolfenbiittel, 1773
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Odyssey of Homer - the Sun God Herd

Gotthold Ephraim Lessing : 1729-1781 — Library Herzog
August, Wolfenbiittel, 1773

C.F. Meyer, 1867

A. Amthor, 1880 : the smallest solution has 206 545 digits,
starting with 776.



History (continued)

Odyssey of Homer - the Sun God Herd

Gotthold Ephraim Lessing : 1729-1781 — Library Herzog
August, Wolfenbiittel, 1773

C.F. Meyer, 1867

A. Amthor, 1880 : the smallest solution has 206 545 digits,
starting with 776.
B. Krumbiegel and A. Amthor, Das Problema Bovinum des

Archimedes, Historisch-literarische Abteilung der Zeitschrift fiir
Mathematik und Physik, 25 (1880), 121-136, 153-171.



History (continued)

A.H. Bell, The “Cattle Problem” by Archimedes 251 BC,
Amer. Math. Monthly 2 (1895), 140-141.

Computation of the first 30 and last 12 decimal digits. The
Hillsboro, lllinois, Mathematical Club, A.H. Bell, E. Fish,
G.H. Richard — 4 years of computations.



History (continued)

A.H. Bell, The “Cattle Problem” by Archimedes 251 BC,
Amer. Math. Monthly 2 (1895), 140-141.

Computation of the first 30 and last 12 decimal digits. The
Hillsboro, lllinois, Mathematical Club, A.H. Bell, E. Fish,
G.H. Richard — 4 years of computations.

“Since it has been calculated that it would take the work of a
thousand men for a thousand years to determine the complete
number [of cattle], it is obvious that the world will never have
a complete solution”

Pre-computer-age thinking from a letter to The New York
Times, January 18, 1931



History (continued)

H.C. Williams, R.A. German and C.R. Zarnke, Solution of the
cattle problem of Archimedes, Math. of Computation 19
(1965), 671-674.
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H.C. Williams, R.A. German and C.R. Zarnke, Solution of the
cattle problem of Archimedes, Math. of Computation 19
(1965), 671-674.

H.G. Nelson, A solution to Archimedes’ cattle problem,
J. Recreational Math. 13 (3) (1980-81), 162-176.
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H.C. Williams, R.A. German and C.R. Zarnke, Solution of the
cattle problem of Archimedes, Math. of Computation 19
(1965), 671-674.

H.G. Nelson, A solution to Archimedes’ cattle problem,
J. Recreational Math. 13 (3) (1980-81), 162-176.

|. Vardi, Archimedes’ Cattle Problem, Amer. Math. Monthly
105 (1998), 305-319.



History (continued)

H.C. Williams, R.A. German and C.R. Zarnke, Solution of the
cattle problem of Archimedes, Math. of Computation 19
(1965), 671-674.

H.G. Nelson, A solution to Archimedes’ cattle problem,
J. Recreational Math. 13 (3) (1980-81), 162-176.

|. Vardi, Archimedes’ Cattle Problem, Amer. Math. Monthly
105 (1998), 305-319.

H.W. Lenstra Jr, Solving the Pell Equation, Notices of the
A.M.S. 49 (2) (2002) 182-192.



The solution

Equation 22 — 410286 423 278 42442 = 1.



The solution

Equation 22 — 410286 423 278 42442 = 1.

Print out of the smallest solution with 206 545 decimal digits :
47 pages (H.G. Nelson, 1980).



The solution

Equation 22 — 410286 423 278 42442 = 1.

Print out of the smallest solution with 206 545 decimal digits :
47 pages (H.G. Nelson, 1980).

77602714 % % % % * *37983357 % x x x * *x55081800

where each of the twelve symbols x represents 17210 digits.



Large numbers

A number written with only 3 digits, but having nearly 370
millions decimal digits
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A number written with only 3 digits, but having nearly 370
millions decimal digits

The number of decimal digits of 9°° is

log 9
{991%0J — 369693 100.
O



Large numbers

A number written with only 3 digits, but having nearly 370
millions decimal digits

The number of decimal digits of 9°° is

{99 log9

= 369693 100.
log IOJ

10" has 1 + 10 decimal digits.



llan Vardi

http://www.math.nyu.edu/ crorres/Archimedes/Cattle/Solution1.html

| 22194541 (109931986732829734979866232821433543901088049-+

50549485234315033074477819735540408986340 4729494)4658J

Archimedes’ Cattle Problem,
American Math. Monthly 105
(1998), 305-3109.



http://www.math.nyu.edu/~crorres/Archimedes/Cattle/Solution1.html

A simple solution to Archimedes’ cattle problem

Antti Nygrén, “A simple solution to Archimedes’ cattle
problem”, University of Oulu Linnanmaa, Oulu, Finland Acta
Universitatis Ouluensis Scientiae Rerum Naturalium, 2001.

50 first digits
77602714064868182695302328332138866642323224059233

50 last digits :
05994630144292500354883118973723406626719455081800



Solution of Pell's equation

H.W. Lenstra Jr,

Solving the Pell Equation,
Notices of the A.M.S.

