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• Classical Diophantine equations in two variables, their theory, relations with Diophan-
tine Approximation and with Algebraic Number Theory
• linear equation
• Pell equation
• Thue equation
• elliptic, hyperelliptic, superelliptic equations
• general equation, Siegel’s finiteness theorem.

• Baker’s method, effective results
• From effective to explicit: the Las-Vegas Principle
• Continued Fractions and Baker-Davenport Lemma
• Explicit solution of simultaneous Pell equations
• Explicit solutions of Thue equations.
• Elliptic curves, Mordell-Weil Theorem. Solving elliptic equations using elliptic loga-
rithms.

First course: Thursday, June 20, 2019; 8:30 – 9:15

• The linear recurrent sequence un+2 = un+1 + un with u0 = 1 and u1 =
(1−

√
5)/2. Sensitivity to initial conditions.

Reference:

https://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/SensitivityInitialConditions.pdf

• Thue Diophantine equation x3− 2y3 = k and irrationality measure for 3
√

2.
Liouville’s estimate for the rational Diophantine approximation of 3

√
2:∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

cq3

with c = 5 for all p/q, and any c > 3 3
√

4 = 4.7622 . . . for q sufficiently large.
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Proof: write
1 ≤ |p3 − 2q3| = |p− 3

√
2q|(p2 +

3
√

4pq +
3
√

4q2).

We may assume 0 < p ≤ q 3
√

2 + (1/cq2). Then

0 < p2 +
3
√

4pq +
3
√

4q2 < 3
3
√

4q2 +
3 3
√

2

cq
+

1

c2q4
< cq2.

Explicit refinement by M. Bennett: for any p/q ∈ Q,∣∣∣∣ 3
√

2− p

q

∣∣∣∣ ≥ 1

4 q5/2
·

Application: for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥
√
x.

Lemma 1. Let η be a positive real number. The two following properties are
equivalent:
(i) There exists a constant c1 > 0 such that, for any p/q ∈ Q with q > 0,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1
qη
·

(ii) There exists a constant c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥ c2x
3−η.

True for η > 2, false for η < 2, unknown for η = 2. Effective for η > 5/2
only.

Liouville estimate for |α− (p/q)|. Improvement by Thue. Application to
Thue equation F (x, y) = k where F ∈ Z[X, Y ] is a homogeneous form with
at least 3 distinct linear factors in C.

Statement of the Thue – Siegel – Roth Theorem. Not effective.

References:

§ 2.2.5 of
https://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/IntroductionDiophantineMethods.pdf

§ 3 of
https://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/IntroductionDiophantineApproximationBerhampur2018.pdf
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Second course: Thursday, June 20, 2019; 12:00 – 12:45

• Basic facts from algebraic number theory.
Number field, degree, examples: Q(

√
d), Q(α), Q(e2iπ/n).

The field of algebraic numbers, the ring of algebraic integers, the ring of
integers of a number field, the group of units of a number field. Dirichlet’s
Unit Theorem: the group of units of a number field is finitely generated.

Quadratic fields: ring of integers, roots of unity, units, connection with
Pell’s equation.

• Statement of the assertions (T) = Thue, (M) = Mordell, (E) = Elliptic,
(HE) = Hyperelliptic, (SE) = Superelliptic and (S) = Siegel Unit Theorem

Their equivalence:

(SE) =⇒ (M) ⇐= (E)
⇑ ⇓ ⇑

(T) ⇐= (S) =⇒ (HE)

Trivial implications (HE)⇒(E), (E)⇒(M) and (SE)⇒(M).
Proofs of the easy implications (M)⇒(S) and (T)⇒(S).
Proof of the not too difficult implication (S)⇒(T).
The two implications which are not so easy to prove are

(T) =⇒ (SE) and (S) =⇒ (HE).

References:

M.W. – Diophantine equations and transcendental methods (written by
Noriko Hirata). in: Transcendental numbers and related topics, RIMS Kôkyûroku,
Kyoto, 599 (1986), N◦8, 82–94.

https://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/DiophEqnNoriko1986.pdf

C. Levesque and M.W. – Some remarks on diophantine equations and
diophantine approximation, 26 p. Vietnam Journal of Mathematics, 39:3
(2011) 343-368.
arXiv:1312.7200 [math.NT].

https://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/CLMW-DEDA2011.pdf

M.W. – Thue Diophantine equations - a survey. Proceedings of the Inter-
national Conference on Class Groups of Number Fields and Related Topics
(ICCGNFRT-2017), HRI Allahabad, September 2017, 14 p. Springer Verlag.

https://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/ProcHRI2017ThueEquations.pdf
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Third course: Saturday, June 22, 2019; 8:30 – 9:15

• Statement of Siegel’s finiteness Theorem for integral points on curves of
genus ≥ 1. Effective (by Baker’s method using lower bounds for linear forms
in logarithms) only for genus 1. Statement of Falting’s Theorem (Mordell’s
Conjecture) for rational points on curves of genus ≥ 2. Upper bounds for
the number of solutions.

