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Abstract

The study of Diophantine equations is among the oldest topics
investigated by mathematicians. It is known that some
problems will never be solved, yet fundamental progress has
been achieved recently.
We survey some of the main results and some of the main
conjectures.



Diophantus of Alexandria (250 ±50)



Diophantine equations

A Diophantine equation is an equation of the form

f (x1, . . . , xn) = 0

where f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn] is a given polynomial and
the variables X1, . . . ,Xn take their values x1, . . . , xn in Z
(integer points) or in Q (rational points).

We will mainly consider integral points.
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Pierre de Fermat (1601–1665)
Fermat’s Last Theorem.
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Historical survey
Pierre de Fermat (1601 - 1665)

Leonhard Euler (1707 - 1783)

Joseph Louis Lagrange (1736 - 1813)

XIXth Century : Hurwitz, Poincaré
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Ramanujan – Nagell Equation

Srinivasa Ramanujan (1887 – 1920)
Trygve Nagell (1895 – 1988)



Ramanujan – Nagell Equation

x2 + 7 = 2n

12 + 7 = 23 = 8
32 + 7 = 24 = 16
52 + 7 = 25 = 32

112 + 7 = 27 = 128
1812 + 7 = 215 = 32 768
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x2 + D = 2n

Nagell (1948) : for D = 7, no further solution

Apéry (1960) : for D > 0, D 6= 7, the equation x2 + D = 2n

has at most 2 solutions.

Examples with 2 solutions :

D = 23 : 32 + 23 = 32, 452 + 23 = 211 = 2 048

D = 2`+1 − 1, ` ≥ 3 : (2` − 1)2 + 2`+1 − 1 = 22`
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x2 + D = 2n

F. Beukers (1980) : at most one solution otherwise.

M. Bennett (1995) : considers the case D < 0.



Hilbert’s 8th Problem

August 8, 1900

David Hilbert (1862 - 1943)

Second International Congress
of Mathematicians in Paris.

Twin primes,

Goldbach’s Conjecture,

Riemann Hypothesis



Hilbert’s 10th problem

D. Hilbert (1900) — Problem : to give an algorithm in order
to decide whether a Diophantine equation has an integer
solution or not.

If we do not succeed in solving a mathematical problem, the reason
frequently consists in our failure to recognize the more general
standpoint from which the problem before us appears only as a
single link in a chain of related problems. After finding this
standpoint, not only is this problem frequently more accessible to
our investigation, but at the same time we come into possession of
a method which is applicable also to related problems.
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Negative solution to Hilbert’s 10th problem

J. Robinson (1952)

J. Robinson, M. Davis, H. Putnam (1961)

Yu. Matijasevic (1970) – Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . .

F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2.

The relation b = Fa between two integers a and b is a
Diophantine relation with exponential growth.

Remark : the analog for rational points of Hilbert’s 10th
problem is not yet solved :
to give an algorithm in order to decide whether a Diophantine
equation has a rational solution or not.
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Historical survey
Thue (1908) : there are only finitely many integer solutions of

F (x , y) = m,

when F is homogeneous irreducible form over Q of degree ≥ 3.

Mordell’s Conjecture (1922) : rational points on algebraic
curves

Siegel’s Theorem (1929) : integral points on algebraic curves

Faltings’s Theorem(1983) : finiteness of rational points on an
algebraic curve of genus ≥ 2 over a number field.

Andrew Wiles (1993) : proof of Fermat’s last Theorem

an + bn = cn (n ≥ 3)

G. Rémond (2000) : explicit upper bound for the number of
solutions in Faltings’s Theorem.
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G. Rémond (2000) : explicit upper bound for the number of
solutions in Faltings’s Theorem.



Historical survey
Thue (1908) : there are only finitely many integer solutions of

F (x , y) = m,

when F is homogeneous irreducible form over Q of degree ≥ 3.

Mordell’s Conjecture (1922) : rational points on algebraic
curves

Siegel’s Theorem (1929) : integral points on algebraic curves

Faltings’s Theorem(1983) : finiteness of rational points on an
algebraic curve of genus ≥ 2 over a number field.

