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Abstract

Seshadri’s constant is related to a conjecture due to Nagata.
Another conjecture, also due to Nagata and solved by
Bombieri in 1970, is related with algebraic values of
meromorphic functions. The main argument of Bombieri’s
proof leads to a Schwarz Lemma in several variables, the proof
of which gives rise to another invariant associated with
symbolic powers of the ideal of functions vanishing on a finite
set of points. This invariant is an asymptotic measure of the
least degree of a polynomial in several variables with given
order of vanishing on a finite set of points. Recent works on
the resurgence of ideals of points and the containment
problem compare powers and symbolic powers of ideals.
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Schneider – Lang Theorem (1949, 1966)

Theodor Schneider
(1911 – 1988)

Serge Lang
(1927 – 2005)

Let f1, . . . , fm be meromorphic functions in C. Assume f1 and

f2 are algebraically independent and of finite order. Let K be a

number field. Assume f 0
j

belongs to K[f1, . . . , fm] for
j = 1, . . . ,m. Then the set

S = {w 2 C | w not pole of f
j

, f
j

(w) 2 K (j = 1, . . . ,m)}

is finite.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schneider.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lang.html 3 / 100

Hermite – Lindemann Theorem (1882)

Charles Hermite
(1822 – 1901)

Carl Louis Ferdinand von
Lindemann

(1852 – 1939)

Corollary. If w is a non zero complex number, one at least of

the two numbers w, ew is transcendental.

Consequence : transcendence of e, ⇡, log↵, e�, for algebraic
↵ and � assuming ↵ 6= 0, � 6= 0, log � 6= 1.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hermite.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lindemann.html
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Gel’fond – Schneider Theorem (1934)

Aleksandr Osipovich Gelfond
(1906 – 1968)

Theodor Schneider
(1911 – 1988)

Corollary (Hilbert’s seventh problem). If � is an irrational

algebraic number and w a non zero complex number, one at

least of the two numbers ew, e�w is transcendental.

Consequence : transcendence of e⇡, 2
p
2, ↵�, log↵1/ log↵2,

for algebraic ↵, ↵1, ↵2 and � assuming ↵ 6= 0, log↵ 6= 0,
� 62 Q, log↵1/ log↵2 62 Q.
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Gelfond.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schneider.html
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Proofs of the corollaries

Hermite - Lindemann. Let K = Q(w, ew). The two
functions f1(z) = z, f2(z) = ez are algebraically independent,
of finite order, and satisfy the di↵erential equations f 0

1 = 1,
f 0
2 = f2. The set S contains {`w | ` 2 Z}. Since w 6= 0, this
set is infinite ; it follows that K is not a number field. ⇤

Gel’fond - Schneider. Let K = Q(�, ew, e�w). The two
functions f1(z) = ez, f2(z) = e�z are algebraically
independent, of finite order, and satisfy the di↵erential
equations f 0

1 = f1, f 0
2 = �f2. The set S contains

{`w | ` 2 Z}. Since w 6= 0, this set is infinite ; it follows that
K is not a number field. ⇤
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Schneider’s Theorems on elliptic functions (1937)
Corollary (Schneider). Let } be an elliptic function of

Weierstrass with algebraic invariants g2, g3. Let w be a

complex number, not pole of }. Then one at least of the two

numbers w, }(w) is transcendental.

Proof. Let K = Q(g2, w,}(w),}
0
(w)). The two functions

f1(z) = z, f2(z) = }(z) are algebraically independent, of finite
order. Set f3(z) = }0

(z). From }02
= 4}3

� g2}� g3 one
deduces

f 0
1 = 1, f 0

2 = f3, f 0
3 = 6f 2

2 � (g2/2).

The set S contains

{`w | ` 2 Z, `w not pole of }}

which is infinite. Hence K is not a number field. ⇤
7 / 100

The transcendence machinery

The prototype of transcendence methods is Hermite’s proof of
the transcendence of e.

The proof of the Schneider – Lang Theorem follows the
following scheme :

Step 1 Construct an auxiliary function f with many zeroes.

Step 2 Find a point z0 where f(z0) 6= 0.

Step 3 Give a lower bound for |f(z0)| using arithmetic
arguments.

Step 4 Give an upper bound for |f(z0)| using analytic
arguments.

We are interested here mainly (but not only) with the last part
(step 4) which is of analytic nature.
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Schwarz Lemma in one variable

Hermann Amandus Schwarz
(1843 – 1921)

Let f be an analytic function
in a disc |z|  R of C, with
at least N zeroes in a disc
|z|  r with r < R. Then

|f |
r



✓

3r

R

◆

N

|f |
R

.

We use the notation

|f |
r

= sup

|z|=r

|f(z)|.

When R > 3r, this improves the maximum modulus bound
|f |

r

 |f |
R

.
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schwarz.html
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Schwarz Lemma in one variable : proof
Let a1, . . . , aN be zeroes of f in the disc |z|  r, counted with
multiplicities. The function

g(z) = f(z)
N

Y

j=1

(z � a
j

)

�1

is analytic in the disc |z|  R. Using the maximum modulus
principle, from r  R we deduce |g|

r

 |g|
R

. Now we have

|f |
r

 (2r)N |g|
r

and |g|
R

 (R� r)�N

|f |
R

.

