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Abstract

The main tool for solving Diophantine equations is to study
Diophantine approximation. In this talk we explain the
meaning of these words, the connection between the two
topics, and we survey some of the main results and some of
the main conjectures. Among the very powerful tools is
Schmidt’s Subspace Theorem, which has a large variety of
applications, but does not yield effective results so far.



Diophantus of Alexandria (250 ±50)



Rational approximation

The rational numbers are dense in the real numbers :
For any x in R and any ε > 0, there exists p/q ∈ Q such that∣∣∣∣x − p

q

∣∣∣∣ < ε.

Numerical approximation : starting from the rational numbers,
compute the maximal number of digits of x with the minimum
of operations.

Rational approximation : given x and ε, find p/q with q
minimal such that |x − p/q| < ε.
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Rational approximation to real numbers

Easy : for any x ∈ Q and any q ≥ 1, there exists p ∈ Z with
|qx − p| ≤ 1/2.
Solution : take for p the nearest integer to qx .

This inequality ∣∣∣∣x − p

q

∣∣∣∣ < 1

2q

is best possible when qx is half an integer. We want to
investigate stronger estimates : hence we need to exclude
rational numbers.
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Rational approximation to rational numbers

A rational number has an excellent rational approximation :
itself !
But there is no other good approximation : if x is rational,
there exists a constant c = c(x) > 0 such that, for any
p/q ∈ Q with p/q 6= x , ∣∣∣∣x − p

q

∣∣∣∣ ≥ c

q
·

Proof : Write x = a/b and set c = 1/b : since aq − bp is a
nonzero integer, it has absolute value at least 1, and∣∣∣∣x − p

q

∣∣∣∣ =
|aq − bp|

bq
≥ 1

bq



Rational approximation to rational numbers

A rational number has an excellent rational approximation :
itself !
But there is no other good approximation : if x is rational,
there exists a constant c = c(x) > 0 such that, for any
p/q ∈ Q with p/q 6= x , ∣∣∣∣x − p

q

∣∣∣∣ ≥ c

q
·

Proof : Write x = a/b and set c = 1/b : since aq − bp is a
nonzero integer, it has absolute value at least 1, and∣∣∣∣x − p

q

∣∣∣∣ =
|aq − bp|

bq
≥ 1

bq



Rational approximation to rational numbers

A rational number has an excellent rational approximation :
itself !
But there is no other good approximation : if x is rational,
there exists a constant c = c(x) > 0 such that, for any
p/q ∈ Q with p/q 6= x , ∣∣∣∣x − p

q

∣∣∣∣ ≥ c

q
·

Proof : Write x = a/b and set c = 1/b : since aq − bp is a
nonzero integer, it has absolute value at least 1, and∣∣∣∣x − p

q

∣∣∣∣ =
|aq − bp|

bq
≥ 1

bq



Criterion for irrationality

Consequence. Let ϑ ∈ R. Assume that for any ε > 0, there
exists p/q ∈ Q with

0 < |qϑ− p| < ε.

Then ϑ is irrational.



Rational approximation to irrational real numbers

Any irrational real number x has much better rational
approximations than those of order 1/q, namely there exist
approximations of order 1/q2 (hence p will always be the
nearest integer to qx).

For any x ∈ R \Q, there exists infinitely many p/q with∣∣∣∣x − p

q

∣∣∣∣ ≤ 1

q2
·
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Pigeonhole Principle

More holes than pigeons More pigeons than holes



Gustave Lejeune–Dirichlet (1805–1859)

G. Dirichlet

1842 : Box (pigeonhole)
principle
A map f : E → F with
CardE > CardF is not
injective.
A map f : E → F with
CardE < CardF is not
surjective.



Existence of rational approximations
For any ϑ ∈ R and any real number Q > 1, there exists
p/q ∈ Q with

|qϑ− p| ≤ 1

Q
and 0 < q < Q.