Andrew Wiles (1993) : proof of Fermat’s last Theorem

an + bn = cn (n ≥ 3)
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Open problem : effectivity

Faltings’s Theorem is not effective : quantitative versions
(upper bounds for the number of solutions) are known
(G. Rémond), but so far there is no known effective bound for
the solutions (x , y) ∈ Q2 of a Diophantine equation
f (x , y) = 0, where f ∈ Z[X ,Y ] is a polynomial such that the
curve f (x , y) = 0 has genus ≥ 1.

Even for integral points, there is no effective version of Siegel’s
Theorem on integral points on a curve of genus ≥ 2.
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Paul Vojta

Paul Vojta,
Diophantine Approximations
and Value Distribution
Theory,
Lecture Notes in Mathematics
1239, Springer Verlag, 1987,

http://en.wikipedia.org/wiki/Paul_Vojta


Serge Lang (1927–2005)

Thus we behold the grand
unification of algebraic
geometry, analysis and PDE,
Diophantine approximation,
Nevanlinna theory and
classical Diophantine
problems about rational and
integral points.

Serge Lang Number Theory III, Diophantine Geometry,
Russian encyclopaedia of Springer Verlag, 1991.
(=Survey of Diophantine Geometry, 1997) :



Liouville’s inequality

Liouville’s inequality. Let α
be an algebraic number of
degree d ≥ 2. There exists
c(α) > 0 such that, for any
p/q ∈ Q with q > 0,∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

Joseph Liouville, 1844



Improvements of Liouville’s inequality

In the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d ≥ 3, the exponent d
of q in the denominator of the right hand side was replaced by
κ with
• any κ > (d/2) + 1 by A. Thue (1909),
• 2
√

d by C.L. Siegel in 1921,
•
√

2d by F.J. Dyson and A.O. Gel’fond in 1947,
• any κ > 2 by K.F. Roth in 1955.



Thue– Siegel– Roth Theorem

Axel Thue
(1863 - 1922)

Carl Ludwig Siegel
(1896 - 1981)

Klaus Friedrich
Roth (1925 – )

For any real algebraic number α, for any ε > 0, the set of
p/q ∈ Q with |α− p/q| < q−2−ε is finite.



Thue– Siegel– Roth Theorem

An equivalent statement is that, for any real algebraic
irrational number α and for any ε > 0, there exists q0 > 0
such that, for p/q ∈ Q with q ≥ q0, we have∣∣∣∣α− p

q

∣∣∣∣ > 1

q2+ε
·

In other terms, the set of (q, p) ∈ Z2 \ {(0, 0)} where the two
independent linear forms

L0(x0, x1) = x0, L1(x0, x1) = x0α− x1

satisfy
|L0(x0, x1)L1(x0, x1)| ≤ max{|x0|, |x1|}−ε

is contained in a finite union of lines in Q2.
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Schmidt’s Subspace Theorem (1970)

For m ≥ 2 let L0, . . . , Lm−1 be
m independent linear forms in
m variables with algebraic
coefficients. Let ε > 0. Then
the set

{x = (x0, . . . , xm−1) ∈ Zm ;

|L0(x) · · · Lm−1(x)| ≤ |x|−ε}

is contained in the union of
finitely many proper
subspaces of Qm.

W.M. Schmidt



Thue equation and Diophantine approximation

Liouville’s estimate for the rational Diophantine approximation
of 3
√

2 : ∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

9q3

for sufficiently large q.

Mike Bennett (1997) : for any p/q ∈ Q,∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

4 q2.5
·
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Mike Bennett

http://www.math.ubc.ca/∼bennett/

For any p/q ∈ Q,∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

4 q2.5
·

For any (x , y) ∈ Z2 with
x > 0,

|x3 − 2y 3| ≥
√

x .

http://www.math.ubc.ca/~bennett/


Connection between Diophantine approximation

and Diophantine equations

Let κ satisfy 0 < κ ≤ 3.
The following conditions are equivalent :
(i) There exists c1 > 0 such that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1
qκ

for any p/q ∈ Q.
(ii) There exists c2 > 0 such that

|x3 − 2y 3| > c2 x3−κ

for any (x , y) ∈ Z2 having x > 0.



