
18 Mai 2015

18 - 29 mai 2015 : Oujda (Maroc)
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Abstract

The study of Diophantine equations is among the oldest topics
investigated by mathematicians. It is known that some
problems will never be solved, yet fundamental progress has
been achieved recently. We survey some of the main results
and some of the main conjectures.



Diophantus of Alexandria



Diophantine equations

A Diophantine equation is an equation of the form

f (X1, . . . ,Xn) = 0

where f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn] is a given polynomial and
the variables (sometimes called unknowns) X1, . . . ,Xn take
their values x1, . . . , xn in Z (integer points) or in Q (rational
points).

We will mainly consider integral points.
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Pierre Fermat (1601 ? –1665)
Fermat’s Last Theorem.



Diophantine equations : historical survey

Pierre Fermat (1601 ? – 1665)

Leonhard Euler (1707 – 1783)

Joseph Louis Lagrange (1736 – 1813)

XIXth Century : Adolf Hurwitz, Henri Poincaré



Hilbert’s 8th Problem

August 8, 1900

David Hilbert (1862 – 1943)

Second International Congress
of Mathematicians in Paris.

Twin primes,

Goldbach’s Conjecture,

Riemann Hypothesis

http://www.maa.org/sites/default/files/pdf/upload−library/22/Ford/Thiele1-24.pdf

http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Thiele1-24.pdf


Hilbert’s 10th problem

http://logic.pdmi.ras.ru/Hilbert10/stat/stat.html

D. Hilbert (1900) —
Entscheidung der Lösbarkeit einer diophantischen Gleichung. Eine

diophantische Gleichung mit irgendwelchen Unbekannten und mit

ganzen rationalen Zahlkoefficienten sei vorgelegt : man soll ein

Verfahren angeben, nach welchen sich mittels einer endlichen

Anzahl von Operationen entscheiden lässt, ob die Gleichung in

ganzen rationalen Zahlen lösbar ist.

Determination of the solvability of a Diophantine equation.
Given a diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients : To
devise a process according to which it can be determined by a
finite number of operations whether the equation is solvable in
rational integers.

http://logic.pdmi.ras.ru/Hilbert10/stat/stat.html
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Negative solution to Hilbert’s 10th problem

Julia Robinson (1952)

Julia Robinson, Martin Davis, Hilary Putnam (1961)

Yuri Matijasevic (1970)

Remark : the analog for rational points of Hilbert’s 10th
problem is not yet solved :
Does there exist an algorithm in order to decide whether a
Diophantine equation has a rational solution or not ?
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Axel Thue

Thue (1908) : there are only finitely many integer solutions of

F (x , y) = m,

when F is homogeneous irreducible form over Q of degree ≥ 3.
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JFM 40.0256.01 [Lampe, Prof. (Berlin)]

Thue, A.
Om en general i store hele tal ulösbar ligning. (Norwegian)
Christiania Vidensk. Selsk. Skr., Nr. 7, 15 S. Published : 1908

Die Gleichung qnF (p/q) = c , wo F (x) eine beliebige ganze
irreduzible Funktion r -ten Grades (r > 2) in x mit
ganzzahligen Koeffizienten, c eine beliebige ganze Zahl
bezeichnet, hat nur eine beschränkte Anzahl von ganzzahligen
Lösungen in p und q (Rev. sem. 182, 104).



JFM 40.0265.01 [Fueter, Prof. (Basel)]

Thue, A.
Über Annäherungswerte algebraischer Zahlen. (German)
J. für Math. 135, 284-305. Published : (1909)

Bedeutet % eine positive Wurzel einer ganzen Funktion vom
Grade r mit ganzen Koeffizienten, so hat die Relation

0 < |q%− p| < c

q
r
2
+k
,

wo c und k zwei beliebige gegebene positive Grössen
bezeichnen, nicht unendlich viele Auflösungen in ganzen
positiven Zahlen p und q. Nach dem Beweise dieses Satzes
wendet der Verf. denselben auf Kettenbrüche und auf die
Frage nach der Auflösbarkeit einer in bezug auf p und q
homogenen und irreduktiblen Funktion U(p, q) = c in ganzen
positiven Zahlen p und q an.