Proof. For simplicity assume Q ∈ Z. Take

E =
{

0, {ϑ}, {2ϑ}, . . . , {(Q − 1)ϑ}, 1
}
⊂ [0, 1],

where {x} denotes the fractional part of x and let F be the
partition[

0,
1

Q

)
,

[
1

Q
,

2

Q

)
, . . . ,

[
Q − 2

Q
,
Q − 1

Q

)
,

[
Q − 1

Q
,1

]
,

of [0, 1], so that

CardE = Q + 1 > Q = CardF ,

and f : E → F maps x ∈ E to I ∈ F with I 3 x .
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Hermann Minkowski (1864-1909)

H. Minkowski

1896 : Geometry of numbers.
Let ϑ ∈ R. The set
C = {(u, v) ∈ R2 ; |v | ≤ Q,

|vϑ− u| ≤ 1/Q}
is convex, symmetric,
compact, with volume 4.
Hence C ∩ Z2 6= {(0, 0)}.



Adolf Hurwitz (1859–1919)

A. Hurwitz

1891
For any ϑ ∈ R \Q, there
exists a sequence (pn/qn)n≥0
of rational numbers with

0 < |qnϑ− pn| <
1√
5qn

and qn →∞.
Methods : Continued
fractions, Farey sections.

Best possible for the Golden ratio

1 +
√

5

2
= 1.618 033 988 749 9 . . .



Irrationality criterion
Let ϑ be a real number. The following conditions are
equivalent.
(i) ϑ is irrational.
(ii) For any ε > 0, there exists p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any real number Q > 1, there exists an integer q in
the interval 1 ≤ q < Q and there exists an integer p such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

qQ
·

(iv) There exist infinitely many p/q ∈ Q satisfying∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·



Criteria for linear and algebraic independence

Linear independence :
Yu.V. Nesterenko, S. Fischler and W. Zudilin, A. Chantanasiri.

Algebraic independence : A.O. Gel’fond, G.V. Chudnovski,
P. Philippon, Yu.V. Nesterenko.



Liouville’s inequality

Liouville’s inequality. Let α
be an algebraic number of
degree d ≥ 2, P ∈ Z[X ] its
minimal polynomial,
c = |P ′(α)| and ε > 0. There
exists q0 such that, for any
p/q ∈ Q with q ≥ q0,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

(c + ε)qd
·

Joseph Liouville, 1844



Improvements of Liouville’s inequality

In the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d ≥ 3, the exponent d
of q in the denominator of the right hand side was replaced by
κ with
• any κ > (d/2) + 1 by A. Thue (1909),
• 2
√

d by C.L. Siegel in 1921,
•
√

2d by Dyson and Gel’fond in 1947,
• any κ > 2 by K.F. Roth in 1955.



Thue–Siegel–Roth Theorem

Axel Thue
(1863 - 1922)

Carl Ludwig Siegel
(1896 - 1981)

Klaus Friedrich
Roth (1925 – )

For any real algebraic number α, for any ε > 0, the set of
p/q ∈ Q with |α− p/q| < q−2−ε is finite.



Thue–Siegel–Roth Theorem

An equivalent statement is that, for any real algebraic number
α and for any ε > 0, there exists q0 > 0 such that, for
p/q ∈ Q with q ≥ q0, we have

|α− p/q| > q−2−ε.



Schmidt’s Subspace Theorem (1970)

For m ≥ 2 let L0, . . . , Lm−1 be
m independent linear forms in
m variables with algebraic
coefficients. Let ε > 0. Then
the set

{x = (x0, . . . , xm−1) ∈ Zm ;

|L0(x) · · · Lm−1(x)| ≤ |x|−ε}

is contained in the union of
finitely many proper
subspaces of Qm.

W.M. Schmidt



Schmidt’s Subspace Theorem

W.M. Schmidt (1970) : For m ≥ 2 let L0, . . . , Lm−1 be m
independent linear forms in m variables with algebraic
coefficients. Let ε > 0. Then the set

{x = (x0, . . . , xm−1) ∈ Zm ; |L0(x) · · · Lm−1(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces of
Qm.

Example : m = 2, L0(x0, x1) = x0, L1(x0, x1) = αx0 − x1.

Roth’s Theorem : for any real algebraic irrational number α, for

any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is finite.



