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Abstract

The homogeneous form �n(X, Y ) of degree '(n) which is
associated with the cyclotomic polynomial �n(t) is dubbed a
cyclotomic binary form. A positive integer m � 1 is said to be
representable by a cyclotomic binary form if there exist
integers n, x, y with n � 3 and max{|x|, |y|} � 2 such that
�n(x, y) = m. These definitions give rise to a number of
questions that we plan to address.
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Cyclotomic polynomials
Definition by induction :

�1(t) = t� 1, t
n � 1 =

Y

d|n

�d(t).

For p prime,

t
p � 1 = (t� 1)(tp�1 + t

p�2 + · · ·+ t+ 1) = �1(t)�p(t),

so
�p(t) = t

p�1 + t
p�2 + · · ·+ t+ 1.

For instance

�2(t) = t+1, �3(t) = t
2+t+1, �5(t) = t

4+t
3+t

2+t+1.
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Cyclotomic polynomials

�n(t) =
t
n � 1Y

d 6=n
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·

For instance

�4(t) =
t
4 � 1

t2 � 1
= t

2 + 1 = �2(t
2),

�6(t) =
t
6 � 1

(t3 � 1)(t+ 1)
=

t
3 + 1

t+ 1
= t

2 � t+ 1 = �3(�t).

The degree of �n(t) is '(n), where ' is the Euler totient
function.
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Cyclotomic polynomials and roots of unity

For n � 1, if ⇣ is a primitive n–th root of unity,

�n(t) =
Y

gcd(j,n)=1

(t� ⇣
j).

For n � 1, �n(t) is the irreducible polynomial over Q of the
primitive n–th roots of unity,

Let K be a field and let n be a positive integer. Assume that
K has characteristic either 0 or else a prime number p prime
to n. Then the polynomial �n(t) is separable over K and its
roots in K are exactly the primitive n–th roots of unity which
belong to K.
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Properties of �n(t)
• For n � 2 we have

�n(t) = t
'(n)

�n(1/t)

• Let n = 2e0pe11 · · · perr where p1, . . . , pr are di↵erent odd
primes, e0 � 0, ei � 1 for i = 1, . . . , r and r � 1. Denote by
R the radical of n, namely

R =

(
2p1 · · · pr if e0 � 1,

p1 · · · pr if e0 = 0.

Then,
�n(t) = �R(t

n/R).

• Let n = 2m with m odd � 3. Then

�n(t) = �m(�t).



Properties of �n(t)
• For n � 2 we have

�n(t) = t
'(n)

�n(1/t)

• Let n = 2e0pe11 · · · perr where p1, . . . , pr are di↵erent odd
primes, e0 � 0, ei � 1 for i = 1, . . . , r and r � 1. Denote by
R the radical of n, namely

R =

(
2p1 · · · pr if e0 � 1,

p1 · · · pr if e0 = 0.

Then,
�n(t) = �R(t

n/R).

• Let n = 2m with m odd � 3. Then

�n(t) = �m(�t).



Properties of �n(t)
• For n � 2 we have

�n(t) = t
'(n)

�n(1/t)

• Let n = 2e0pe11 · · · perr where p1, . . . , pr are di↵erent odd
primes, e0 � 0, ei � 1 for i = 1, . . . , r and r � 1. Denote by
R the radical of n, namely

R =

(
2p1 · · · pr if e0 � 1,

p1 · · · pr if e0 = 0.

Then,
�n(t) = �R(t

n/R).

• Let n = 2m with m odd � 3. Then

�n(t) = �m(�t).



�n(1)

For n � 2, we have �n(1) = e
⇤(n), where the von Mangoldt

function is defined for n � 1 as

⇤(n) =

(
log p if n = p

r with p prime and r � 1 ;

0 otherwise.

In other terms we have

�n(1) =

(
p if n = p

r with p prime and r � 1 ;

1 otherwise.
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�n(�1)

For n � 3,

�n(�1) =

(
1 if n is odd ;

�n/2(1) if n is even.

In other terms, for n � 3,

�n(�1) =

(
p if n = 2pr with p a prime and r � 1 ;

1 otherwise.

Hence �n(�1) = 1 when n is odd or when n = 2m where m

has at least two distinct prime divisors.



�n(�1)

For n � 3,

�n(�1) =

(
1 if n is odd ;

�n/2(1) if n is even.