Liouville’s inequality

Liouville’s inequality. Let α
be an algebraic number of
degree d ≥ 2. There exists
c(α) > 0 such that, for any
p/q ∈ Q with q > 0,∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd
·

Joseph Liouville, 1844



Liouville’s estimate for 3
√

2 :
For any p/q ∈ Q, ∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

6q3
·

Proof.
Since 3

√
2 is irrational, for p and q rational integers with

q > 0, we have p3 − 2q3 6= 0, hence

|p3 − 2q3| ≥ 1.

Write

p3 − 2q3 = (p − 3
√

2q)(p2 +
3
√

2pq +
3
√

4q2).

If p ≤ (3/2)q, then

p2 +
3
√

2pq +
3
√

4q2 < 6q2.

Hence
1 ≤ 6q2|p − 3

√
2q|.
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Improving Liouville’s inequality
If we can improve the lower bound

|p3 − 2q3| ≥ 1,

then we can improve Liouville’s estimate∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

6q3
·

What turns out to be much more interesting is the converse :
If we can improve Liouville’s estimate∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

6q3
,

then we can improve the lower bound

|p3 − 2q3| ≥ 1.
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Mike Bennett http://www.math.ubc.ca/∼bennett/

For any p/q ∈ Q,∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

4 q2.5
·

For any (x , y) ∈ Z2 with
x > 0,

|x3 − 2y 3| ≥
√

x .

http://www.math.ubc.ca/~bennett/


Consequence of an improvement of Liouville
Assume (x , y) ∈ Z2 with x > 0 satisfy

|x3 − 2y 3| <
√

x .

Since

x3 − 2y 3 = (x − 3
√

2y)(x2 +
3
√

2xy +
3
√

4y 2),

we deduce that x is close to 3
√

2y . Hence x2 + 3
√

2xy + 3
√

4y 2

is close to 3x2. Being more careful, we deduce

x2 +
3
√

2xy +
3
√

4y 2 ≥ 4x0.5y 1.5

and therefore ∣∣∣∣ 3
√

2− x

y

∣∣∣∣ ≤ 1

4 y 2.5
,

a contradiction with Bennett’s improvement of Liouville’s
inequality.
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Connection between Diophantine approximation

and Diophantine equations

Let κ satisfy 0 < κ ≤ 3.
The following conditions are equivalent :
(i) There exists c1 > 0 such that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1
qκ

for any p/q ∈ Q.
(ii) There exists c2 > 0 such that

|x3 − 2y 3| > c2 x3−κ

for any (x , y) ∈ Z2 having x > 0.



Thue’s equation and approximation
When f ∈ Z[X ] is a polynomial of degree d , we let
F (X ,Y ) = Y d f (X/Y ) denote the associated homogeneous
binary form of degree d .
Assume f is irreducible. Then the following two assertions are
equivalent :
(i) For any integer k 6= 0, the set of (x , y) ∈ Z2 verifying

F (x , y) = k

is finite.
(ii) For any real number c > 0 and for any root α ∈ C of f ,
the set of rational numbers p/q verifying∣∣∣∣α− p

q

∣∣∣∣ ≤ c

qd

is finite.



Improvements of Liouville’s inequality

In the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d ≥ 2, the exponent d of
q in the denominator is best possible for d = 2, not for d ≥ 3.

In 1909, A. Thue succeeded to prove that it can be replaced
by κ with any κ > (d/2) + 1.
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Thue’s inequality

Let α be an algebraic number of degree d ≥ 3 and let
κ > (d/2) + 1. Then there exists c(α, κ) > 0 such that, for
any p/q ∈ Q with q > 0,∣∣∣∣α− p

q

∣∣∣∣ > c(α, κ)

qκ
·



Thue equation

Thue’s result

For any integer k 6= 0, the set of (x , y) ∈ Z2

verifying
F (x , y) = k

is finite.

can also be phrased by stating that for any positive integer k ,
the set of (x , y) ∈ Z2 verifying

0 < |F (x , y)| ≤ k

is finite.