Schmidt’s Subspace Theorem

W.M. Schmidt (1970) : For m ≥ 2 let L0, . . . , Lm−1 be m
independent linear forms in m variables with algebraic
coefficients. Let ε > 0. Then the set

{x = (x0, . . . , xm−1) ∈ Zm ; |L0(x) · · · Lm−1(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces of
Qm.

Example : m = 2, L0(x0, x1) = x0, L1(x0, x1) = αx0 − x1.

Roth’s Theorem : for any real algebraic irrational number α, for

any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is finite.



An exponential Diophantine equation

The only solutions of the equation

2a + 3b = 5c

where the unknowns a, b, c are nonnegative integers are
(a, b, c) = (1, 1, 1), (2, 0, 1), (4, 2, 2) :

2 + 3 = 5, 4 + 1 = 5, 16 + 9 = 25.



S–unit equations – rational case
Let S = {p1, . . . , ps} be a finite set of prime numbers. Then
the equation

u1 + u2 = u3,

where the unknowns u1, u2, u3 are relatively prime integers
divisible only by the prime numbers in S , has only finitely
many solutions.

Notice that for any prime number p, the equation

u1 + u2 + u3 = u4

has infinitely many solutions in rational integers u1, u2, u3

divisible only by p and gcd(u1, u2, u3, u4) = 1 : for instance

pa + (−pa) + 1 = 1.
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A consequence of Schmidt’s Subspace Theorem

Let S = {p1, . . . , ps} be a finite set of prime numbers. Then
the equation

u1 + u2 + · · ·+ us = 1,

where the unknowns u1, u2, · · · , us are rational numbers with
numerators and denominators divisible only by the prime
numbers in S for which no nontrivial subsum∑

i∈I
∅6=I⊂{1,...,s}

ui

vanishes, has only finitely many solutions.



Diophantine equations

A Diophantine equation is an equation of the form

f (x1, . . . , xn) = 0

where f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn] is a given polynomial and
the variables X1, . . . ,Xn take their values x1, . . . , xn in Zn

(integer points) or in Qn (rational points).

We will mainly consider integral points.
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Diophantus of Alexandria (250 ±50)



Pierre de Fermat (1601–1665)
Fermat’s Last Theorem .



Historical survey

Pierre de Fermat (1601 - 1665)

Leonhard Euler (1707 - 1783)

Joseph Louis Lagrange (1736 - 1813)

XIXth Century : Hurwitz, Poincaré
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Thue equation and Diophantine approximation

Liouville’s estimate for the rational Diophantine approximation
of 3
√

2 : ∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

9q3

for sufficiently large q.

Mike Bennett (1997) : for any p/q ∈ Q,∣∣∣∣ 3
√

2− p

q

∣∣∣∣ ≥ 1

4 q2.5
·
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Mike Bennett

http://www.math.ubc.ca/∼bennett/

For any p/q ∈ Q,∣∣∣∣ 3
√

2− p

q

∣∣∣∣ ≥ 1

4 q2.5
·

For any (x , y) ∈ Z2 with
x > 0,

|x3 − 2y 3| ≥
√

x .

http://www.math.ubc.ca/~bennett/


Connection between Diophantine approximation

and Diophantine equations

Let κ satisfy 0 < κ ≤ 3.
The following conditions are equivalent :
(i) There exists c1 > 0 such that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ ≥ c1
qκ

for any p/q ∈ Q.
(ii) There exists c2 > 0 such that

|x3 − 2y 3| ≥ c2 x3−κ

for any (x , y) ∈ Z2 having x > 0.



Thue’s equation and approximation

Let f ∈ Z[X ] be an irreducible polynomial of degree d and let
F (X ,Y ) = Y d f (X/Y ) be the associated homogeneous binary
form of degree d . Then the following two assertions are
equivalent :
(i) For any integer k 6= 0, the set of (x , y) ∈ Z2 verifying

F (x , y) = k

is finite.
(ii) For any real number κ > 0 and for any root α ∈ C of f ,
the set of rational numbers p/q verifying∣∣∣∣α− p

q

∣∣∣∣ ≤ κ

qd

is finite.