In other terms, for n � 3,

�n(�1) =

(
p if n = 2pr with p a prime and r � 1 ;

1 otherwise.

Hence �n(�1) = 1 when n is odd or when n = 2m where m

has at least two distinct prime divisors.



Lower bound for �n(t)
For n � 3, the polynomial �n(t) has real coe�cients and no
real root, hence it takes only positive values (and its degree
'(n) is even).

For n � 3 and t 2 R, we have

�n(t) � 2�'(n)
.

Consequence : from

�n(t) = t
'(n)

�n(1/t)

we deduce, for n � 3 and t 2 R,

�n(t) � 2�'(n) max{1, |t|}'(n).
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�n(t) � 2�'(n) for n � 3 and t 2 R
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Let ⇣n be a primitive n-th root of unity in C ;

�n(t) = NQ(⇣n)/Q(t� ⇣n) =
Y

�
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The cyclotomic binary forms
For n � 2, define

�n(X, Y ) = Y
'(n)

�n(X/Y ).

This is a binary form in Z[X, Y ] of degree '(n).
Consequence of the lower bound for �n(t) : for n � 3 and
(x, y) 2 Z2,

�n(x, y) � 2�'(n) max{|x|, |y|}'(n).

Therefore, if �n(x, y) = m, then

max{|x|, |y|}  2m1/'(n)
.

If max{|x|, |y|} � 3, then n is bounded :

'(n)  logm

log(3/2)
·



The cyclotomic binary forms
For n � 2, define

�n(X, Y ) = Y
'(n)

�n(X/Y ).

This is a binary form in Z[X, Y ] of degree '(n).
Consequence of the lower bound for �n(t) : for n � 3 and
(x, y) 2 Z2,

�n(x, y) � 2�'(n) max{|x|, |y|}'(n).

Therefore, if �n(x, y) = m, then

max{|x|, |y|}  2m1/'(n)
.

If max{|x|, |y|} � 3, then n is bounded :

'(n)  logm

log(3/2)
·



The cyclotomic binary forms
For n � 2, define

�n(X, Y ) = Y
'(n)

�n(X/Y ).

This is a binary form in Z[X, Y ] of degree '(n).
Consequence of the lower bound for �n(t) : for n � 3 and
(x, y) 2 Z2,

�n(x, y) � 2�'(n) max{|x|, |y|}'(n).

Therefore, if �n(x, y) = m, then

max{|x|, |y|}  2m1/'(n)
.

If max{|x|, |y|} � 3, then n is bounded :

'(n)  logm

log(3/2)
·



Generalization to CM fields (Győry, 1977)

Let K be a CM field of degree d over Q. Let ↵ 2 K be such
that K = Q(↵) ; let f be the irreducible polynomial of ↵ over
Q and let F (X, Y ) = Y

d
f(X/Y ) the associated

homogeneous binary form :

f(t) = a0t
d + a1t

d�1 + · · ·+ ad,

F (X, Y ) = a0X
d + a1X

d�1
Y + · · ·+ adY

d
.

For (x, y) 2 Z2 we have

x
d  2dad�1

d F (x, y) and y
d  2dad�1

0 F (x, y).



Kálmán Győry, László Lovász

K. Győry L. Lovász

K. Győry & L. Lovász, Representation of integers by

norm forms II, Publ. Math. Debrecen 17, 173–181, (1970).
K. Győry, Représentation des nombres entiers par des

formes binaires, Publ. Math. Debrecen 24 , 363–375, (1977).



Best possible for CM fields

Let n � 3, not of the form p
a nor 2pa with p prime and a � 1,

so that �n(1) = �n(�1) = 1.
Then the binary form

F n(X, Y ) = �n(X, Y �X)

has degree d = '(n) and a0 = ad = 1. For x 2 Z we have
F n(x, 2x) = �n(x, x) = x

d.
Hence, for y = 2x, we have

y
d = 2dad�1

0 F (x, y).
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Binary cyclotomic forms (EF–CL–MW 2018)
Let m be a positive integer and let n, x, y be rational integers
satisfying n � 3, max{|x|, |y|} � 2 and �n(x, y) = m.Then

max{|x|, |y|}  2p
3
m

1/'(n)
, hence '(n)  2

log 3
logm.