Thue equation

For any number field K , for any non–zero element m in K and
for any elements α1, . . . , αn in K with Card{α1, . . . , αn} ≥ 3,
the Thue equation

(X − α1Y ) · · · (X − αnY ) = m

has but a finite number of solutions (x , y) ∈ Z× Z.



Improvements of Liouville’s inequality

In the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d ≥ 3, the exponent d
of q in the denominator of the right hand side was replaced by

• any κ > (d/2) + 1 by A. Thue (1909),

• 2
√

d by C.L. Siegel in 1921,

•
√

2d by F.J. Dyson and A.O. Gel’fond in 1947,

• any κ > 2 by K.F. Roth in 1955.



Thue–Siegel–Roth Theorem

Axel Thue
(1863 – 1922)

Carl Ludwig Siegel
(1896 – 1981)

Klaus Friedrich
Roth (1925 – )

For any real algebraic number α, for any ε > 0, the set of
p/q ∈ Q with |α− p/q| < q−2−ε is finite.



Diophantine equations : historical survey

Thue (1908) : there are only finitely many integer solutions of

F (x , y) = m,

when F is homogeneous irreducible form over Q of degree ≥ 3.

Mordell’s Conjecture (1922) : rational points on algebraic
curves

Siegel’s Theorem (1929) : integral points on algebraic curves
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Diophantine equations : historical survey

Faltings’s Theorem (1983) : finiteness of rational points on an
algebraic curve of genus ≥ 2 over a number field.

A. Wiles (1993) : proof of Fermat’s last Theorem

an + bn = cn (n ≥ 3)

G. Rémond (2000) : explicit upper bound for the number of
solutions in Faltings’s Theorem.
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Effectivity

The Theorem of Thue–Siegel–Roth is non–effective : upper
bounds for the number of solutions can be derived, but no
upper bound for the solutions themselves.

Faltings’s Theorem is not effective : so far, there is no known
effective bound for the solutions (x , y) ∈ Q2 of a Diophantine
equation f (x , y) = 0, where f ∈ Z[X ,Y ] is a polynomial such
that the curve f (x , y) = 0 has genus ≥ 1.

Even for integral points, there is no effective version of Siegel’s
Theorem on integral points on a curve of genus ≥ 2.
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Gel’fond–Baker method

A quite different approach to Thue’s equation has been
introduced by A.O. Gel’fond, involving lower bounds for linear
combinations of logarithms of algebraic numbers with
algebraic coefficients.



Lower bound for linear combinations of logarithms

A lower bound for a nonvanishing difference

αb1
1 · · ·αbn

n − 1

is essentially the same as a lower bound for a nonvanishing
number of the form

b1 logα1 + · · ·+ bn logαn,

since ez − 1 ∼ z for z → 0.
The first nontrivial lower bounds were obtained by
A.O. Gel’fond. His estimates were effective only for n = 2 : for
n ≥ 3, he needed to use estimates related to the
Thue–Siegel–Roth Theorem.



Explicit version of Gel’fond’s estimates

A. Schinzel (1968) computed
explicitly the constants
introduced by A.O. Gel’fond.
in his lower bound for∣∣αb1

1 α
b2
2 − 1

∣∣ .
He deduced explicit Diophantine results using the approach
introduced by A.O. Gel’fond.



Alan Baker

In 1968, A. Baker succeeded
to extend to any n ≥ 2 the
transcendence method used
by A.O. Gel’fond for n = 2.
As a consequence, effective
upper bounds for the solutions
of Thue’s equations have
been derived.



Thue’s equation and Siegel’s unit equation

The main idea behind the Gel’fond–Baker approach for solving
Thue’s equation is to exploit Siegel’s unit equation.
Assume α1, α2, α3 are algebraic integers and x , y rational
integers such that

(x − α1y)(x − α2y)(x − α3y) = 1.