Finally, assuming (wlog) R > 3r,

2r

R� r


3r

R
·

⇤
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Blaschke factor

Wilhelm Johann Eugen
Blaschke

(1885 – 1962)

Let R > 0 and let a 2 C
satisfy |a|  R. The Blaschke
factor is defined in |z|  R by

B
a

(z) =
z � a

R2
� az

,

where a is the complex
conjugate of a.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Blaschke.html

http://mathworld.wolfram.com/BlaschkeFactor.html
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Estimating a Blaschke factor

Lemma. Let |a| < R. The function

B
a

(z) =
z � a

R2
� az

(|z|  R)

satisfies

|B
a

(z)| =
1

R
for |z| = R.

Moreover, for r in the range |a|  r < R, we have

sup

|z|=r

|B
a

(z)| = |B
a

(�ar/|a|)| =
r + |a|

R2
+ r|a|



2r

R2
+ r2

·
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Schwarz Lemma with a Blaschke product

Refinement of Schwarz Lemma in one variable.
Let f be an analytic function in a disc |z|  R of C, with at

least N zeroes in a disc |z|  r with r < R. Then

|f |
r



✓

2rR

R2
+ r2

◆

N

|f |
R

.

Proof. The function

g(z) = f(z)
N

Y

j=1

R2
� a

j

z

z � a
j

is analytic in the disc |z|  R. ⇤
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Schneider – Lang Theorem in several variables :
cartesian products (1941, 1966)

Let f1, . . . , fm be meromorphic functions in Cn

with

m � n+ 1. Assume f1, . . . , fn+1 are algebraically independent

of finite order. Let K be a number field. Assume (@/@z
i

)f 0
j

belongs to K[f1, . . . , fm] for j = 1, . . . ,m and i = 1, . . . , n. If
e1, . . . , en is a basis of Cn

, then the set

S = {w 2 Cn

| w not pole of f
j

, f
j

(w) 2 K (j = 1, . . . ,m)}

does not contain a cartesian product

{s1e1 + · · ·+ s
n

e
n

| (s1, . . . , sn) 2 S1 ⇥ · · ·⇥ S
n

}

where each S
i

is infinite.
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Schneider’s Theorem on Euler’s Beta function

Leonhard Euler
(1707 – 1783)

Let a, b be rational numbers,

not integers. Then the

number

B(a, b) =
�(a)�(b)

�(a+ b)

is transcendental.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Euler.html

Further results by Th. Schneider and S. Lang on abelian
functions and algebraic groups.
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Schwarz lemma in several variables : cartesian
products

Let f be an analytic function in a ball |z|  R of Cn

. Assume

f vanishes with multiplicity at least t on a set S1 ⇥ · · ·⇥ S
n

where each S
i

is contained in a disc |z|  r with r < R and

has at least s elements.

Then

|f |
r



✓

3r

R

◆

st

|f |
R

.
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Cartesian products
Schwarz Lemma for Cartesian products can be proved by
induction.

§4.3 of M.W.. Diophantine Approximation on Linear Algebraic
Groups. Grund. Math. Wiss. 326 Springer-Verlag (2000).

Another proof, based on integral formulae, yields a weaker
result : for R > 3r,

|f |
r



✓

R� 3r

2r

◆

n

✓

3r

R

◆

st

|f |
R

.

The conclusion follows from a homogeneity argument : replace
f by fN (and t by Nt) and let N ! 1.

Chap. 7 of M.W.. Nombres transcendants et groupes algébriques.
Astérisque, 69–70 (1979).
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Landau’s trick (Pólya – Szegő)

Edmund Georg
Hermann Landau
(1877 – 1938)

George Pólya
(1887 – 1985)

Gábor Szegő
(1895 – 1985)

G. Pólya and G. Szegő. Problems and theorems in analysis. Vol. II.
Theory of functions, zeros, polynomials, determinants, number
theory, geometry. Grundlehren der Mathematischen
Wissenschaften, Band 216. Springer-Verlag, New York-Heidelberg,
1976.
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Landau.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Polya.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Szego.html18 / 100

Philippon’s redundant variables

Recall step 1 of the transcendence machinery :
Step 1 Construct an auxiliary function f with many zeroes.

For completing proofs of
algebraic independence
suggested by
G.V. Chudnovsky,
P. Philippon introduces
several variables and derives
the conclusion by letting the
number of variables tend to
infinity.
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Nagata’s suggestion (1966)

Masayoshi Nagata
(1927 – 2008)

In the conclusion of the
Schneider – Lang Theorem,
replace the fact that S does
not contain a cartesian
product S1 ⇥ · · ·⇥ S

n

where
each S

i

is infinite by the fact
that S is contained in an
algebraic hypersurface.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Nagata.html
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Bombieri’s Theorem (1970)
Let f1, . . . , fm be meromorphic functions in Cn

with

m � n+ 1. Assume f1, . . . , fn+1 are algebraically independent

and of finite order. Let K be a number field. Assume (@/@z
i

)f 0
j

belongs to K[f1, . . . , fm] for j = 1, . . . ,m and i = 1, . . . , n.

Enrico Bombieri

Then the set

S ={w 2 Cn

|

w not pole of f
j

,

f
j

(w) 2 K (j = 1, . . . ,m)}

is contained in an algebraic

hypersurface.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Bombieri.html
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Bombieri – Lang (1970)

Let f be an analytic function in a ball |z|  R of Cn

. Assume

f vanishes at N points z
i

(counting multiplicities) in a ball

|z|  r with r < R. Assume min

zi 6=zk

|z
i

� z
k

| � �.