These estimates are optimal, since for ` � 1,

�3(`,�2`) = 3`2.

If we assume '(n) > 2, namely '(n) � 4, then

'(n)  4

log 11
logm

which is best possible since �5(1,�2) = 11.
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Lower bound for the cyclotomic polynomials

The upper bound

max{|x|, |y|}  2p
3
m

1/'(n)

for �n(x, y) = m is equivalent to the following result :

For n � 3 and t 2 R,

�n(t) �
 p

3

2

!'(n)

.



The sequence (cn)n�3

cn = inf
t2R

�n(t) (n � 3).

Let n � 3. Write
n = 2e0pe11 · · · perr

where p1, . . . , pr are odd primes with p1 < · · · < pr, e0 � 0,
ei � 1 for i = 1, . . . , r and r � 0.
(i) For r = 0, we have e0 � 2 and cn = c2e0 = 1.
(ii) For r � 1 we have

cn = cp1···pr � p
�2r�2

1 .



End of the proof of �n(t) �
 p

3

2

!'(n)

.

Lemma. For any odd squarefree integer n = p1 · · · pr with
p1 < p2 < · · · < pr satisfying n � 11 and n 6= 15, we have

'(n) > 2r+1 log p1.



The sequence (cn)n�3

�n(x, y) � cn max{|x|, |y|}'(n).

cn �
 p

3

2

!'(n)

.

• lim inf
n!1

cn = 0 and lim sup
n!1

cn = 1.

• The sequence (cp)p odd prime is decreasing from 3/4 to 1/2.

• For p1 and p2 primes, cp1p2 �
1

p1
·

• For any prime p1, lim
p2!1

cp1p2 =
1

p1
·
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The sequence (am)m�1

For each integer m � 1, the set

�
(n, x, y) 2 N⇥Z2 | n � 3, max{|x|, |y|} � 2, �n(x, y) = m

 

is finite. Let am the number of its elements.

The sequence of integers m � 1 such that am � 1 starts with
the following values of am

m 3 4 5 7 8 9 10 11 12 13 16 17
am 8 16 8 24 4 16 8 8 12 40 40 16
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OEIS A299214

https://oeis.org/A299214
Number of representations of integers by cyclotomic binary
forms.

The sequence (am)m�1 starts with
0, 0, 8, 16, 8, 0, 24, 4, 16, 8, 8, 12, 40, 0, 0, 40, 16, 4, 24, 8, 24,
0, 0, 0, 24, 8, 12, 24, 8, 0, 32, 8, 0, 8, 0, 16, 32, 0, 24, 8, 8, 0, 32,
0, 8, 0, 0, 12, 40, 12, 0, 32, 8, 0, 8, 0, 32, 8, 0, 0, 48, 0, 24, 40,
16, 0, 24, 8, 0, 0, 0, 4, 48, 8, 12, 24, . . .

https://oeis.org/A299214
https://oeis.org/A299214


OEIS A296095

https://oeis.org/A296095
Integers represented by cyclotomic binary forms.

am 6= 0 for m =
3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 25, 26, 27,
28, 29, 31, 32, 34, 36, 37, 39, 40, 41, 43, 45, 48, 49, 50, 52, 53,
55, 57, 58, 61, 63, 64, 65, 67, 68, 72, 73, 74, 75, 76, 79, 80, 81,
82, 84, 85, 89, 90, 91, 93, 97, 98, 100, 101, 103, 104, 106, 108,
109, 111, 112, 113, 116, 117, 121, 122, . . .

https://oeis.org/A296095
https://oeis.org/A296095


OEIS A293654

https://oeis.org/A293654
Integers not represented by cyclotomic binary forms.

am = 0 for m =
1, 2, 6, 14, 15, 22, 23, 24, 30, 33, 35, 38, 42, 44, 46, 47, 51, 54,
56, 59, 60, 62, 66, 69, 70, 71, 77, 78, 83, 86, 87, 88, 92, 94, 95,
96, 99, 102, 105, 107, 110, 114, 115, 118, 119, 120, 123, 126,
131, 132, 134, 135, 138, 140, 141, 142, 143, 150, . . .

https://oeis.org/A293654
https://oeis.org/A293654


Integers represented by cyclotomic binary forms

For N � 1, let A(N) be the number of m  N which are
represented by cyclotomic binary forms :

A(N) = #{m 2 N | m  N, am 6= 0}.