49 (2) (2002) 182-192.

http://www.ams.org/notices/200202/fea-lenstra.pdf


http://www.ams.org/notices/200202/fea-lenstra.pdf

Solution of Archimedes Problem

All solutions to the cattle problem of Archimedes
w = 300426607 914281 713365 - V609 + 84 129507 677858 393258 - V7766
kj = (w5587 — y~4687)2 /368238304 (j=1,2,3, ...)

jth solution bulls cows all cattle
white 10366482 - k; 7206360 - k; 17572842 - k;
black 7460514 -k; 4893246 - k; 12353760 - k;
dappled 7358060 k;  3515820- k; 10873880 - k;
brown 4149387 -k; 5439213 - k; 9588600 - k;
all colors 29334443 - k; 21054639 - k; 50389082 - k;

Figure 4.

H.W. Lenstra Jr,
Solving the Pell Equation,
Notices of the A.M.S.
49 (2) (2002) 182-192.



Brahmagupta (598 — 670)

Brahmasphutasiddhanta : Solve in integers the equation

=92y =1


http://mathworld.wolfram.com/BrahmaguptasProblem.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html

Brahmagupta (598 — 670)

Brahmasphutasiddhanta : Solve in integers the equation

=92y =1

The smallest solution is

r = 1151, y = 120.


http://mathworld.wolfram.com/BrahmaguptasProblem.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html

Brahmagupta (598 — 670)

Brahmasphutasiddhanta : Solve in integers the equation

=92y =1

The smallest solution is

r=1151,  y=120.

Composition method : samasa — Brahmagupta identity

(a® — db*)(2* — dy?*) = (az + dby)* — d(ay + bx)*.

http://mathworld.wolfram.com/BrahmaguptasProblem.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html


http://mathworld.wolfram.com/BrahmaguptasProblem.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html

Bhaskara Il or Bhaskaracharya (1114 - 1185)

Lilavati Ujjain (India)


http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html

Bhaskara Il or Bhaskaracharya (1114 - 1185)

Lilavati Ujjain (India)

(Bijaganita, 1150)
2 — 61yt =1


http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html

Bhaskara Il or Bhaskaracharya (1114 - 1185)

Lilavati Ujjain (India)

(Bijaganita, 1150)
2 — 61yt =1

x = 1766319049, y = 226153 980.


http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html

Bhaskara Il or Bhaskaracharya (1114 - 1185)

Lilavati Ujjain (India)

(Bijaganita, 1150)
2 — 61yt =1

x = 1766319049, y = 226153 980.

Cyclic method (Chakravala) : produce a solution to Pell’s
equation 2% — dy? = 1 starting from a solution to

a? — db* = k with a small k.
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html


http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html

Narayana Pandit ~ 1340 — ~ 1400

Narayana cows ( Tom Johnson)
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z? — 103y =1



Narayana Pandit ~ 1340 — ~ 1400

Narayana cows ( Tom Johnson)

z? — 103y =1

r=227528,  y=224109.



References to Indian mathematics

André Weil

Number theory : ANDRE WEIL
An approach through history. Mumber Theary
From Hammurapi to Ko '
Legendre.

Birkhauser Boston, Inc.,
Boston, Mass., (1984) 375 pp.
MR 85c¢:01004



History

John Pell : 1610-1685

Pierre de Fermat : 1601-1665
Letter to Frenicle in 1657

Lord William Brouncker : 1620-1684

Leonard Euler : 1707-1783
Book of algebra in 1770 + continued fractions

Joseph—Louis Lagrange : 1736-1813



1773 : Lagrange and Lessing
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Figures 1 and 2.
Title pages of two
publications from
1773. The first (far
left) contains
Lagrange’s proof of
the solvability of
Pell’s equation,
already written and
submitted in 1768.
The second
contains Lessing’s
discovery of the
cattle problem of
Archimedes.
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Let d be a nonzero integer. Consider the equation
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The trivial solution (z,y) = (1,0)

Let d be a nonzero integer. Consider the equation
22 — dy? = %1 in positive integers = and y.

The trivial solution is x = 1, y = 0. We are interested with
nontrivial solutions.

In case d < —2, there is no nontrivial solution to
2?2 + |d|y* = £1.

For d = —1 the only non—trivial solution to 22 4+ y? = £1 is
r=0y=1.



The trivial solution (z,y) = (1,0)

Let d be a nonzero integer. Consider the equation
22 — dy? = %1 in positive integers = and y.

The trivial solution is x = 1, y = 0. We are interested with
nontrivial solutions.

In case d < —2, there is no nontrivial solution to
2?2 + |d|y* = £1.

For d = —1 the only non—trivial solution to 22 4+ y? = £1 is
r=0y=1.

Assume now d is positive.



Nontrivial solutions

If d = e? is the square of an integer ¢, there is no nontrivial
solution :

ey =(r—ey)rtey) =Fl=2=1,9y=0



Nontrivial solutions

If d = e? is the square of an integer e, there is no nontrivial
solution :

ey =(r—ey)rtey) =Fl=2=1,9y=0

Assume now d is positive and not a square.



Nontrivial solutions

If d = e? is the square of an integer e, there is no nontrivial
solution :

ey =(r—ey)rtey) =Fl=2=1,9y=0

Assume now d is positive and not a square.