Then

|f |
r



✓

3r

R

◆

M

|f |
R

with

M = N

✓

�

6r

◆2n�2

.

E. Bombieri. Algebraic values of meromorphic maps. Invent. Math.
10 (1970), 267–287.
E. Bombieri and S. Lang. Analytic subgroups of group varieties.
Invent. Math. 11 (1970), 1–14.
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Lelong number

E. Bombieri. Algebraic values of meromorphic maps. Invent. Math.
10 (1970), 267–287.
E. Bombieri and S. Lang. Analytic subgroups of group varieties.
Invent. Math. 11 (1970), 1–14.

Pierre Lelong
(1912 – 2011)

P. Lelong. Intégration sur un
ensemble analytique complexe,
Bulletin S.M.F. 85 (1957),
239–262,

https://fr.wikipedia.org/wiki/Pierre_Lelong
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L2- estimates of Hörmander

Lars Hörmander
(1931 – 2012)

Existence theorems for the @
operator.
E. Bombieri. Let ' be a

plurisubharmonic function in

Cn

and z0 2 Cn

be such that

e�'

is integrable near z0.
Then there exists a nonzero

entire function F such that

Z

Cn

|F (z)|2e�'(z)
(1 + |z|2)�3nd�(z) < 1.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hormander.html
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Towards a Schwarz lemma in several variables

Let S be a finite subset of Cn and t a positive integer. Let M
be a positive number with the following property.
There exists a real number r such that for R > r, if f is an

analytic function in the ball |z|  R of Cn

which vanishes with

multiplicity at least t at each point of S, then

|f |
r



✓

c(n)r

R

◆

M

|f |
R

,

where c(n) depends only on the dimension n.

Question: what is the largest possible value for M ?

Answer: use the property for f a nonzero polynomial
vanishing on S with multiplicity t. We deduce that f has
degree at least M .

25 / 100

Degree of hypersurfaces

Let S be a finite set of Cn and t a positive integer.

Denote by !
t

(S) the smallest degree of a polynomial vanishing
at each point of S with multiplicity � t.

M.W. Propriétés arithmétiques de fonctions de plusieurs variables
(II). Sém. P. Lelong (Analyse), 16è année, 1975/76 ; Lecture Notes
in Math., 578 (1977), 274–292.
M.W. Nombres transcendants et groupes algébriques. Astérisque,
69–70. Société Mathématique de France, Paris, 1979.
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Schwarz lemma in several variables

Let S be a finite set of Cn

and t a positive integer. There

exists a real number r such that for R > r, if f is an analytic

function in the ball |z|  R of Cn

which vanishes with

multiplicity at least t at each point of S, then

|f |
r



✓

enr

R

◆

!t(S)

|f |
R

.

This is a refined asymptotic version due to Jean-Charles
Moreau.

The exponent !
t

(S) cannot be improved : take for f a
non–zero polynomial of degree !

t

(S).
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Homogeneous ideals of K[X
0

, . . . , Xn]

For p = (↵0 : · · · : ↵n

) 2 Pn

(K), denote by I(p) the
homogeneous ideal generated by the polynomials ↵

i

X
j

� ↵
j

X
i

(0  i, j  n) in the polynomial ring R = K[X0, . . . , Xn

].

For S = {p1, . . . , ps} ⇢ Pn

(K), set

I(S) = I(p1) \ · · · \ I(p
s

).

This is the ideal of forms vanishing on S. The least degree of a
polynomial in I(S) is !1(S).

28 / 100



Initial degree
Generally, when J is a nonzero homogeneous ideal of R, define
!(J) as the least degree of a polynomial in J .

Since J is homogeneous,

J =

M

m�0

J
m

we have
!(J) = min{m � 0 | J

m

6= 0}

and !(J) is also called the initial degree of J .

Since J1J2 is generated by the products P1P2 with P
i

2 J
i

, it
is plain that !(J1J2) = !(J1) + !(J2), hence

!(J t

) = t!(J).

29 / 100

Symbolic powers

For t � 1, define the symbolic power I(t)(S) by

I(t)(S) = I(p1)
t

\ · · · \ I(p
s

)

t.

This is the ideal of forms vanishing on S with multiplicities
� t. Hence

!(I(t)(S)) = !
t

(S).

We have I(S)t ⇢ I(p
i

)

t for all i, hence

I(S)t ⇢
s

\

i=1

I(p
i

)

t

= I(t)(S).

From I(S)t ⇢ I(t)(S) we deduce !
t

(S)  t!1(S).

30 / 100

Dirichlet’s box principle

Johann Peter Gustav Lejeune
Dirichlet

(1805 – 1859)

Given a finite subset S of Kn

and a positive integer t, if D
is a positive integer such that

|S|

✓

t+ n� 1

n

◆

<

✓

D + n

n

◆

,

then

!
t

(S)  D.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Dirichlet.html
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Properties of !t(S)

Consequence of Dirichlet’s box principle :

!
t

(S)  (t+ n� 1)|S|1/n.

Subadditivity :

!
t1+t2(S)  !

t1(S) + !
t2(S).

For a Cartesian product S = S1 ⇥ · · ·⇥ S
n

in Kn,

!
t

(S) = t min

1in

|S
i

|.