We have

A(N) = ↵
N

(logN)
1
2

� �
N

(logN)
3
4

+O

 
N

(logN)
3
2

!

as N ! 1.



Integers represented by cyclotomic binary forms

For N � 1, let A(N) be the number of m  N which are
represented by cyclotomic binary forms :

A(N) = #{m 2 N | m  N, am 6= 0}.

We have

A(N) = ↵
N

(logN)
1
2

� �
N

(logN)
3
4

+O

 
N

(logN)
3
2

!

as N ! 1.



Integers represented by cyclotomic binary forms

For N � 1, let A(N) be the number of m  N which are
represented by cyclotomic binary forms :

A(N) = #{m 2 N | m  N, am 6= 0}.

We have

A(N) = ↵
N

(logN)
1
2

� �
N

(logN)
3
4

+O

 
N

(logN)
3
2

!

as N ! 1.



↵ = ↵3 + ↵4
The number of positive integers  N represented by �4

(namely the sums of two squares) is

↵4
N

(logN)
1
2

+O

 
N

(logN)
3
2

!
.

The number of positive integers  N represented by �3

(namely x
2 + xy + y

2 : Loeschian numbers) is

↵3
N

(logN)
1
2

+O

 
N

(logN)
3
2

!
.

The number of positive integers  N represented by �4 and
by �3 is

�
N

(logN)
3
4

+O

 
N

(logN)
7
4

!
.



The Landau–Ramanujan constant

Edmund Landau
1877–1938

Srinivasa Ramanujan
1887–1920

The number of positive integers  N which are sums of two
squares is asymptotically ↵4N(logN)�1/2, where

↵4 =
1

2
1
2

·
Y

p⌘ 3 mod 4

✓
1� 1

p2

◆� 1
2

.



OEIS A064533

OEIS A064533 Decimal expansion of Landau-Ramanujan
constant.

↵4 = 0.764 223 653 589 220 . . .

• Ph. Flajolet and I. Vardi, Zeta function expansions of some
classical constants, Feb 18 1996.
• Xavier Gourdon and Pascal Sebah, Constants and records of
computation.
• David E. G. Hare, 125 079 digits of the Landau-Ramanujan
constant.

https://oeis.org/A064533
https://oeis.org/A064533


The Landau–Ramanujan constant

References : https://oeis.org/A064533

• B. C. Berndt, Ramanujan’s notebook part IV,
Springer-Verlag, 1994.
• S. R. Finch, Mathematical Constants, Cambridge, 2003, pp.
98-104.
• G. H. Hardy, ”Ramanujan, Twelve lectures on subjects
suggested by his life and work”, Chelsea, 1940.
• Institute of Physics, Constants - Landau-Ramanujan
Constant.
• Simon Plou↵e, Landau Ramanujan constant.
• Eric Weisstein’s World of Mathematics, Ramanujan
constant.
• https://en.wikipedia.org/wiki/Landau-Ramanujan_constant.

https://oeis.org/A064533
https://en.wikipedia.org/wiki/Landau-Ramanujan_constant


Sums of two squares

If a and q are two integers, we denote by Na,q any integer � 1
satisfying the condition

p | Na,q =) p ⌘ a mod q.

An integer m � 1 is of the form

m = �4(x, y) = x
2 + y

2

if and only if there exist integers a � 0, N3,4 and N1,4 such
that

m = 2a N2
3,4 N1,4.
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Loeschian numbers : m = x
2 + xy + y

2

An integer m � 1 is of the form

m = �3(x, y) = �6(x,�y) = x
2 + xy + y

2

if and only if there exist integers b � 0, N2,3 and N1,3 such
that

m = 3b N2
2,3 N1,3.

The number of positive integers  N which are represented by
the quadratic form X

2 +XY + Y
2 is asymptotically

↵3N(logN)�1/2 where

↵3 =
1

2
1
23

1
4

·
Y

p⌘ 2 mod 3

✓
1� 1

p2

◆� 1
2

.
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OEIS A301429

OEIS A301429 Decimal expansion of an analog of the
Landau-Ramanujan constant for Loeschian numbers.

↵3 =
1

2
1
23

1
4

·
Y

p⌘ 2 mod 3

✓
1� 1

p2

◆� 1
2

.