Thue equation

Condition

(i) For any integer k 6= 0, the set of (x , y) ∈ Z2

verifying
F (x , y) = k

is finite.

can also be phrased by stating that for any positive integer k ,
the set of (x , y) ∈ Z2 verifying

0 < |F (x , y)| ≤ k

is finite.



Number fields, ring of integers

We denote by K a number field (subfield of C which is a finite
dimensional vector space over Q – equivalently K = Q(α)
where α is an algebraic number), by ZK the ring of integers of
K (elements of K having an irreducible monic polynomial with
integer coefficients).

For instance when K = Q(i) we have ZK = Z[i ].

More generally for K = Q(ζ) where ζ is a root of unity we
have ZK = Z[ζ].

But for Φ = (1 +
√

5)/2, the field K = Q(Φ) is the same as
Q(
√

5) and we have ZK = Z[Φ].
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Mordell’s equation

• (M)
For any number field K and for any non–zero element k in K ,
the Mordell equation

Y 2 = X 3 + k

has but a finite number of solutions (x , y) ∈ ZK × ZK .



Elliptic equation

• (E )
For any number field K and for any polynomial f in K [X ] of
degree 3 with three distinct complex roots, the elliptic equation

Y 2 = f (X )

has but a finite number of solutions (x , y) ∈ ZK × ZK .



Hyperelliptic equation

• (HE )
For any number field K and for any polynomial f in K [X ] with
at least three simple complex roots, the hyperelliptic equation

Y 2 = f (X )

has but a finite number of solutions (x , y) ∈ ZK × ZK .



Superelliptic equation

• (SE )
For any number field K , for any integer m ≥ 3 and for any
polynomial f in K [X ] with at least two distinct complex roots
whose orders of multiplicity are prime to m, the superelliptic
equation

Y m = f (X )

has but a finite number of solutions (x , y) ∈ ZK × ZK .



Thue’s equation

• (T )
For any number field K , for any non–zero element k in K and
for any elements α1, . . . , αn in K with Card{α1, . . . , αn} ≥ 3,
the Thue equation

(X − α1Y ) · · · (X − αnY ) = k

has but a finite number of solutions (x , y) ∈ ZK × ZK .



Siegel’s unit equation

• (S)
For any number field K and for any elements a1 and a2 in K
with a1a2 6= 0, the Siegel equation

a1E1 + a2E2 = 1

has but a finite number of solutions (ε1, ε2) ∈ Z×K × Z×K .



Finiteness of the number of solutions
• (M) Mordell equation

Y 2 = X 3 + k .

• (E ) Elliptic equation : f in K [X ] of degree 3

Y 2 = f (X ).

• (HE ) Hyperelliptic equation : f in K [X ] of degree ≥ 3

Y 2 = f (X ).

• (SE ) Superelliptic equation

Y m = f (X ).

• (T ) Thue equation

(X − α1Y ) · · · (X − αnY ) = k .

• (S) Siegel S–unit equation

a1E1 + a2E2 = 1.



Proof of the equivalence

(SE ) =⇒ (M) ⇐= (E )
⇑ ⇓ ⇑

(T ) ⇐= (S) =⇒ (HE )

The three implications which are not so easy to prove are

(T ) =⇒ (SE ), (S) =⇒ (T ) and (S) =⇒ (HE ).
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Siegel’s Theorem on integral points on curves

A further result which is equivalent to the six previous
statements is Siegel’s fundamental theorem on the finiteness
of integral points on a curve of genus ≥ 1.

But the six previous statements can be made effective, while
Siegel’s Theorem is not yet effective, even for the special case
of genus 2.



Siegel’s Theorem on integral points on curves

A further result which is equivalent to the six previous
statements is Siegel’s fundamental theorem on the finiteness
of integral points on a curve of genus ≥ 1.

But the six previous statements can be made effective, while
Siegel’s Theorem is not yet effective, even for the special case
of genus 2.