In particular for n = 1 we have !
t

(S) = t|S|.
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Complete intersections of hyperplanes

Let H1, . . . , HN

be N hyperplanes in general position in Kn

with N � n and S the set of
�

N

n

�

intersection points of any n
of them. Then, for t � 1,

!
nt

(S) = Nt.

n = 2, N = 5, |S| = 10.
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An asymptotic invariant
Theorem. The sequence

✓

1

t
!
t

(S)

◆

t�1

has a limit ⌦(S) as t ! 1, and

1

n
!1(S)� 2  ⌦(S)  !1(S).

Further, for all t � 1 we have

⌦(S) 
!
t

(S)

t
·

Remark : ⌦(S)  |S|1/n.

M.W. Propriétés arithmétiques de fonctions de plusieurs variables
(II). Sém. P. Lelong (Analyse), 16è année, 1975/76 ; Lecture Notes
in Math., 578 (1977), 274–292.
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Improvement of L2 estimate by Henri Skoda
Let ' be a plurisubharmonic function in Cn

and z0 2 Cn

be

such that e�'

is integrable near z0. For any ✏ > 0 there exists

a nonzero entire function F such that

Z

Cn

|F (z)|2e�'(z)
(1 + |z|2)�n�✏d�(z) < 1.

Corollary :
1

n
!1(S)  ⌦(S)  !1(S).

H. Skoda. Estimations L2 pour
l’opérateur @ et applications
arithmétiques. Springer Lecture
Notes in Math., 578 (1977),
314–323.

https://en.wikipedia.org/wiki/Henri_Skoda
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Comparing !t1(S) and !t2(S)
Idea: Let P be a polynomial of degree !

t1(S) vanishing on S
with multiplicity � t1. If the function P t2/t1 were an entire
function, it would be a polynomial of degree t2/t1 vanishing on
S with multiplicity � t2, which would yield !

t2(S) 
t2
t1
!
t1(S).

P t2/t1 is usually not an entire function but ' =

t2
t1
logP is a

plurisubharmonic function. By the L2–estimates of Hörmander
– Bombieri – Skoda, e' is well approximated by a nonzero
entire function. This function is a polynomial vanishing on S
with multiplicity � t2.

Theorem. For all t � 1,

!
t

t+ n� 1

 ⌦(S) 
!
t

t
·

M.W. Nombres transcendants et groupes algébriques. Astérisque,
69–70 . Société Mathématique de France, Paris, 1979.
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Connection with C.S. Seshadri constant

Conjeevaram Srirangachari
Seshadri

For a generic set S of s points
in Pn, Seshadri’s constant
✏(S) is related to ⌦(S) by

✏(S)n�1
=

⌦(S)

s
·
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C.S. Seshadri’s criterion
Let X be a smooth projective varitety and L a line bundle on

X. Then L is ample if and only if there exists a positive

number ✏ such that for all points x on X and all irreducible

curves C passing through x one has

L · C  ✏ mult

x

C.

R. Hartshorne. Ample
subvarieties of algebraic
varieties. Springer Lecture Notes
in Math., vol. 156, Springer
(1970).
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C.S. Seshadri constant at a point
Let X be a smooth projective variety and L a nef line bundle
on X. For a fixed point x 2 X the real number

✏(X,L; x) := inf

L · C

mult

x

C

is the Seshadri constant of L at x.
The infimum is over all irreducible curves passing through x.

J.-P. Demailly. Singular
Hermitian metrics on positive
line bundles. Complex algebraic
varieties (Bayreuth, 1990),
Lecture Notes Math. 1507,
Springer-Verlag, (1992) 87–104.
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C.S. Seshadri constant at a subscheme

For an arbitrary subscheme Z ⇢ X, let f : Y ! X be the
blow-up of X along Z with the exceptional divisor E. The
Seshadri constant of L at Z is the real number

✏(X,L;Z) := sup

�

� : f ⇤L� �E is ample on Y
 

.

T. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A. Knutsen,
W. Syzdek, and T. Szemberg. A primer on Seshadri constants.
Contemp. Math., 496 (2009), 33–70.
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C.S. Seshadri

Conjeevaram Srirangachari
Seshadri

C.S. Seshadri FRS (born 29
February 1932) is an eminent
Indian mathematician.

He is Director-Emeritus of the
Chennai Mathematical
Institute, and is known for his
work in algebraic geometry.
The Seshadri constant is
named after him.
He is a recipient of the
Padma Bhushan in 2009, the
third highest civilian honor in
the country. In 2013 he
received a Doctorate Honoris
Causa from Université P. et
M. Curie (Paris 6).

https://en.wikipedia.org/wiki/C._S._Seshadri
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Zero estimates

Recall step 2 of the transcendence machinery :

Step 2 Find a point z0 where f(z0) 6= 0.

Context : zero estimates, multiplicity estimates, interpolation
estimates on an algebraic group.