↵3 = 0.638 909 405 44 . . .

↵ = ↵3 + ↵4 = 1.403 133 059 . . .

https://oeis.org/A301429
https://oeis.org/A301429


OEIS A301429

OEIS A301429 Decimal expansion of an analog of the
Landau-Ramanujan constant for Loeschian numbers.

↵3 =
1

2
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·
Y

p⌘ 2 mod 3

✓
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2
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Zeta function expansions of some classical constants, Feb 18 1996.

Philippe Flajolet Ilan Vardi

Bill Allombert

↵3 = 0.63890940544534388
22549426749282450937
54975508029123345421
69236570807631002764
96582468971791125286
64388141687519107424 . . .

April 2018



OEIS A301430

OEIS A301430 Decimal expansion of an analog of the
Landau-Ramanujan constant for Loeschian numbers which are
sums of two squares.

� =
3

1
4

2
5
4

·⇡ 1
2 ·(log(2+

p
3))

1
4 · 1

�(1/4)
·

Y

p⌘ 5, 7, 11 mod 12

⇣
1� 1

p2

⌘� 1
2
.

� = 0.302 316 142 35 . . .

Only 11 digits after the decimal point are known.

https://oeis.org/A301430
https://oeis.org/A301430
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Zeta function expansions of some classical constants, Feb 18 1996.

Philippe Flajolet Ilan Vardi

Bill Allombert

� = 0.302316142357065637
94776990048019971560
24127951893696454588
67841288865448752410
51089948746781397927
27085677659132725910 . . .

April 2018



Further developments

• Prove similar estimates for the number of integers
represented by other binary forms (done for quadratic forms) ;
e.g. : prove similar estimates for the number of integers which
are sums of two cubes, two biquadrates,. . .

• Prove similar estimates for the number of integers which are
represented by �n for a given n.

• Prove similar estimates for the number of integers which are
represented by �n for some n with '(n) � d.
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Stewart - Xiao

Let F be a binary form of degree d � 3 with nonzero
discriminant.
There exists a positive constant CF > 0 such that the number
of integers of absolute value at most N which are represented
by F (X, Y ) is asymptotic to CFN

2/d.



Cam Stewart and Stanley Yao Xiao

Cam Stewart Stanley Yao Xiao

C.L. Stewart and S. Yao Xiao, On the representation of

integers by binary forms,
arXiv:1605.03427v2 (March 23, 2018).

http://arxiv.org/abs/1605.03427


Cam Stewart and Stanley Yao Xiao

Cam Stewart Stanley Yao Xiao

C.L. Stewart and S. Yao Xiao, On the representation of

integers by binary forms,
arXiv:1605.03427v2 (March 23, 2018).

http://arxiv.org/abs/1605.03427


K. Mahler (1933)

Let F be a binary form of degree d � 3 with nonzero
discriminant.
Denote by AF the area (Lebesgue measure) of the domain

{(x, y) 2 R2 | F (x, y)  1}.

For Z > 0 denote by NF (Z) the number of (x, y) 2 Z2 such
that 0 < |F (x, y)|  Z.
Then

NF (Z) = AFZ
2/d +O(Z1/(d�1))

as Z ! 1.



Kurt Mahler

Kurt Mahler
1903 – 1988

Über die mittlere Anzahl der Darstellungen grosser Zahlen
durch binäre Formen,
Acta Math. 62 (1933), 91-166.
https://carma.newcastle.edu.au/mahler/biography.html

https://carma.newcastle.edu.au/mahler/biography.html


Higher degree

The situation for positive definite forms of degree � 3 is
di↵erent for the following reason :
• If a positive integer m is represented by a positive definite
quadratic form, it usually has many such representations ;
while if a positive integer m is represented by a positive
definite binary form of degree d � 3, it usually has few such
representations.

If F is a positive definite quadratic form, the number of (x, y)
with F (x, y)  N is asymptotically a constant times N , but
the number of F (x, y) is much smaller.