Thue’s equation and approximation

Let f ∈ Z[X ] be an irreducible polynomial of degree d and let
F (X ,Y ) = Y d f (X/Y ) be the associated homogeneous binary
form of degree d . Then the following two assertions are
equivalent :
(i) For any integer k 6= 0, the set of (x , y) ∈ Z2 verifying

F (x , y) = k

is finite.
(ii) For any real number κ > 0 and for any root α ∈ C of f ,
the set of rational numbers p/q verifying∣∣∣∣α− p

q

∣∣∣∣ ≤ κ

qd

is finite.



Thue equation

Condition

(i) For any integer k 6= 0, the set of (x , y) ∈ Z2

verifying
F (x , y) = k

is finite.

can also be phrased by stating that for any positive integer k ,
the set of (x , y) ∈ Z2 verifying

0 < |F (x , y)| ≤ k

is finite.



Thue equation

For any number field K , for any non–zero element m in K and
for any elements α1, . . . , αn in K with Card{α1, . . . , αn} ≥ 3,
the Thue equation

(X − α1Y ) · · · (X − αnY ) = m

has but a finite number of solutions (x , y) ∈ Z× Z.



Thue–Mahler equation

Let K be a number field, G a
finitely generated subgroup of
K×, α1, . . . , αn elements in K
with Card{α1, . . . , αn} ≥ 3.
Then there are only finitely
many (x , y) ∈ Z× Z
satisfying the Thue–Mahler
equation

(x − α1y) · · · (x − αny) ∈ G .



An exponential Diophantine equation

The only solutions of the equation

2a + 3b = 5c

where the unknowns a, b, c are nonnegative integers are
(a, b, c) = (1, 1, 1), (2, 0, 1), (4, 2, 2) :

2 + 3 = 5, 4 + 1 = 5, 16 + 9 = 25.



S–unit equations – rational case
Let S = {p1, . . . , ps} be a finite set of prime numbers. Then
the equation

u1 + u2 = u3,

where the unknowns u1, u2, u3 are relatively prime integers
divisible only by the prime numbers in S , has only finitely
many solutions.

Notice that for any prime number p, the equation

u1 + u2 + u3 = u4

has infinitely many solutions in rational integers u1, u2, u3

divisible only by p and gcd(u1, u2, u3, u4) = 1 : for instance

pa + (−pa) + 1 = 1.
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A consequence of Schmidt’s Subspace Theorem

Let S = {p1, . . . , ps} be a finite set of prime numbers and let
n ≥ 2. Then the equation

u1 + u2 + · · ·+ un = 1,

where the unknowns u1, u2, · · · , un are rational numbers with
numerators and denominators divisible only by the prime
numbers in S for which no nontrivial subsum∑

i∈I

ui ∅ 6= I ⊂ {1, . . . , n}

vanishes, has only finitely many solutions.



Finitely generated subgroup of Q× = Q \ {0}
If S = {p1, . . . , ps} be a finite set of prime numbers, the set of
rational numbers with numerators and denominators divisible
only by the prime numbers in S is a finitely generated
subgroup of Q×.

Indeed it is generated by −1, p1, . . . , ps .

Conversely, if G is a finitely generated subgroup of Q×, then
there exists a finite set S = {p1, . . . , ps} of prime numbers
such that G is contained the set of rational numbers with
numerators and denominators divisible only by the prime
numbers in S .

Indeed, if g1, . . . , gt is a set of generators of G , then the set of
prime divisors of the numerators and denominators of the gi is
a solution.
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The generalized S–unit equation

Let K be a field of characteristic zero, let G be a finitely
multiplicative subgroup of the multiplicative group
K× = K \ {0} and let n ≥ 2. Then the equation

u1 + u2 + · · ·+ un = 1,

where the unknowns u1, u2, · · · , un are in G for which no
nontrivial subsum∑

i∈I

ui ∅ 6= I ⊂ {1, . . . , n}

vanishes, has only finitely many solutions.



Families of Thue equations

The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a + 1)X n − aY n = 1.

He proved that the only solution in positive integers x , y is
x = y = 1 for n prime and a sufficiently large in terms of n.
For n = 3 this equation has only this solution for a ≥ 386.