Results of C Hermite, C.L. Siegel, Th. Schneider, K. Mahler,
A.O. Gel’fond, R. Tijdeman, W.D. Brownawell, D.W. Masser,
G. Wüstholz, P. Philippon, J-C. Moreau, D. Roy,
M. Nakamaye, N. Rattazzi, S. Fischler. . .
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Michael Nakamaye and Nicolas Ratazzi

M. Nakamaye and N. Ratazzi. Lemmes de multiplicités et

constante de Seshadri. Math. Z. 259, No. 4, 915-933 (2008).

http://www.math.unm.edu/research/faculty_hp.php?d_id=96

http://www.math.u-psud.fr/~ratazzi/
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Stéphane Fischler and Michael Nakamaye

S. Fischler and M. Nakamaye. Seshadri constants and
interpolation on commutative algebraic groups. Ann. Inst.
Fourier 64, No. 3, 1269-1289 (2014).

http://www.math.u-psud.fr/~fischler/

http://www.math.unm.edu/research/faculty_hp.php?d_id=96
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S. David, M. Nakamaye, P. Philippon

Bornes uniformes pour le nombre de points rationnels de

certaines courbes, Diophantine geometry, 143–164, CRM
Series, 4, Ed. Norm., Pisa, 2007.

http://www.math.unm.edu/~nakamaye/Pisa.pdf
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S. David, M. Nakamaye, P. Philippon

Au Professeur C. S. Seshadri à l’occasion de son 75ème

anniversaire.

Nous commençons par une étude indépendante des jets des
sections de fibrés amples sur une surface lisse, puis sur le carré
d’une courbe elliptique, utile pour le Théorème 4.2. Ceci nous
permet en particulier d’introduire dans le présent contexte les
constantes de Seshadri, dont l’utilisation en géométrie
diophantienne nous semble devoir être positivement stimulée.

http://www.math.unm.edu/~nakamaye/Pisa.pdf
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Hilbert’s 14th problem

David Hilbert
(1862 – 1943)

Let k be a field and K a

subfield of k(X1, . . . , Xn

)

containing k. Is the k–algebra

K \ k[X1, . . . , Xn

]

finitely generated ?

Oscar Zariski (1954) : true for n = 1 and n = 2.
Counterexample by Masayoshi Nagata in 1959.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hilbert.html

http://www.clarku.edu/~djoyce/hilbert/
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Hilbert’s 14th problem : restricted case

Masayoshi Nagata
(1927 – 2008)

Original 14th problem :
Let G be a subgroup of the

full linear group of the

polynomial ring in

indeterminate X1, . . . , Xn

over a field k, and let o be the

set of elements of

k[X1, . . . , Xn

] which are

invariant under G. Is o finitely

generated ?

M. Nagata. On the 14-th Problem of Hilbert. Amer. J. Math 81
(1959), 766–772.
http://www.jstor.org/stable/2372927
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Fundamental Lemma of Nagata

Given 16 independent generic points of the projective plane
over a prime field and a positive integer t, there is no curve of
degree 4t which goes through each p

i

with multiplicity at least
t.

In other words for |S| = 16 generic in K2, we have !
t

(S) > 4t.

Reference: M. Nagata. On the fourteenth problem of Hilbert.
Proc. Internat. Congress Math. 1958, Cambridge University Press,
pp. 459–462.
http://www.mathunion.org/ICM/ICM1958/Main/icm1958.0459.0462.ocr.pdf
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Nagata’ contribution

Masayoshi Nagata
(1927 – 2008)

Proposition. Let p1, . . . , pr
be independent generic points

of the projective plane over

the prime field. Let C be a

curve of degree d passing

through the p
i

’s with

multiplicities � m
i

. Then

m1 + · · ·+m
r

< d
p

r
for r = s2, s � 4.

It is not known if r > 9, is su�cient to ensure the inequality of
the Proposition.
M. Nagata. Lectures on the fourteenth problem of Hilbert. Tata
Institute of Fundamental Research Lectures on Mathematics 31,
(1965), Bombay.
http://www.math.tifr.res.in/~publ/ln/tifr31.pdf
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Reformulation of Nagata’s Conjecture

By considering
P

�

C
�

where � runs over the cyclic
permutations of {1, . . . , r}, it is su�cient to consider the case
m1 = · · · = m

r

.

Conjecture. Let S be a finite generic subset of the projective

plane over the prime field with |S| � 10. Then

!
t

(S) > t
p

|S|.

Nagata :
• True for |S| a square.
• False for |S|  9.

51 / 100

The Nagata – Biran Conjecture

Masayoshi Nagata Paul Biran

Let X be a smooth algebraic surface and L an ample line
bundle on X of degree d. For su�ciently large r, the Seshadri
constant of a generic set Z = {p1, . . . , pr} satisfies

✏(X,L;Z) =
d
p

r
·

The Oberwolfach Photo Collection http://owpdb.mfo.de/
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|S|  9 in K2

Nagata : for |S|  9 in K2 we have
!
t

(S)

t


p

|S|.

|S| = 1 2 3 4 5 6 7 8 9

!1(S) = 1 1 2 2 2 3 3 3 3

t = 1 1 2 1 1 5 8 17 1

!
t

(S) = 1 1 3 2 2 12 21 48 3

!
t

(S)

t
= 1 1

3

2

2 2

12

5

21

8

48

17

3

p

|S| = 1

p

2

p

3 2

p

5

p

6

p

7

p

8 3
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|S| = 1 or 2 in K2

|S| = 1 : S = {(0, 0)}, P
t

(X, Y ) = X t,
!
t

(S) = t, ⌦(S) = 1.

|S| = 2 : S = {(0, 0), (1, 0)}, P
t

(X, Y ) = Y t,
!
t

(S) = t, ⌦(S) = 1.
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Generic S ⇢ K2 with |S| = 3

S = {(0, 0), (0, 1), (1, 0)}.