If F is a positive definite binary form of degree d � 3, the
number of (x, y) with F (x, y)  N is asymptotically a
constant times N1/d, the number of F (x, y) is also
asymptotically a constant times N1/d.
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Sums of k–th powers

If a positive integer m is a sum of two squares, there are many
such representations.
Indeed, the number of (x, y) in Z⇥ Z with x

2 + y
2  N is

asymptotic to ⇡N , while the number of values  N taken by
the quadratic form �4 is asymptotic to ↵4N/

p
logN where

↵4 is the Landau–Ramanujan constant. Hence �4 takes each
of these values with a high multiplicity, on the average
(⇡/↵)

p
logN .

On the opposite, it is extremely rare that a positive integer is a
sum of two biquadrates in more than one way (not counting
symmetries).



635 318 657 = 1584 + 594 = 1344 + 1334.

Leonhard Euler
1707 – 1783

The smallest integer
represented by x

4 + y
4 in two

essentially di↵erent ways was
found by Euler, it is
635318657 =
41⇥ 113⇥ 241⇥ 569.

[OEIS A216284] Number of solutions to the equation
x
4 + y

4 = n with x � y > 0.
An infinite family with one parameter is known for non trivial
solutions to x

4
1 + x

4
2 = x

4
3 + x

4
4.

http://mathworld.wolfram.com/DiophantineEquation4thPowers.html

https://oeis.org/A216284
http://mathworld.wolfram.com/DiophantineEquation4thPowers.html


Sums of k–th powers

One conjectures that given k � 5, if an integer is of the form
x
k + y

k, there is essentially a unique such representation. But
there is no value of k for which this has been proved.



Higher degree

The situation for positive definite forms of degree � 3 is
di↵erent also for the following reason.

A necessary and su�cient condition for a number m to be
represented by one of the quadratic forms �3, �4, is given by
a congruence.

By contrast, consider the quartic binary form
�8(X, Y ) = X

4 + Y
4. On the one hand, an integer

represented by �8 is of the form

N1,8(N3,8N5,8N7,8)
4
.

On the other hand, there are many integers of this form which
are not represented by �8.



Higher degree

The situation for positive definite forms of degree � 3 is
di↵erent also for the following reason.

A necessary and su�cient condition for a number m to be
represented by one of the quadratic forms �3, �4, is given by
a congruence.

By contrast, consider the quartic binary form
�8(X, Y ) = X

4 + Y
4. On the one hand, an integer

represented by �8 is of the form

N1,8(N3,8N5,8N7,8)
4
.

On the other hand, there are many integers of this form which
are not represented by �8.



Higher degree

The situation for positive definite forms of degree � 3 is
di↵erent also for the following reason.

A necessary and su�cient condition for a number m to be
represented by one of the quadratic forms �3, �4, is given by
a congruence.

By contrast, consider the quartic binary form
�8(X, Y ) = X

4 + Y
4. On the one hand, an integer

represented by �8 is of the form

N1,8(N3,8N5,8N7,8)
4
.

On the other hand, there are many integers of this form which
are not represented by �8.



Quartan primes

[OEIS A002645] Quartan primes: primes of the form
x
4 + y

4, x > 0, y > 0.

The list of prime numbers represented by �8 start with
2, 17, 97, 257, 337, 641, 881, 1297, 2417, 2657, 3697, 4177,
4721, 6577, 10657, 12401, 14657, 14897, 15937, 16561,
28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161,
66977, 80177, 83537, 83777, 89041, 105601, 107377, 119617, . . .

It is not known whether this list is finite or not.

The largest known quartan prime is currently the
largest known generalized Fermat prime: The
1353265-digit (14531065536)4 + 14.

https://oeis.org/A002645
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Primes of the form x
2k + y

2k

[OEIS A002313] primes of the form x
2 + y

2.
[OEIS A002645] primes of the form x

4 + y
4,

[OEIS A006686] primes of the form x
8 + y

8,
[OEIS A100266] primes of the form x

16 + y
16,

[OEIS A100267] primes of the form x
32 + y

32.

https://oeis.org/A002313
https://oeis.org/A002645
https://oeis.org/A006686
https://oeis.org/A100266
https://oeis.org/A100267


Primes of the form X
2 + Y

4

John Friedlander Étienne Fouvry
But it is known that there are infinitely many prime numbers
of the form X

2 + Y
4.

Friedlander, J. & Iwaniec, H. The polynomial X
2 + Y

4

captures its primes, Ann. of Math. (2) 148 (1998), no. 3,
945–1040.
https://arxiv.org/pdf/math/9811185.pdf
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