Then the three numbers

u1 = x − α1y , u2 = x − α2y , u3 = x − α3y ,

are units. Eliminating x and y , one deduces Siegel’s unit
equation

u1(α2 − α3) + u2(α3 − α1) + u3(α1 − α2) = 0.
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Siegel’s unit equation

Write Siegel’s unit equation

u1(α2 − α3) + u2(α3 − α1) + u3(α1 − α2) = 0

in the form

u1(α2 − α3)

u2(α1 − α3)
− 1 =

u3(α1 − α2)

u2(α1 − α3)
·

The quotient
u1(α2 − α3)

u2(α1 − α3)

is the quantity
αb1
1 · · ·αbn

n

in Gel’fond–Baker Diophantine inequality.
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Work on Baker’s method :

A. Baker (1968), N.I. Feldman (1971), V.G. Sprindz̆uck and
H.M. Stark (1973), K. Győry and Z.Z. Papp (1983),
E. Bombieri (1993), Y. Bugeaud and K. Győry (1996),
Y. Bugeaud (1998). . .

Solving Thue equations :
A. Pethő and R. Schulenberg (1987), B. de Weger (1987),
N. Tzanakis and B. de Weger (1989), Y. Bilu and G. Hanrot
(1996), (1999). . .

Solving Thue–Mahler equations :
J.H. Coates (1969), S.V. Kotov and V.G. Sprindz̆uk (1973),
A. Bérczes–Yu Kunrui– K. Györy (2006). . .
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Diophantine equations

A.O. Gel’fond, A. Baker, V. Sprindz̆uk, K. Győry, M. Mignotte,
R. Tijdeman,

M. Bennett, P. Voutier, Y. Bugeaud, T.N. Shorey, S. Laishram. . .



N. Saradha, T.N. Shorey, R. Tijdeman

Survey by T.N. Shorey
Diophantine approximations, Diophantine equations,
transcendence and applications.



Thue’s Fundamentaltheorem

Paul Voutier (2010)
Thue’s fundamentaltheorem.
I. The general case.
II : Some New Irrationality
Measures



Back to the Thue–Siegel–Roth Theorem

For any real algebraic irrational number α and for any ε > 0,
there exists q0 > 0 such that, for p/q ∈ Q with q ≥ q0, we
have ∣∣∣∣α− p

q

∣∣∣∣ > 1

q2+ε
·

In other terms, the set of (q, p) ∈ Z2 \ {(0, 0)} where the two
independent linear forms

L0(x0, x1) = x0, L1(x0, x1) = x0α− x1

satisfy
|L0(x0, x1)L1(x0, x1)| ≤ max{|x0|, |x1|}−ε

is contained in a finite union of lines in Q2.
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Schmidt’s Subspace Theorem (1970)

For m ≥ 2 let L0, . . . , Lm−1 be
m independent linear forms in
m variables with algebraic
coefficients. Let ε > 0. Then
the set

{x = (x0, . . . , xm−1) ∈ Zm ;

|L0(x) · · · Lm−1(x)| ≤ |x|−ε}

is contained in the union of
finitely many proper
subspaces of Qm.

W.M. Schmidt



Subspace Theorem

W.M. Schmidt H.P. Schlickewei



Consequences of the Subspace Theorem

Work of P. Vojta, S. Lang, J-H. Evertse, K. Győry,
P. Corvaja, U. Zannier, Y. Bilu, P. Autissier, A. Levin . . .



Thue–Mahler equation

Let K be a number field, G a
finitely generated subgroup of
K×, α1, . . . , αn elements in K
with Card{α1, . . . , αn} ≥ 3.
Then there are only finitely
many (x , y) ∈ Z× Z with
gcd(x , y) = 1 satisfying the
Thue–Mahler equation

(x − α1y) · · · (x − αny) ∈ G .

(Kurt Mahler 1933)



An exponential Diophantine equation

The only solutions of the equation

2a + 3b = 5c

where the values of the unknowns a, b, c are nonnegative
integers are (a, b, c) = (1, 1, 1), (2, 0, 1), (4, 2, 2) :

2 + 3 = 5, 4 + 1 = 5, 16 + 9 = 25.

