RUPP Master in Mathematics
Number Theory
Control - May 26, 2016
Michel Waldschmidt

1. Let p and q be distinct primes. Show that $p q$ divides $p^{q-1}+q^{p-1}-1$.
2. Let $a \geq 2$ and $m \geq 2$ be integers. Check that

$$
\operatorname{gcd}\left(\frac{a^{m}-1}{a-1}, a-1\right)=\operatorname{gcd}(m, a-1)
$$

3. Let a be a positive integer, P the product of its divisors, D the number of its divisors. Check

$$
P^{2}=a^{D}
$$

4. Let x, y, z be positive integers satisfying $x^{2}+y^{2}=z^{2}$. Check that the product $x y z$ is divisible by 60 .
5. Which are the prime numbers p such that p divides $2^{p}+1$?
6. Let n be a positive integer. What is the class of $1+2+\cdots+(n-1)$ modulo n ?
7. Let R be a non commutative ring and x, y two elements in R. Assume $1-x y$ is a unit in R. Prove that $1-y x$ is a unit in R.
8. Prove that in a finite group of even order, there is an element of order 2.
9. Show that a finite integral domain is a field.
10. Which are the irreducible polynomials in $\mathbf{R}[X]$?
11. Prove that in a finite field, any element is a sum of two squares.
12. Let K be a field, a and b two elements in K. Check that the quotient ring of $K[X]$ by the ideal generated by $(X-a)(X-b)$ is isomorphic to $K \times K$.