Thue–Mahler equation – rational case

(i) For any finite set S = {p1, . . . , ps} of prime numbers, for
any k ∈ Q× and for any binary homogeneous form
F (X ,Y ) ∈ Q[X ,Y ] with the property that the polynomial
F (X , 1) ∈ Q[X ] has at least three linear factors involving three
distinct roots in Q, the Thue-Mahler equation

F (X ,Y ) = ±kpZ1
1 · · · pZs

s

has only finitely many solutions (x , y , z1, . . . , zs) in Z2+s with
gcd(xy , p1 · · · ps) = 1.



Thue–Mahler - special cubic rational case

(ii) For any finite set S = {p1, . . . , ps} of prime numbers, the
Thue-Mahler equation

XY (X − Y ) = ±kpZ1
1 · · · pZs

s

has but a finite number of solutions (x , y , z1, . . . , zs) in Z2+s

with gcd(xy , p1 · · · ps) = 1.



S–integers - rational case

(iii) For any finite set S = {p1, . . . , ps} of prime numbers, the
S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in
(S−1Z)× × (S−1Z)×.



Siegel’s S–unit equation - rational case

(iv) For any finite set S = {p1, . . . , ps} of prime numbers,
every set of S–integral points of P1(Q) minus three points is
finite.



S–integers - rational case

The following four assertions are equivalent :
(i) Thue-Mahler equation

F (X ,Y ) = ±kpZ1
1 · · · pZs

s

(ii) Thue-Mahler equation

XY (X − Y ) = ±kpZ1
1 · · · pZs

s .

(iii) Siegel’s S–unit equation

E1 + E2 = 1.

(iv) Finitely many S–integral points of P1(Q) \ {0, 1,∞}.



S–integers - number fields

We will consider an algebraic number field K and a finite set S
of places of K containing all the archimedean places. Moreover
F will denote a binary homogeneous form with coefficients in
K . We will consider the Thue–Mahler equations F (X ,Y ) = E
where the two unknowns X ,Y take respectively values x , y in
a given set of S–integers of K while the unknown E takes its
values ε in the set of S–units of K . If (x , y , ε) is a solution
and if m denotes the degree of F , then, for all η ∈ O×S , the
triple (ηx , ηy , ηmε) is also a solution.

Definition. Two solutions (x , y , ε) and (x ′, y ′, ε′) in O2
S ×O×S

of the equation F (X ,Y ) = E are said to be equivalent modulo
O×S if the points of P1(K ) with projective coordinates (x : y)
and (x ′ : y ′) are the same.



Thue–Mahler equation – general form

Let K be an algebraic number field.

The following four assertions are equivalent.
(i) For any finite set S of places of K containing all the
archimedean places, for every k ∈ K× and for any binary
homogeneous form F (X ,Y ) with the property that the
polynomial F (X , 1) ∈ K [X ] has at least three linear factors
involving three distinct roots in K , the Thue-Mahler equation

F (X ,Y ) = kE

has but a finite number of classes of solutions
(x , y , ε) ∈ O2

S ×O×S .



Thue–Mahler equation – special cubic form

(ii) For any finite set S of places of K containing all the
archimedean places, the Thue-Mahler equation

XY (X − Y ) = E

has but a finite number of classes of solutions
(x , y , ε) ∈ O2

S ×O×S .



Siegel S–unit equation

(iii) For any finite set S of places of K containing all the
archimedean places, the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in O×S ×O
×
S .



Vojta

(iv) For any finite set S of places of K containing all the
archimedean places, every set of S–integral points of P1(K )
minus three points is finite.



Thue, Mahler, Siegel, Volta

Let K be an algebraic number field. The following four
assertions are equivalent :
(i) Thue–Mahler equation :

F (X ,Y ) = kE

(ii) Thue-Mahler equation

XY (X − Y ) = E

(iii) Siegel’s S–unit equation

E1 + E2 = 1

(iv) Finitely many S–integral points on P1(K ) \ {0, 1,∞}.