Let us write

2* —dy® = (v + yVd)(x — yVd).



Finding solutions

The relation
x? — dy® = +1.

is equivalent to

(z — yVd)(z +yVd) = £1.



Finding solutions
The relation
x? — dy® = +1.

is equivalent to

(z — yVd)(z +yVd) = £1.

Theorem.
Given two solutions (x1,y1) and (x4, ys) in rational integers,

vy —dyt = £1, 23— dy; = +1,
define (x3,vys) by writing
(21 + y1Vd) (w9 + y2Vd) = 23 + y3Vd.

Then (x3,ys3) is also a solution.



Two solutions produce a third one
Proof.

From

(z1+ y1\/3)($2 + ?J2\/E) =23+ y3Vd.



Two solutions produce a third one
Proof.

From

(z1+ y1\/3)($2 + ?Jz\/a) =23+ y3Vd.

we deduce

(21 — y1\/a)($2 - yﬂ/g) = T3 — y3\/6_i-



Two solutions produce a third one
Proof.

From

(z1+ y1\/3)($2 + ?Jz\/a) =23+ y3Vd.

we deduce
(z1 — yl\/a)(% - yﬂ/g) =25 — ysVd.
The product of the left hand sides
(21 + y1Vd) (w3 + y2Vd) (w1 — 11Vd) (w3 — y2Vd)
is (22 — dy?)(x3 — dy3) = +1, hence
(3 + ysVd) (x5 — ysVd) = 22 — dy? = +1,

which shows that (z3,y3) is also a solution.
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In the same way, given one solution (z,y), if we define (z/,v/)
by writing

(z+yVd) ' =" +y'Vd,
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A multiplicative group

In the same way, given one solution (z,y), if we define (2, ')
by writing

(z+yVd) ' =" +y'Vd,

then

(z—yVd) ' =2’ —y'Vd,

and it follows that (/%) is again a solution.



A multiplicative group

In the same way, given one solution (z,y), if we define (2, ')
by writing

(¢ +yVd) ' =2’ +yVd,

then

(z—yVd) ' =2’ —y'Vd,

and it follows that (/%) is again a solution.

This means that the set of solutions in rational integers
(positive or negative) is a multiplicative group. The trivial
solution is the unity of this group.



Group law on a conic

The curve 22 — Dy? = 1 is a conic, and on a conic there is a
group law which can be described geometrically. The fact that
it is associative is proved by using Pascal's Theorem.




The group of solutions (x,y) € Z X Z

Let G be the set of (x,y) € Z? satisfying 22 — dy*> = +1. The
bijection
(z,y) € G — x4+ yVd € Z[Vd)*

endows G with a structure of multiplicative group.



The group of solutions (x,y) € Z X Z

Let G be the set of (x,y) € Z? satisfying 22 — dy*> = +1. The
bijection
(z,y) € G — x4+ yVd € Z[Vd)*

endows G with a structure of multiplicative group.

The solution (—1,0) is a torsion element of order 2.



Infinitely many solutions

If there is a nontrivial solution (z1,y;) in positive integers,
then there are infinitely many of them, which are obtained by

writing
(1 + VA" = 2, + yaVd

forn=1,2,....



Infinitely many solutions

If there is a nontrivial solution (z1,y;) in positive integers,
then there are infinitely many of them, which are obtained by
writing

(21 + yVd)" = 2, + yaVd
forn=1,2,....
We list the solutions by increasing values of = + yv/d (it

amounts to the same to take the ordering given by x, or the
one given by y).



Infinitely many solutions

If there is a nontrivial solution (z1,y;) in positive integers,
then there are infinitely many of them, which are obtained by
writing

(21 + 1 Vd)" = 2 + ypVd
forn=1,2,....

We list the solutions by increasing values of = + yv/d (it
amounts to the same to take the ordering given by x, or the
one given by y).

Hence, assuming there is a non—trivial solution, it follows that
there is a minimal solution > 1, which is called the
fundamental solution.



Two important theorems

Let d be a positive integer which is not a square.

Theorem.
There is a non—trivial solution (x,vy) in positive integers to the
equation x> — dy? = +1.
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There is a non—trivial solution (x,y) in positive integers to the
equation x> — dy? = +1.

Hence there are infinitely many solutions in positive integers.
And there is a smallest one, the fundamental solution (x1, ;).
For any n in Z and any choice of the sign =+, a solution (x,y)
in rational integers is given by (1 + 11Vd)" = = 4+ Vdy.



Two important theorems

Let d be a positive integer which is not a square.

Theorem.
There is a non—trivial solution (x,y) in positive integers to the
equation x> — dy? = +1.

Hence there are infinitely many solutions in positive integers.
And there is a smallest one, the fundamental solution (x1, ;).
For any n in Z and any choice of the sign =+, a solution (x,y)
in rational integers is given by (1 + 11Vd)" = = 4+ Vdy.

Theorem.
For any solution of the equation x> — dy? = 41, there exists a
rational integer n in Z and a sign =+, such that

T+ Vdy = £ (1 + y1Vd)".