The more general exponential Diophantine equation

2a13a2 + 3b15b2 = 2c15c2

has only finitely many solutions (a1, a2, b1, b2, c1, c2).
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S–unit equations – rational case

Let S = {p1, . . . , ps} be a finite set of prime numbers. Then
the equation

u1 + u2 = u3,

where the values of the unknowns u1, u2, u3 are relatively prime
integers divisible only by the prime numbers in S , has only
finitely many solutions.

Notice that for any prime number p, the equation

u1 + u2 + u3 = u4

has infinitely many solutions in rational integers u1, u2, u3

divisible only by p and gcd(u1, u2, u3, u4) = 1 : for instance

pa + (−pa) + 1 = 1 for any a ≥ 0.
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A consequence of Schmidt’s Subspace Theorem

Let S = {p1, . . . , ps} be a finite set of prime numbers and let
n ≥ 2. Then the equation

u1 + u2 + · · ·+ un = 1,

where the values of the unknowns u1, u2, · · · , un are rational
numbers with numerators and denominators divisible only by
the prime numbers in S for which no nontrivial subsum∑

i∈I

ui ∅ 6= I ⊂ {1, . . . , n}

vanishes, has only finitely many solutions.



Finitely generated subgroup of Q× = Q \ {0}
If S = {p1, . . . , ps} is a finite set of prime numbers, the set of
rational numbers with numerators and denominators divisible
only by the prime numbers in S is a finitely generated
subgroup of Q×.

Indeed it is generated by −1, p1, . . . , ps .

Conversely, if G is a finitely generated subgroup of Q×, then
there exists a finite set S = {p1, . . . , ps} of prime numbers
such that G is contained in the set of rational numbers with
numerators and denominators divisible only by the prime
numbers in S .

Indeed, if g1, . . . , gt is a set of generators of G , then the set of
prime divisors of the numerators and denominators of the gi is
a solution.
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The generalized S–unit equation

Let K be a field of characteristic zero, let G be a finitely
multiplicative subgroup of the multiplicative group
K× = K \ {0} and let n ≥ 2. Then the equation

u1 + u2 + · · ·+ un = 1,

where the values of the unknowns u1, u2, · · · , un are in G for
which no nontrivial subsum∑

i∈I

ui ∅ 6= I ⊂ {1, . . . , n}

vanishes, has only finitely many solutions.



Families of Thue equations
The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a + 1)X n − aY n = 1.

He proved that the only solution in positive integers x , y is
x = y = 1 for n prime and a sufficiently large in terms of n.
For n = 3 this equation has only this solution for a ≥ 386.
M. Bennett (2001) proved that this is true for all a and n with
n ≥ 3 and a ≥ 1. He used a lower bound for linear
combinations of logarithms of algebraic numbers due to
T.N. Shorey.
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E. Thomas’s family of Thue equations

E. Thomas in 1990 studied
the families of Thue equations
x3 − (n − 1)x2y − (n + 2)xy 2 − y 3 = 1

Set

Fn(X ,Y ) = X 3 − (n − 1)X 2Y − (n + 2)XY 2 − Y 3.

The cubic fields Q(λ) generated by a root λ of Fn(X , 1) are
called by D. Shanks the simplest cubic fields. The roots of the
polynomial Fn(X , 1) can be described via homographies of
degree 3.



D. Shanks’s simplest cubic fields Q(λ).

Let λ be one of the three
roots of

Fn(X , 1) = X 3 − (n − 1)X 2 − (n + 2)X − 1.

Then Q(λ) is a real Galois
cubic field.

Write

Fn(X ,Y ) = (X − λ0Y )(X − λ1Y )(X − λ2Y )

with
λ0 > 0 > λ1 > −1 > λ2.

Then

λ1 = − 1

λ0 + 1
and λ2 = −λ0 + 1

λ0
·



D. Shanks’s simplest cubic fields Q(λ).

Let λ be one of the three
roots of

Fn(X , 1) = X 3 − (n − 1)X 2 − (n + 2)X − 1.

Then Q(λ) is a real Galois
cubic field.

Write

Fn(X ,Y ) = (X − λ0Y )(X − λ1Y )(X − λ2Y )

with
λ0 > 0 > λ1 > −1 > λ2.