Generalized Siegel unit equation and integral points

Let K be a number field. The following two assertions are
equivalent.
(i) Let n ≥ 1 be an integer and let S a finite set of places of
K including the archimedean places. Then the equation

E0 + · · ·+ En = 0

has only finitely many classes modulo O×S of solutions
(ε0, . . . , εn) ∈ (O×S )n+1 for which no proper subsum

∑
i∈I εi

vanishes, with I being a subset of {0, . . . , n}, with at least two
elements and at most n.
(ii) Let n ≥ 1 be an integer and let S a finite set of places of
K including the archimedean places. Then for any set of n + 2
distinct hyperplanes H0, . . . ,Hn+1 in Pn(K ), the set of
S–integral points of Pn(K ) \ (H0 ∪ · · · ∪ Hn+1) is contained in
a finite union of hyperplanes of Pn(K ).
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Hilbert’s 8th Problem

August 8, 1900

David Hilbert (1862 - 1943)

Second International Congress
of Mathematicians in Paris.

Twin primes,

Goldbach’s Conjecture,

Riemann Hypothesis



Hilbert’s tenth problem

D. Hilbert (1900) — Problem : to give an algorithm in order
to decide whether a diophantine equation has an integer
solution or not.

If we do not succeed in solving a mathematical problem, the reason
frequently consists in our failure to recognize the more general
standpoint from which the problem before us appears only as a
single link in a chain of related problems. After finding this
standpoint, not only is this problem frequently more accessible to
our investigation, but at the same time we come into possession of
a method which is applicable also to related problems.



Hilbert’s tenth problem

D. Hilbert (1900) — Problem : to give an algorithm in order
to decide whether a diophantine equation has an integer
solution or not.

If we do not succeed in solving a mathematical problem, the reason
frequently consists in our failure to recognize the more general
standpoint from which the problem before us appears only as a
single link in a chain of related problems. After finding this
standpoint, not only is this problem frequently more accessible to
our investigation, but at the same time we come into possession of
a method which is applicable also to related problems.



Negative solution to Hilbert’s tenth problem

J. Robinson (1952)

J. Robinson, M. Davis, H. Putnam (1961)

Yu. Matijasevic (1970) – Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . .

F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2.

The relation b = Fa between two integers a and b is a
diophantine relation with exponential growth.

Remark : the analog for rational points of Hilbert’s tenth
problem is not yet solved :
to give an algorithm in order to decide whether a diophantine
equation has a rational solution or not.
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Historical survey
Thue (1908) : finitely many integer solutions of

F (x , y) = m

when F is homogeneous irreducible over Q of degree ≥ 3.

Mordell’s Conjecture (1922) : rational points

Siegel’s Theorem (1929) : integral points

Faltings’ Theorem(1983) : finiteness of rational points on an
algebraic curve of genus ≥ 2 over a number field.

Andrew Wiles (1993) : proof of Fermat’s last Theorem

an + bn = cn (n ≥ 3)

G. Rémond (2000) : explicit upper bound for the number of
solutions in Faltings’ Theorem.
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Rational points on varieties

When f is a polynomial in n variables with coefficients in a
field k , solving the equation f (x1, . . . , xn) = 0 in kn is finding
the rational points over k on the affine hypersurface Z (f ) in
kn.

Let k be a number field (a finite extension of Q, that is a
finite Q-vector space) and V an algebraic variety over k .
Diophantine geometry investigates the following questions :
• Is V (k) empty ?
• Is V (k) infinite ? or Zariski dense in V ?
• Is V (k) dense in V (C) ?
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Serge Lang (1927–2005)

Serge Lang Number Theory III, Diophantine Geometry,
Russian encyclopaedia of Springer Verlag, 1991.
(=Survey of Diophantine Geometry, 1997) :

Thus we behold the grand unification of algebraic geometry,
analysis and PDE, Diophantine approximation, Nevanlinna
theory and classical Diophantine problems about rational and
integral points.



Chulalongkorn University Faculty of Science

Department of Mathematics and Computer Science

Diophantine approximation
and Diophantine equations

an introduction
Michel Waldschmidt

February 13, 2012

This file is available on the internet at the URL
http://www.math.jussieu.fr/∼miw/

http://www.chula.ac.th/cuen/
http://www.sc.chula.ac.th/en/index.asp
http://www.math.sc.chula.ac.th/en/research
http://www.math.jussieu.fr/~miw/


February 13, 2012

Diophantine approximation and
Diophantine equations:

an introduction.

Michel Waldschmidt
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