The group G has rank <1

Let ¢ denote the morphism

(r,y) € G+ (log |z +yVd| , log|z — yVd|) € R?.
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that G = Zu.
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The group G has rank < 1

Let ¢ denote the morphism

(z,y) € G+ (log |z +yVd| , log |z — y\/al) € R%

The kernel of ¢ is the torsion subgroup {(£1,0)} of G. The
image G of (G is a discrete subgroup of the line

{(t1,t3) € R%; t; + ty = 0}. Hence there exists u € G such
that G = Zu.

Therefore the abelian group of all solutions in Z x Z has rank
<1

The existence of a solution other than (£1,0) means that the
rank of this group is 1.
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e If the fundamental solution 22 — dy? = 41 produces the —
sign, then the fundamental solution of the equation
2? — dy? = 1is (22, y2) With 25 + y2v/d = (z1 + y1V/d)?,
hence

Ty = :1:? + dyf, Yo = 2211



+1or —17

e If the fundamental solution 3 — dy? = +1 produces the +
sign, then the equation 22 — dy? = —1 has no solution.

e If the fundamental solution 22 — dy? = 41 produces the —
sign, then the fundamental solution of the equation
2? — dy? = 1is (22, y2) With 25 + y2v/d = (z1 + y1V/d)?,
hence

Ty = :1:? + dyf, Yo = 2211

The solutions of 22 — dy* = 1 are the (z,,,y,) with n even,
the solutions of 22 — dy? = —1 are obtained with n odd.
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Algorithm for the fundamental solution

All the problem now is to find the fundamental solution.

Here is the idea. If 2,y is a solution, then the equation
2% — dy® = £1, written as

shows that z/y is a good rational approximation to V.

There is an algorithm for finding the best rational
approximations of a real number : it is given by continued
fractions.



The algorithm of continued fractions

Let z € R.
e Perform the Euclidean division of = by 1 :

r=|z|+{z} with |z] € Zand 0 < {z} < 1.



The algorithm of continued fractions

Let z € R.
e Perform the Euclidean division of = by 1 :

r=|z|+{z} with |z] € Zand 0 < {z} < 1.

e In case x is an integer, this is the end of the algorithm. If x is
not an integer, then {x} # 0 and we set x; = 1/{x}, so that

1
x:La:J—l—m— with |z] € Z and z; > 1.
1



The algorithm of continued fractions

Let z € R.
e Perform the Euclidean division of = by 1 :

r=|z|+{z} with |z] € Zand 0 < {z} < 1.

e In case x is an integer, this is the end of the algorithm. If x is
not an integer, then {x} # 0 and we set x; = 1/{x}, so that

1
x:La:J—l—m— with |z] € Z and z; > 1.
1

e In the case where z; is an integer, this is the end of the
algorithm. If z; is not an integer, then we set x5 = 1/{z1} :

1
x:LxJ—i-—l with o > 1.
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The algorithm stops after finitely many steps if and only if x is
rational.
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rational.
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x = lag, ai, as, as...



Continued fraction expansion

Set ap = ] and a; = |x;] fori > 1.
e Then:

r=|z|+

1 :a0+

1) + —— o+ ——
1 1

2] + — ay +—

1

The algorithm stops after finitely many steps if and only if x is
rational.
e We shall use the notation

x = lag, ai, as, as...

e Remark : if a; > 2, then
lag, ai, ag, as,...,ax] = [ag, a1, ag, as,...,a; — 1,1].
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geometric point of view

Start with a rectangle have side lengths 1 and . The
proportion is .



Continued fraction expansion :
geometric point of view

Start with a rectangle have side lengths 1 and . The
proportion is .

Split it into |z | squares with sides 1 and a smaller rectangle of
sides {z} =2 — |z] and 1.



Rectangles with proportion x

Continued fraction of x

1




Example : 2 <z < 3

Example: 2<x<3

1 1

x-2



Number of squares : ag = || with x = |z] + {z}

1 {x}
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Continued fraction expansion :
geometric point of view

Recall 27 = 1/{x}
The small rectangle has side lengths in the proportion ;.

Repeat the process : split the small rectangle into |z squares
and a third smaller rectangle, with sides in the proportion

To = 1/{x1}
This process produces the continued fraction expansion of .

The sequence ag, aq, . .. is given by the number of squares at
each step.



Example : the Golden Ratio

The Golden Ratio

satisfies



Example : the Golden Ratio

The Golden Ratio

1
b = +2\/5 = 1.6180339887499 . ..
satisfies )
=14+ —-
+ d

Hence if we start with a rectangle having for proportion the
Golden Ratio, at each step we get one square and a remaining
smaller rectangle with sides in the same proportion.



The Golden Ratio (1++/5)/2=1[1,1,1,1...]

Golden Rectangle

1D
-«

[ 1/®?

<«
1/08




Rectangles with proportion 1 + 1/2

V2 = 1.4142135623731 . ...



Rectangles with proportion 1 + 1/2

V2 = 1.4142135623731 . ...

1
1+\/§:2+—
1—|—\/§



Rectangles with proportion 1 + 1/2

V2 = 1.4142135623731 . ..

1
1+vV2=2+——+—
1++v2
If we start with a rectangle having for proportion 1 + /2, at
each step we get two squares and a remaining smaller

rectangle with sides in the same proportion.