• Lower bounds for linear forms in logarithms. Liouville–type bound: e−cB.
Gel’fond – Baker method: B−c.

• Sketch of proof of Siegel Theorem (S) on the unit equation using a lower
bound for linear forms in logarithms.

The next lemma (see for instance the book by Y. Bugeaud, Th. 4.3)
follows from the equivalence of two norms on a finite dimensional vector
space.

Lemma 2. Let K be a number field, ε1, . . . , εr a basis of the unit group of
K modulo torsion. There exists a constant c > 0 such that, if u is a unit of
K with

u = ζεt11 · · · εtrr
where ζ is a root of unity and b1, . . . , br are in Z, then there exists a conjugate
u′ of u in C such that

max{|t1|, . . . , |tr|} ≤ c log |u′|.

Sketch of proof of Siegel Theorem (S). Assume a1u1 + a2u2 = 1. Write

u1 = ζ1ε
s1
1 · · · εsrr , u2 = ζ2ε

t1
1 · · · εtrr .

We may assume max{|t1|, . . . , |tr|} ≥ max{|s1|, . . . , |sr|}. Let

B = max{|t1|, . . . , |tr|}.

By Lemma 2, there is an embedding of K into C for which log |u2| ≥ c1B.
Write

−a1u1
a2u2

− 1 =
−1

a2u2
·

The modulus of the right hand side is ≤ e−c2B with some constant c2 > 0.
Setting bi = si − ti, αi = εi (i = 1, . . . , n), α0 = −a1ζ1/a2ζ2, b0 = 1, we write
the left hand side as

αb00 α
b1
1 · · ·αbrr − 1.
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By the results from the theory of linear forms in logarithms, the modulus of
this number is bounded from below by B−c3 with another constant c3 > 0.
Hence B is bounded and the set of u1, u2 is finite.

References:

Y. Bugeaud. – Linear Forms in Logarithms and Applications. IRMA
Lectures in Mathematics and Theoretical Physics Vol. 28 2018.

M.W. — Diophantine approximation and Diophantine equations.
https://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/HRI2011.pdf

Fourth course: Saturday, June 22, 2019; 9:20 – 10:05
• Elliptic curves.

Weierstrass model of the elliptic curve E with a parametrisation by Weier-
strass ℘ function.

Mordell–Weil Theorem: the group of rational points of an elliptic curve
over a number field is finitely generated.

Linear forms in elliptic logarithms: lower bound for |v| = |b0u0+· · ·+bnun|
when x = ℘(v) ∈ Z. Trivial |x| ≥ 1 yields e−cB, where B = max{|bi|}.
Transcendence methods yields B−c.

Sketch of proof of Siegel’s Theorem (E) on the finiteness of integer points
on an elliptic curve using lower bounds for linear forms in elliptic logarithms.

Sketch of proof of Siegel Theorem (E). Let (x, y) ∈ Z× Z satisfy

y2 = 4x3 − g2x− g3.

Write x = ℘(v). Assume |x| is sufficiently large. Then there exists a period
ω of ℘ such that 0 < |v − ω| < c1/v

2.
Let u1, . . . , ur be a basis of the Mordell–Weil group E(K) modulo torsion.

Write
v = w + b1u1 + · · ·+ brur

where w is an elliptic logarithm of a torsion point (a small multiple of w is
a period) and b1, . . . , br are in Z. From the theory of Néron–Tate height it
follows that the number B = max{|b1|, . . . , |br|} satisfies B ≤ c2 log |v|. On
the other hand, using a lower bound for linear forms in elliptic logarithms,
we have

|b1u1 + · · ·+ brur + w − ω| ≥ B−c3 .
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Combining the upper and the lower bound yields an upper bound for B,
hence |v| belongs to a finite set, and finally |x| is bounded.

• Elliptic binomial Diophantine equations.

Reference:

http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/EllipticBinomialDiophantineEquations.pdf

R.J. Stroeker and N. Tzanakis. — Solving elliptic diophantine equations
by estimating linear forms in elliptic logarithms, Acta Arithmetica 67 (1994),
177 – 196.

R.J. Stroeker and N. Tzanakis. — On the Elliptic Logarithm Method for
Elliptic Diophantine Equations: Reflections and an Improvement. Experi-
mental Mathematics, 8 (1999), No. 2, 135 – 149.

R.J. Stroeker and N. Tzanakis. — Elliptic binomial Diophantine equa-
tions, Mathematics of Computation, 68, 227 (1999), 1257 – 1281.
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