M. Bennett (2001) proved that this is true for all a and n with
n ≥ 3 and a ≥ 1.



Families of Thue equations

The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a + 1)X n − aY n = 1.

He proved that the only solution in positive integers x , y is
x = y = 1 for n prime and a sufficiently large in terms of n.
For n = 3 this equation has only this solution for a ≥ 386.

M. Bennett (2001) proved that this is true for all a and n with
n ≥ 3 and a ≥ 1.



Families of Thue equations (continued)

E. Thomas in 1990 studied the families of equations
Fa(X ,Y ) = 1 associated with D. Shanks’ simplest cubic fields,
viz.

Fa(X ,Y ) = X 3 − (a − 1)X 2Y − (a + 2)XY 2 − Y 3.

According to E. Thomas (1990) and M. Mignotte (1993), for
a ≥ 4 the only solutions are (0,−1), (1, 0) and (−1,+1),
while for the cases a = 0, 1, 3, there exist some nontrivial
solutions, too, which are given explicitly by Thomas.

For the same form Fa(X ,Y ), all solutions of the Thue
inequality |Fa(X ,Y )| ≤ 2a + 1 have been found by
M. Mignote A. Pethő and F. Lemmermeyer (1996).
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solutions, too, which are given explicitly by Thomas.

For the same form Fa(X ,Y ), all solutions of the Thue
inequality |Fa(X ,Y )| ≤ 2a + 1 have been found by
M. Mignote A. Pethő and F. Lemmermeyer (1996).



Families of Thue equations (continued)

E. Lee and M. Mignotte with N. Tzanakis studied in 1991 and
1992 the family of cubic Thue equations

X 3 − aX 2Y − (a + 1)XY 2 − Y 3 = 1.

The left hand side is X (X + Y )(X − (a + 1)Y )− Y 3.

For a ≥ 3.33 · 1023, there are only the solutions (1, 0), (0,−1),
(1,−1), (−a − 1,−1), (1,−a).

In 2000, M. Mignotte could prove the same result for all a ≥ 3.
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Families of Thue equations (continued)

I. Wakabayashi proved in 2003 that for a ≥ 1.35 · 1014, the
equation

X 3 − a2XY 2 + Y 3 = 1

has exactly the five solutions (0, 1), (1, 0), (1, a2), (±a, 1).

A. Togbé considered the family of equations

X 3 − (n3 − 2n2 + 3n − 3)X 2Y − n2XY 2 − Y 3 = ±1

in 2004. For n ≥ 1, the only solutions are (±1, 0) and (0,±1).
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Families of Thue equations (continued)

I. Wakabayashi in 2002 used Padé approximation for solving
the Diophantine inequality

|X 3 + aXY 2 + bY 3| ≤ a + |b|+ 1

for arbitrary b and a ≥ 360b4 as well as for b ∈ {1, 2} and
a ≥ 1.



Families of Thue equations (continued)

E. Thomas considered some families of Diophantine equations

X 3 − bX 2Y + cXY 2 − Y 3 = 1

for restricted values of b and c .

Family of quartic equations :

X 4 − aX 3Y − X 2Y 2 + aXY 3 + Y 4 = ±1

(A. Pethő 1991 , M. Mignotte, A. Pethő and R. Roth, 1996).
The left hand side is X (X − Y )(X + Y )(X − aY ) + Y 4.
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Families of Thue equations (continued)

Further work on equations of degrees up to 8 by J.H. Chen,
I. Gaál, C. Heuberger, B. Jadrijević, G. Lettl, C. Levesque,
M. Mignotte, A. Pethő, R. Roth, R. Tichy, E. Thomas,
A. Togbé, P. Voutier, I. Wakabayashi, P. Yuan, V. Ziegler. . .



Families of Thue equations (continued)

Split families of E. Thomas (1993) :

n∏
i=1

(X − pi(a)Y )− Y n = ±1,

where p1, . . . , pn are polynomials in Z[a].