Rectangles with proportion 1 + 1/2

Continued fraction of 1+ V2

1 1 V2-1

1+/2



Rectangles with proportion
14+v2=102,2,2,2...]

Continued fraction of 1+ V2
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If we start with a rectangle having integer side lengths, at each
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common denominator and scale).



Geometric proofs of irrationality

If we start with a rectangle having integer side lengths, at each
step these squares have integral side lengths, smaller and
smaller. Hence this process stops after finitely many steps.

Also for a rectangle with side lengths in a rational proportion,
this process stops after finitely many steps (reduce to a
common denominator and scale).

For instance ® and 1 + /2 are irrational numbers, hence v/5
and v/2 also.



Continued fractions and rational Diophantine
approximation

For
T = [&0, ai, &2,...,ak,...],

the sequence of rational numbers

pr/ak = lao, a1, as, ..., ag (k=1,2,...)

produces rational approximations to x, and a classical result is
that they are the best possible ones in terms of the quality of
the approximation compared with the size of the denominator.



Continued fractions of a positive rational integer d

Recipe : let d be a positive integer which is not a square. Then
the continued fraction of the number v/d is periodic.



Continued fractions of a positive rational integer d

Recipe : let d be a positive integer which is not a square. Then
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continued fraction can be written
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with aj, = 2a¢ and ag = |Vd].
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Continued fractions of a positive rational integer d

Recipe : let d be a positive integer which is not a square. Then
the continued fraction of the number v/d is periodic.

If & is the smallest period length (that means that the length
of any period is a positive integer multiple of k), this
continued fraction can be written

\/E: [CL() 7a1»a27"'7ak]7

with aj, = 2a¢ and ag = |Vd].

Further, (a1, as,...,a5_1) is a palindrome

A; = Ak—j for 1§]<k—1

Fact : the rational number given by the continued fraction
[ag, a1, ..., ax_1] is a good rational approximation to /d.



Parity of the length of the palindrome

If k£ is even, the fundamental solution of the equation
22 — dy® = 1 is given by the fraction

T
[ao, al, az2, e 7ak_1] —_ —.
n

2

In this case the equation 22 — dy? = —1 has no solution.



Parity of the length of the palindrome

If kis odd, the fundamental solution (x1, ;) of the equation
22 — dy? = —1 is given by the fraction
€
ag, a1, ag, ..., ap1] = —
Y1
and the fundamental solution (x5, 1>) of the equation
22 — dy? = 1 by the fraction
o)

[a07a1,a27 vy Ap—1, Ak, A1, A2, . . . ;ak—l] = y_
2



Parity of the length of the palindrome

If kis odd, the fundamental solution (x1, ;) of the equation
22 — dy? = —1 is given by the fraction
€
ag, a1, ag, ..., ap1] = —
Y1
and the fundamental solution (x5, 1>) of the equation
2? — dy? = 1 by the fraction
o)

[a07a1;a27 vy Ap—1, Ak, A1, A2, . . . ;ak—l] = y_
2

Remark. In both cases where k is either even or odd, we
obtain the sequence (x,,, y,)n>1 of all solutions by repeating
n — 1 times aq, as, . .., ay followed by ai,as, ..., ap_1.



The simplest Pell equation 2% — 2y? = +1

Euclid of Alexandria about 325 BC - about 265 BC
Elements, Il § 10

177 —2-122 =289 — 2144 = 1.
992 —2-70% = 9801 — 2 - 4900 = 1.

577% — 2 - 408 = 332929 — 2 - 166 464 = 1.
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Pythagoras of Samos
about 569 BC - about 475 BC

Which are the right angle triangles with
integer sides such that the two sides
of the right angle are consecutive integers ?
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Pythagoras of Samos
about 569 BC - about 475 BC

Which are the right angle triangles with
integer sides such that the two sides
of the right angle are consecutive integers ?

o+t =2 y=ux+1.

2%+ 20 +1=22



Pythagorean triples

Pythagoras of Samos
about 569 BC - about 475 BC

Which are the right angle triangles with
integer sides such that the two sides
of the right angle are consecutive integers ?

o+t =2 y=ux+1.
2%+ 20 +1=22

(27 +1)* =222 = —1



Pythagorean triples

Pythagoras of Samos
about 569 BC - about 475 BC

Which are the right angle triangles with
integer sides such that the two sides
of the right angle are consecutive integers ?

2 4y = 22, y=ux+ 1.
207 + 20 + 1 = 22
(27 +1)* =222 = —1

X?-92Y?=-1



Pythagorean triples

Pythagoras of Samos
about 569 BC - about 475 BC

Which are the right angle triangles with
integer sides such that the two sides
of the right angle are consecutive integers ?

4yt =2 y=ax+1
202 4+ 2+ 1 =22
(2z+1) — 222 = -1
X?-2y?= -1

(X,Y)= (1,1), (7,5), (41,29)...



x? — 2% = +1

V2 = 1,4142135623730950488016887242 . ..

satisfies
1

V2+1

V2 =1+



x? — 2% = +1

V2 = 1,4142135623730950488016887242 . ..

satisfies
1

V2=1+ :
V241

Hence the continued fraction expansion is periodic with period
length 1 :

V2=11,22 222 ...]=[1 2],



x? — 2% = £1

V2 = 1,4142135623730950488016887242 . ..

satisfies .
V2 =1+ :
V2+1

Hence the continued fraction expansion is periodic with period
length 1 :

1, 2],

V2=11,22 222 ..]
The fundamental solution of 22 — 2y?> = —lisx; =1, y; = 1
12-2.12= -1,

the continued fraction expansion of x; /y; is [1].