P1(X, Y ) = XY

P2(X, Y ) = XY (X + Y � 1)

!1(S) = 2, !2(S) = 3.

With

P2m�1 = XmY m

(X + Y � 1)

m�1, P2m = XmY m

(X + Y � 1)

m,

we deduce

!2m�1(S) = 3m� 1, !2m(S) = 3m.
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Generic S with |S| = 3 in K2

Given a set S of 3 points in K2, not on a straight line, we have

!
t

(S) =

8

>

>

>

<

>

>

>

:

3t+ 1

2

for t odd,

3t

2

for t even,

hence

⌦(S) = lim

n!1

!
t

(S)

t
=

3

2

·

Since !1(S) = 2 and n = 2, this is an example with

!1(S)

n
< ⌦(S) < !1(S).
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Generic S ⇢ K2 with |S| = 4
For a generic S in K2 with |S| = 4, we have !

t

(S) = 2t,
hence ⌦(S) = 2.

Easy for a Cartesian product S1 ⇥ S2 with |S1| = |S2| = 2,
also true for a generic S with |S| = 4.

More generally, for the same reason, when S is a Cartesian
product S1 ⇥ S2 with |S1| = |S2| = m, we have !

t

(S) = mt
and ⌦(S) = m =

p

|S|. The inequality ⌦(S) �
p

|S| for a
generic S with |S| a square follows (Chudnovsky).

57 / 100

Generic S ⇢ K2 with |S| = 5

Since 5 points in K2 lie on a conic, for a generic S with
|S| = 5 we have !

t

(S) = 2t and ⌦(S) = 2.

Remark. A polynomial in 2 variables of degree d has

(d+ 1)(d+ 2)

2

coe�cients. Hence for 2|S| < (d+ 1)(d+ 2) we have
!1(S)  d.

For |S| = 1, 2 we have !1(S) = 1,
for |S| = 3, 4, 5 we have !1(S)  2,
for |S| = 6, 7, 8, 9 we have !1(S)  3.
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Generic S ⇢ K2 with |S| = 6 (Nagata)

Given 6 generic points
s1, . . . , s6 in K2, consider 6
conics C1, . . . , C6 where S

i

passes through the 5 points s
j

for j 6= i. This produces a
polynomial of degree 12 with
multiplicity � 5 at each s

i

.
Hence !5(S)  12.

In fact !5(S) = 12,
⌦(S) = 12/5.
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Generic S ⇢ K2 with |S| = 7 (Nagata)

Given 7 points in K2, there is a cubic passing through these 7

points with a double point at one of them.

Number of coe�cients of a cubic polynomial : 10.

Number of conditions : 6 for the simple zeros, 3 for the double
zero.

This gives a polynomial of degree 7⇥ 3 = 21 with the 7

assigned zeroes of multiplicities 8.

In fact !8(S) = 21, ⌦(S) = 21/8.
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Generic S ⇢ K2 with |S| = 8 (Nagata)

Given 8 points in K2, there is a sextic with a double point at 7
of them and a triple point at 1 of them.

Number of coe�cients of a sextic polynomial :
(6 + 1)(6 + 2)/2 = 28.

Number of conditions : 3⇥ 7 = 21 for the double zeros, 6 for
the triple zero.

This gives a polynomial of degree 8⇥ 6 = 48 with the 8

assigned zeroes of multiplicities 2⇥ 8 + 1 = 17.

In fact !17(S) = 48, ⌦(S) = 47/17.
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G.V. Chudnovsky

Gregory Chudnovsky

Conjecture :

!1 + n� 1

n


!
t

t
·

G.V. Chudnovsky. Singular
points on complex

hypersurfaces and

multidimensional Schwarz

Lemma. M.-J. Bertin (Ed.),
Séminaire de Théorie des
Nombres Delange-Pisot-
Poitou, Paris, 1979–80, Prog.
Math., vol. 12, Birkhäuser.

True for n = 2 (J-P. Demailly).

https://fr.wikipedia.org/wiki/David_et_Gregory_Chudnovsky
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Chudnovsky : n = 2, |S| = 2, 3, 4, 5
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Chudnovsky : n = 2, |S| = 5, 6

64 / 100



Chudnovsky : n = 2, |S| = 6, 7
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Chudnovsky : n = 2, |S| = 8
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Chudnovsky : n = 2, |S| = 9
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Chudnovsky : n = 2, |S| = 6

68 / 100



Chudnovsky : n = 2, |S| = 8
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Chudnovsky : n = 2, |S| = 8
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Chudnovsky : n = 2, |S| = 10
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Hélène Esnault and Eckart Viehweg

H. Esnault and E. Viehweg Sur une minoration du degré

d’hypersurfaces s’annulant en certains points. Math. Ann. 263
(1983), 75 – 86

Methods of projective geometry : for n � 2,

⌦(S) �
!
t

+ 1

t+ n� 1

·
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Jean-Pierre Demailly

Jean-Pierre Demailly

Using an appropriate
generalization of the
Poisson–Jensen formula,
proves a new variant of the
Schwarz lemma in Cn.