Surveys by I. Wakabayashi (2002) and C. Heuberger (2005).
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New families of Diophantine equations
So far, a rather small number of families of Thue curves
having only trivial integral points have been exhibited. In a
joint work with Claude Levesque, for each number field K of
degree at least three and for each finitely generated subgroup
of K×, we produce families of curves related to the units of
the number field, having only trivial integral points.



Families of Thue–Mahler equations

Let K be a number field and d = [K : Q] its degree. Let G a
finitely generated subgroup of K×. For each ε ∈ G for which
Q(ε) = K , let fε(X ) ∈ Z[X ] be the irreducible polynomial of ε
over Q.

Set Fε(X ,Y ) = Y d fε(X/Y ). Hence Fε(X ,Y ) ∈ Z[X ,Y ] is an
irreducible binary form of degree d with integer coefficients.

A special case of the main result of a joint work with Claude
Levesque is the following :

Theorem
Let K be a number field. Then the set{

(x , y , ε) ∈ Z2 × G | xy 6= 0, Q(ε) = K , Fε(x , y) ∈ G
}

is finite.
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Effective results
In some cases, for instance when the number field K has at
most one real embedding, we are able to produce an effective
result.
Denote by Z×K the group of units of K . For ε ∈ Z×K , fε(X ) is
the irreducible polynomial of ε and

Fε(X ,Y ) = Y d fε(X/Y ).

Theorem
Under these assumptions, there exists a constant κ > 0,
depending only on K , such that, for any m ≥ 2, any (x , y , ε)
in the set{

(x , y , ε) ∈ Z2 × Z×K | xy 6= 0, Q(ε) = K , |Fε(x , y)| ≤ m
}

satisfies
max

{
|x |, |y |, eh(ε)

}
≤ mκ.
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Sketch of proof

Let σ1, . . . , σd be the complex embeddings from the number
field K into C, where d = [K : Q]. Any ε ∈ Z×K with
Q(ε) = K is root of the irreducible polynomial

fε(X ) =
(
X − σ1(ε)

)
· · ·
(
X − σd(ε)

)
∈ Z[X ].

Let m ≥ 1. The goal is to prove that there are only finitely
many (x , y , ε) ∈ Z× Z× Z×K with xy > 1 and Q(ε) = K
satisfying (

x − σ1(ε)y
)
· · ·
(
x − σd(ε)y

)
= m.
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Sketch of proof (continued)

For j = 1, . . . , d , define βj = x − εjy , so that

β1 · · · βd = m.

Hence βj is product of an element, which belongs to a finite
set depending on K and m only, with a unit. Eliminate x and
y among the three equations

β1 = x − ε1y , β2 = x − ε2y , β3 = x − ε3y .

We get

ε1β2 − ε1β3 + ε2β3 − ε2β1 + ε3β1 − ε3β2 = 0.
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Generalized S–unit equation

The equation

ε1β2 − ε1β3 + ε2β3 − ε2β1 + ε3β1 − ε3β2 = 0

is a S–unit equation. Schmidt’s subspace Theorem states that
there are only finitely many solutions with non–vanishing
subsums of the left hand side.
One needs to check what happens when a subsum in the left
hand side vanishes.
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Baker’s method involving linear forms in

logarithms

One main concern is that Schmidt’s subspace Theorem (as
well as the Theorem of Thue– Siegel– Roth) is non–effective :
upper bounds for the number of solutions can be derived, but
no upper bound for the solutions themselves.
Only the case of a S–unit equation

ε1 + ε2 + ε3 = 0

can be solved effectively by means of Baker’s method.

Work of A.O. Gel’fond, A. Baker, K. Győry, M. Mignotte,
R. Tijdeman, M. Bennett, P. Voutier, Y. Bugeaud,
T.N. Shorey, S. Laishram.



Baker’s method involving linear forms in

logarithms

One main concern is that Schmidt’s subspace Theorem (as
well as the Theorem of Thue– Siegel– Roth) is non–effective :
upper bounds for the number of solutions can be derived, but
no upper bound for the solutions themselves.
Only the case of a S–unit equation

ε1 + ε2 + ε3 = 0

can be solved effectively by means of Baker’s method.

Work of A.O. Gel’fond, A. Baker, K. Győry, M. Mignotte,
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