Pell's equation 22 — 2y% =1

The fundamental solution of
2 — 2y2 =1

isx =3, y=2, given by

1 3
,2|=14-=—-



? -3y =1
The continued fraction expansion of the number
V3 = 1,7320508075688772935274463415 . . .
is

V3=11,1,2,1,21,2 1,2, 1,2 1, ...]=[1, T, 2,

because
V3+1=2+




22— 3y’ =1
The continued fraction expansion of the number

V3 = 1,7320508075688772935274463415 . . .

is
V3=1[1,1,21,21,2,1,2 1,21, ...]=[1, 1, 2,
because
V34+1=2+ 11
BV

The fundamental solution of 22 — 3y? = lisx =2, y = 1,
corresponding to

uu—1+1—2
T 1 1



2’ — 3yt =1

The fundamental solution of 22 — 3y* = 1 is (z,y) = (2,1) :

2+V3)(2-V3)=4—-3=1.



2’ — 3yt =1

The fundamental solution of 22 — 3y* = 1 is (z,y) = (2,1) :

2+V3)(2-V3)=4—-3=1.

There is no solution to the equation 22 — 3% = —1.



r? -3y =1
The fundamental solution of 22 — 3y* = 1 is (z,y) = (2,1) :
2+V3)(2-V3)=4—-3=1.
There is no solution to the equation 22 — 3% = —1.

The period of the continued fraction
V3=1[1, 1,72

is [1, 2| of even length 2.



Small values of d

22— 2% =41, V2 =

22 — 5yt ==+1, V5 =[2

2?2 — 6y? = £1, V6 =

22— Tyt =£1, V7 =

22— 8y =41, V8 =2

[1,2], k=1, (x1,11) = (1, 1),

12—2.1*=—1.
[1,1,2], k=2, (z1,51) = (2, 1),
22 -3.12 =1.
2,4], k=1, (z1,51) = (2,1),
22 —5.1% = —1.
2,2,4], k=2, (z1,51) = (5,4),
52 -6-22 =1.
2, L1, 1,4], k=4, (z1,51) = (8,3),
8 —7-32=1.
2,1,4], k=2, (%;?/1):(371)'

3?—-8-1?



Brahmagupta's Problem (628)

The continued fraction expansion of /92 is

V92 =109,1,1, 2, 4, 2, 1, 1, 18].
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The fundamental solution of the equation 22 — 92y? = 1 is
given by
1151

9,1,1,2, 4, 2,1, 1] = ——-
[777aaa7] 120



Brahmagupta's Problem (628)

The continued fraction expansion of /92 is

V92 =109,1,1, 2, 4, 2, 1, 1, 18].

The fundamental solution of the equation 22 — 92y? = 1 is

given by
1151

9,1,1,2, 4, 2,1, 1] = ——-
[777aaa7] 120

Indeed, 11512 — 92 - 120% = 1324801 — 1324800 = 1.



Narayana's equation z? — 103y? = 1

V103=[10,6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20]



Narayana's equation z? — 103y? = 1

V103=[10,6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20]

227528

1. 6] =
(10,6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6] 59119




Narayana's equation z? — 103y? = 1

V103=[10,6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20]

227528

1 1,2, 1,1 1,1, 2,1, 6/ =
[0767 ) ) ) 797 ) ’ ’ 76} 22419

Fundamental solution : © = 227528, y = 22419.



Narayana's equation z? — 103y? = 1

V103=[10,6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20]

227528

2,1 =
(10,6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6] 59119

Fundamental solution : x = 227528, y = 22419.

2275282 — 103 - 22419? = 51 768990 784 — 51 768 990 783 = 1.
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Equation of Bhaskhara Il 22 — 61y% = +1

V61 =171, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14]

29 718
3 805

29 7182 = 883 159 524, 61 - 38052 = 883 159 525
is the fundamental solution of 2% — 61y% = —1.

[7,1,4,3,1,2,2,1,3,4,1] =



Equation of Bhaskhara Il 22 — 61y% = +1

V61 =171, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14]

29 718
7,1,4,3,1,2,2,1,3,4,1] =
[ ) Y 7 ) ? ) Y ) ) ) ] 3 805
29 7182 = 883 159 524, 61 - 38052 = 883 159 525
is the fundamental solution of 2% — 61y% = —1.

The fundamental solution of 22 — 61y = 1 is

1766 319 049

(7,1,4,3,1,2,2,1,3,4,1,14,1,4,3,1,2,2,1,3,4,1] =
226 153 980



Correspondence from Fermat to Brouncker

“ pour ne vous donner pas trop de peine’ (Fermat)
“ to make it not too difficult’

X? - DY? =1, with D =61 and D = 109.