Consequence :

⌦(S) �
!1(S)

�

!1(S) + 1

�

· · ·

�

!1(S) + n� 1

�

n!!1(S)n�1

Corollary : For n = 1 or 2,

⌦(S) �
!1(S) + n� 1

n
·
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Demailly’s Conjecture

Recall the Conjecture of Chudnovsky and the Theorem of
Esnault and Viehweg :

⌦(S) �
!1 + n� 1

n
, ⌦(S) �

!
t

+ 1

t+ n� 1

·

Conjecture of Demailly :

⌦(S) �
!
t

(S) + n� 1

t+ n� 1

·

J–P. Demailly. Formules de Jensen en plusieurs variables et
applications arithmétiques. Bull. Soc. Math. France 110 (1982),
75–102.

https://de.wikipedia.org/wiki/Jean-Pierre_Demailly
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Abdelhak Azhari

A. Azhari. Démonstration
analytique d’un lemme de
multiplicités. C. R. Acad. Sci.
Paris Sér. I Math. 303 (1986),
no. 7, 269–272.

A. Azhari. Sur la conjecture de Chudnovsky – Demailly et les
singularités des hypersurfaces algébriques. Ann. Inst. Fourier 40
(1990), no. 1, 103–116.
http://www.numdam.org/item?id=AIF_1990__40_1_103_0
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Conjecture of André Hirschowitz

Denote by !
t

(n,m) the
maximum of !

t

(S) over all
finite sets S in Kn with m
elements.
Conjecture : !

t

(n,m) is as
large as possible.

For every n � 1 there is an integer c(n) such that, for every

m � c(n) and, for all t, !
t

(n,m) is the smallest integer d such

that

✓

d+ n

n

◆

> m

✓

t+ n� 1

n

◆

·

True for t = 2 and n = 2 and 3, and for t = 3 and n = 2.
A. Hirschowitz. La méthode d’Horace pour l’interpolation à
plusieurs variables. Manuscripta Math. 50 (1985), 337–388.
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Alternate proof of ⌦(S) �
!
1

(S)

n
(2001, 2002)

Theorem (Ein-Lazarfeld-Smith, Hochster-Huneke). Let
J be a homogeneous ideal in K[X0, . . . , Xn

] and t � 1. Then

J (tn)
⇢ J t.

Consequence : From I(S)t � I(S)(tn) we deduce

t!1(S)  !
tn

(S)

and
!1(S)

n


!
tn

(S)

tn
! ⌦(S) as t ! 1.
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J (tn)
⇢ Jt by L. Ein, R. Lazarfeld and K.E. Smith

The proof by Lawrence Ein, Robert Lazarfeld and Karen E.
Smith uses multiplier ideals.

L. Ein, R. Lazarfeld and K.E. Smith. Uniform behavior of symbolic
powers of ideals. Invent. Math. 144 (2001), 241–252.
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J (tn)
⇢ Jt

R. Lazarfeld. Positivity in

algebraic geometry I – II.
Ergeb. Math. 48–49,
Springer, Berlin (2004).
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J (tn)
⇢ Jt by M. Hochster and C. Huneke

The proof by Melvin Hochster and Craig Huneke uses
Frobenius powers and tight closure.

Melvin Hochster Craig Huneke

M. Hochster and C. Huneke. Comparison of symbolic and ordinary
powers of ideals. Invent. Math. 147 (2002), 349–369.
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Briançon-Skoda Theorem

Melvin Hochster Craig Huneke

For an m–generated ideal a in the ring of germs of analytic
functions at 0 2 Cn, the ⌫–th power of its integral closure is
contained in a, where ⌫ = min{m,n}.
M. Hochster and C. Huneke. Tight closure, invariant theory, and
the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990),
31–116.
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Symbolic powers

For a homogeneous ideal J in the ring R = K[X0, . . . , Xn

]

and m � 1, define the symbolic power J (m) as follows. Write
primary decompositions of J and Jm as

J =

\

i

Q

i

, Jm

=

\

j

Q

0
j

,

where Q

i

is homogeneous and P

i

primary, Q0
j

is homogeneous
and P

0
j

primary. We set

J (m)
=

\

j

Q

0
j

where the intersection is over the j with P

0
j

contained in some
P

i

.
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Symbolic powers

Notice that Jm

⇢ J (m).

Example of a fat points ideal. For J = \

j

I(p
j

)

mj ,

J (m)
=

\

j

I(p
j

)

mmj .
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The containment problem

Find all m, t with
J (m)

⇢ J t.

Brian Harbourne. Asymptotic invariants of ideals of points. (2009).
Special Session on Geometry, Syzygies and Computations
Organized by Professors S. Kwak and J. Weyman KMS-AMS joint
meeting, December 16–20, 2009.
Slides.
www.math.unl.edu/

~

bharbourne1/KSSNoPauseRev.pdf
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⌦(J) for a homogeneous ideal J

Cristiano Bocci Brian Harbourne

For a homogeneous ideal J of K[X0, . . . , Xn

], and t � 1,
define !

t

(J) = !(J (t)
). Then

⌦(J) = lim

t!1

!
t

(J)

t
exists and satisfies

⌦(J) 
!
t

(J)

t
for all t � 1.
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The resurgence of Bocci and Harbourne

Define
%(J) = sup

nm

r
| J (m)

6⇢ Jr

o

.

Hence, if
m

r
> %(J), then J (m)

⇢ Jr.

By L. Ein, R. Lazarfeld and K.E. Smith, %(J)  n.