Correspondence from Fermat to Brouncker

“ pour ne vous donner pas trop de peine’ (Fermat)
“ to make it not too difficult’

X? - DY? =1, with D =61 and D = 109.

Solutions respectively :

(1766319049 , 226 153 980)
(158070671986 249, 15140424455 100)

158070 671986 249 + 15 140424 455 1001/109 = )
(261 + 25«109)

2
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For d = 2015,
404
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period length 4, fundamental solution
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For d = 2016,
449
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period length 4, fundamental solution

449% — 2016 - 10% = 201 601 — 201 600 = 1.



2015, 2016 and 2018

For d = 2015,
404
V2015 =[44, 1, 7, 1, 88|, [44, 1, 7, 1] = 9
period length 4, fundamental solution
404% — 2015 - 9% = 163216 — 163 215 = 1.
For d = 2016,
449
V2016 = [44, 1, 8, 1, 88|, [44, 1, 8, 1] = 0

period length 4, fundamental solution
449% — 2016 - 10° = 201601 — 201 600 = 1.
For d = 2018,
V2018 = [44, T, 11, 1, 5, 2, 44, 2, 5, 1, 11, 1, 88|,




2015, 2016 and 2018

For d = 2015,
404
V2015 =[44, 1, 7, 1, 88|, [44, 1, 7, 1] = 9
period length 4, fundamental solution
404% — 2015 - 9% = 163216 — 163 215 = 1.
For d = 2016,
449
V2016 = [44, 1, 8, 1, 88|, [44, 1, 8, 1] = 0

period length 4, fundamental solution
449% — 2016 - 10° = 201601 — 201 600 = 1.
For d = 2018,
V2018 = [44, T, 11, 1, 5, 2, 44, 2, 5, 1, 11, 1, 88|,




2015, 2016 and 2018

For d = 2015,
404
V2015 =[44, 1, 7, 1, 88|, [44, 1, 7, 1] = o
period length 4, fundamental solution
404% — 2015 - 9* = 163216 — 163215 = 1.
For d = 2016,
449
V2016 = [44, 1, 8, 1, 88|, [44, 1, 8, 1] = T’

period length 4, fundamental solution
449% — 2016 - 10° = 201601 — 201 600 = 1.
For d = 2018,
V2018 = [44, T, 11, 1, 5, 2, 44, 2, 5, 1, 11, 1, 88|,

period length 12.
Fundamental solution z = 56 280003, y = 1252 834.



wims : WWW Interactive Multipurpose Server

Exercise : for 2017, compute the period length and the
number of digits of the fundamental solution.

http://wims.unice fr/wims/wims.cgi?session=I

Contfrac

Dévelappement en fraction continue de n = sqri(2017)

Yy My Vi My Yo
O34 Ty ”.77’ i

'/u' \"/H My Yy
/; 7 r/, T

s T
A

3+ fa+ Uz Vi ,‘/l
for ‘/v. Vg Vo Ve Vg V.

‘/1. Y

‘Avec javascript, placer la souris sur un dénominateur fera afficher le convergent du terme correspondant (précision limitée)

Mode de présentation de Ia fraction continue

5 n_1+ {strut ilen_2+ fistrut L3+ Dstrut L4+ fstrut e n_S+iedots} 111} $5

gt Vg g U

Développer un autre nombre.

Le calcul de PARI 0. Aut f
PARI



http://wims.unice.fr/wims/

wims : WWW Interactive Multipurpose Server

Exercise : for 2017, compute the period length and the
number of digits of the fundamental solution.

Hint. reference : http://wims.unice.fr/wims/

The continued fraction is computed by PARI version 2.2.1.

http://wims.unice fr/wims/wims.cgi?session=I

Contfrac

n continue de n - 5qri(2017)

1234191

Yy My e
A

 correspondant (précision limitée)

L3+ st L4+ fstrut e n_S+iedots} 111} $5

Le calcul de PARI 0. Aut f
PARI



http://wims.unice.fr/wims/
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algorithm and then gave up.



Back to Archimedes

x? — 410286423278 424y* = 1

Computation of the continued fraction of
V410286 423 278 424.

In 1867, C.F. Meyer performed the first 240 steps of the
algorithm and then gave up.

The length of the period has now be computed : it is 203 254.
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Solution by Amthor — Lenstra
d=(2-4657)° d  d'=2-3-7-11-29-353.
Length of the period for \/d' : 92.

Fundamental unit : u = 2/ + y/'/d'

U= (300 426 607914 281 713 365 - v/ 609+
84129507 677 858 393 258/ 7766) ?

Fundamental solution of the Archimedes equation :
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Solution by Amthor — Lenstra
d=(2-4657)° d  d'=2-3-7-11-29-353.
Length of the period for \/d' : 92.

Fundamental unit : u = 2/ + y/'/d'

U= (300 426 607914 281 713 365 - v/ 609+
84129507 677 858 393 258/ 7766) ?

Fundamental solution of the Archimedes equation :

r + yl\/a = u®?,

p=4657, (p+1)/2 = 2329 = 17 - 137.
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Size of the fundamental solution

2d <z +yVd < (4e2d)‘/3.

Any method for solving the Brahmagupta—Fermat—Pell
equation which requires to produce the digits of the
fundamental solution has an exponential complexity.



Size of the fundamental solution

2d <z +yVd < (4e2d)‘/3.

Any method for solving the Brahmagupta—Fermat—Pell
equation which requires to produce the digits of the
fundamental solution has an exponential complexity.

Length L, of the period :

log 2
2

log(4d
Lq < log(xy + yl\/a> < %)Ld-
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Find a quadratic polynomial F'(X,Y") over Z with coefficients
of absolute value at most 999 (i.e. with at most three digits)
such that the smallest integer solution of F'(X,Y) =0 is as
large as possible.

DANIEL M. KORNHAUSER, On the smallest solution to the
general binary quadratic Diophantine equation. Acta Arith. 55
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Masser Problem 999

Find a quadratic polynomial F'(X,Y") over Z with coefficients
of absolute value at most 999 (i.e. with at most three digits)
such that the smallest integer solution of F'(X,Y) =0 is as
large as possible.

DANIEL M. KORNHAUSER, On the smallest solution to the

general binary quadratic Diophantine equation. Acta Arith. 55
(1990), 83-94.

Smallest solution may be as large as 2/7/°, and
2999/5 = 1.39...10%,

Pell equation for 991 :

379516 400 906 811 930 638 014 896 080 —

991 x 12055735790 331 359 447 442 538 767% = 1.



Arithmetic varieties

Let D be an integer which is not a square. The quadratic form
x? — Dy? is anisotropic over Q (no non-trivial zero). Define
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Arithmetic varieties

Let D be an integer which is not a square. The quadratic form
x? — Dy? is anisotropic over Q (no non-trivial zero). Define
G ={(z,y) e R*; 2 — Dy* = 1}.

The map
g — R~

(z,9) — t=a4+yVD
is bijective : the inverse bijection is obtained by writing
u=1/t, 2x =t + u, 2yv/D =t —u, so that t = = + yv/D
and u =z — yv/D.



Arithmetic varieties

By transport of structure, this endows
G={(x,y) eR*; 2> = Dy* =1}

with a multiplicative group structure, isomorphic to R*, for

which

(2,y) —> (“"” Dy).

Yy T

in an injective morphism of groups. Its image G(R) is
therefore isomorphic to R*.



Arithmetic varieties

A matrix (CCL Z) preserves the quadratic form 2% — Dy? if

and only if
(ax + by)* — D(cx + dy)* = 2* — Dy?,
which can be written
a®> - D=1, b¥*—Dd*=D, ab=cdD.

Hence the group of matrices of determinant 1 with coefficients
in Z which preserve the quadratic form 2% — Dy? is

G(Z) = {(Z ZC) E GLQ(Z)}.



Riemannian varieties with negative curvature

According to the works by Siegel, Harish—Chandra, Borel and
Godement, the quotient of G(R) by G(Z) is compact. Hence
G(Z) is infinite (of rank 1 over Z), which means that there are
infinitely many integer solutions to the equation a®> — D¢? = 1.
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Riemannian varieties with negative curvature

According to the works by Siegel, Harish—Chandra, Borel and

Godement, the quotient of G(R) by G(Z) is compact. Hence
G(Z) is infinite (of rank 1 over Z), which means that there are
infinitely many integer solutions to the equation a®> — D¢? = 1.

This is not a new proof of this result, but rather an
interpretation and a generalization.

Nicolas Bergeron (Paris VI) : “Sur la topologie de certains
espaces provenant de constructions arithmétiques”

“ Sur la forme de certains espaces provenant de constructions
arithmétiques, Images des Mathématiques, (2004).
http://people.math. jussieu.fr/~bergeron/
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Substitutions in Christoffel's word

J. Riss, 1974

J-P. Borel et F. Laubie, Quelques mots sur la droite projective
réelle : Journal de Théorie des Nombres de Bordeaux, 5 1
(1993), 23-51
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Electric networks

e The resistance of a network in series

RVAVAVANVAVAVANR
Ry R,

is the sum Ry + Rs.

e The resistance R of a network in parallel

Ry
satisfies

=
=|
|

1 2



Electric networks and continued fractions

The resistance U of the circuit

1/8

is given by




Decomposition of a square in squares
e The resistance of the network below is given by a continued
fraction expansion

{R07 Sl; Rla SQ,RQ .. ]

for the circuit
Re R, R

e Electric networks and continued fraction have been used to
find the first solution to the problem of decomposing an
integer square into a disjoint union of integer squares, all of
which are distinct.



Squaring the square

27
35
50
; 19
15 1711
By
9 (7
24
29 25 18
4 16
3 37 -
21-square perfect square

There Is a unique simple perfect square of crder 21 (the lowest possible crder),
discovered In 1978 by A. ). W. Duijvestijn (Bouwkamp and Duijvestijn 1992), It
Is composed of 21 squares with total side length 112, and Is lllustrated sbove.

[m]

=



December 23, 2017

On the Brahmagupta—Fermat—Pell
Equation 2% — dy? = +1

Michel Waldschmidt

Institut de Mathématiques de Jussieu
Université Pierre et Marie Curie (Paris 6)
http://webusers.imj-prg.fr/~michel.waldschmidt/


http://webusers.imj-prg.fr/~michel.waldschmidt/