C. Bocci and B. Harbourne. Comparing powers and symbolic
powers of ideals. J. Algebraic Geom. 19 (2010), no. 3, 399–417.

C. Bocci and B. Harbourne. The resurgence of ideals of points and
the containment problem. Proc. Amer. Math. Soc. 138 (2010), no.
4, 1175–1190
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The resurgence of Bocci and Harbourne

Denote by reg(J) the Castelnuovo– Mumford regularity of J .

Theorem (Bocci, Harbourne). We have

!(J)

⌦(J)
 %(J) 

reg(J)

⌦(J)
·

Further, if !(J) = reg(J), then

J (m)
⇢ J t

() t!(J)  !(J (m)
).
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Optimality

Following Bocci and Harbourne, we have

sup

|S|<1

!1(S)

⌦(S)
= n.
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Conjecture of Cristiano Bocci and Brian Harbourne

Let S be a finite subset of P2. Define %(S) = %(J) for
J = I(S).

Conjecture.

%(S)  2

!1(S)

!1(S) + 1

·

This conjecture implies Chudnovsky’s conjecture : from

!1(S)

⌦(S)
 %(S)  2

!1(S)

!1(S) + 1

one deduces
!1(S) + 1

2

 ⌦(S).
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The containment problem (continued)
Let M be the homogeneous ideal (X0, . . . , Xn

) in R.

Fact. In characteristic zero, the ideal J = I(S) satisfies
J (2)

⇢ MJ .

Proof. Let P 2 J (2). Hence @

@Xi
P 2 J . Use Euler’s formula

(degP )P =

n

X

i=0

X
i

@

@X
i

P.

Question. For which m, t, j do we have J (m)
⇢ M

jJ t

?

Remark. Since M

jJ t

⇢ J t, the condition J (m)
⇢ M

jJ t

implies J (m)
⇢ J t.

B. Harbourne and C. Huneke. Are symbolic powers highly evolved ?
J. Ramanujan Math. Soc. 28A (2013), 247–266.
arxiv:1103.5809.
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Conjecture of Brian Harbourne and Craig Huneke

Chudnovsky’s result

!1 + n� 1

n


!
t

t
·

for n = 2 follows from

J (2t)
⇢ M

tJ t

for any homogeneous ideal of points J = I(S) in
K[X0, X1, X2].

Generalization for n � 2.
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Conjecture of Brian Harbourne and Craig Huneke

Let J = \

j

I(p
j

)

mj be a fat points ideal in R.

Conjecture (Harbourne and Huneke). For all t > 0,

J (tn)
⇢ M

t(n�1)J t.
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Evolutions

Andrew Wiles Richard Taylor Matthias Flach

Evolutions are certain kinds of ring homomorphisms that arose
in proving Fermat’s last Theorem (A. Wiles, R. Taylor,
M. Flach).

An important step in the proof was to show that in certain
cases only trivial evolutions occurred.
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Evolutions

D. Eisenbud and B. Mazur showed the question of triviality
could be translated into a statement involving symbolic
powers. They then made the following conjecture in
characteristic 0 :

Conjecture (Eisenbud–Mazur) Let P ⇢ C[[x1, . . . , xd

]] be

a prime ideal. Let M = (x1, . . . , xd

). Then P

(2)
⇢ MP.
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Evolutions

Heuristically, the main conjecture of Harbourne and Huneke
can be thought of as a generalization of the conjecture of
Eisenbud and Mazur.

B. Harbourne and C. Huneke. Are symbolic powers highly evolved ?
J. Ramanujan Math. Soc. 28, (2011)
arxiv:1103.5809.
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Brian Harbourne

Brian Harbourne, Sandra Di
Rocco, Tomasz Szemberg,

Thomas Bauer

Oberwolfach
Linear Series on Algebraic
Varieties : 2010-10-03 –
2010-10-09

M. Dumnicki, B. Harbourne, T. Szemberg and H. Tutaj-Gasińska.
Linear subspaces, symbolic powers and Nagata type conjectures.
Adv. Math. 252 (2014), 471–491.

https://owpdb.mfo.de/detail?photo_id=13201
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Marcin Dumnicki

Chudnovsky’s conjecture

⌦(S) �
!1(S) + n� 1

n
holds

for generic finite subsets in P3.

M. Dumnicki. Symbolic powers of ideal of generic points in P3
.

J. Pure Applied Algebra 216 (2012), 1410–1417.
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Thomas Bauer and Thomasz Szemberg.

Th. Bauer and T. Szemberg. The e↵ect of points fattening in

dimension three. Recent advances in Algebraic Geometry. A
volume in honor of Rob Lazasfeld’s 60th Birthday LMS,
Cambridge University Press 2015.
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Further references

M. Baczyńska, M. Dumnicki, A. Habura, G. Malara,
P. Pokora, T. Szemberg, J. Szpond and H. Tutaj-Gasińska.
Points fattening on P1

⇥ P1
and symbolic powers of

bi–homogeneous ideals. J. Pure Applied Algebra 218 (2014),
1555–1562.

C. Bocci, S.M. Cooper and B. Harbourne. Containment results

for ideals of various configurations of points in PN

. J. Pure
Applied Algebra 218 (2014), 65–75.
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Jugal Verma, Sylvia Wiegand, Roger Wiegand

e-mail January 24, 2014.

http://www.math.iitb.ac.in/~jkv/
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