Then

λ1 = − 1

λ0 + 1
and λ2 = −λ0 + 1

λ0
·



Simplest fields.

When the following polynomials are irreducible for s, t ∈ Z,
the fields Q(ω) generated by a root ω of respectively

sX 3 − tX 2 − (t + 3s)X − s,

sX 4 − tX 3 − 6sX 2 + tX + s,

sX 6 − 2tX 5 − (5t + 15s)X 4 − 20sX 3 + 5tX 2 + (2t + 6s)X + s,

are cyclic over Q of degree 3, 4 and 6 respectively.
For s = 1, they are called simplest fields by many authors.
For s ≥ 1, I. Wakabayashi call them simplest fields.

In each of the three cases, the roots of the polynomials can be
described via homographies of PSL2(Z) of degree 3, 4 and 6
respectively.
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E. Thomas’s family of Thue equations

In 1990, E. Thomas proved in some effective way that the set
of (n, x , y) ∈ Z3 with

n ≥ 0, max{|x |, |y |} ≥ 2 and Fn(x , y) = ±1

is finite.

In his paper, he completely solved the equation Fn(x , y) = 1
for n ≥ 1.365 · 107 : the only solutions are (0,−1), (1, 0) and
(−1,+1).

Since Fn(−x ,−y) = −Fn(x , y), the solutions to Fn(x , y) = −1 are
given by (−x ,−y) where (x , y) are the solutions to Fn(x , y) = 1.
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Exotic solutions found by E. Thomas in 1990

F0(X ,Y ) = X 3 + X 2Y − 2XY 2 − Y 3

Solutions (x , y) to F0(x , y) = 1 :
(−9, 5), (−1, 2), (2,−1), (4,−9), (5, 4)

F1(X ,Y ) = X 3 − 3XY 2 − Y 3

Solutions (x , y) to F1(x , y) = 1 :
(−3, 2), (1,−3), (2, 1)

F3(X ,Y ) = X 3 − 2X 2Y − 5XY 2 − Y 3

Solutions (x , y) to F3(x , y) = 1 :
(−7,−2), (−2, 9), (9,−7)
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M. Mignotte’s work on E. Thomas’s family

In 1993, M. Mignotte completed the work of E. Thomas by
solving the problem for each n.

For n ≥ 4 and for n = 2, the
only solutions to Fn(x , y) = 1
are (0,−1), (1, 0) and
(−1,+1), while for the cases
n = 0, 1, 3, the only nontrivial
solutions are the ones found
by E. Thomas.
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E. Thomas’s family of Thue equations

For the same family

Fn(X ,Y ) = X 3 − (n − 1)X 2Y − (n + 2)XY 2 − Y 3,

given m 6= 0, M. Mignotte A. Pethő and F. Lemmermeyer
(1996) studied the family of Diophantine equations
Fn(X ,Y ) = m.



M. Mignotte A. Pethő and F. Lemmermeyer

(1996)

For n ≥ 2, when x , y are rational integers verifying

0 < |Fn(x , y)| ≤ m,

then
log |y | ≤ c(log n)(log n + log m)

with an effectively computable absolute constant c .

One would like an upper bound for max{|x |, |y |} depending
only on m, not on n.
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M. Mignotte A. Pethő and F. Lemmermeyer

Besides, M. Mignotte A. Pethő and F. Lemmermeyer found all
solutions of the Thue inequality |Fn(X ,Y )| ≤ 2n + 1.

As a consequence, when m is a given positive integer, there
exists an integer n0 depending upon m such that the inequality
|Fn(x , y)| ≤ m with n ≥ 0 and |y | > 3

√
m implies n ≤ n0.

Note that for 0 < |t| ≤ 3
√

m, (−t, t) and (t,−t) are solutions.
Therefore, the condition |y | > 3

√
m cannot be omitted.
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E. Thomas’s family of Thue inequations

In 1996, for the family of Thue inequations

0 < |Fn(x , y)| ≤ m,

Chen Jian Hua has given a bound for n by using Padé’s
approximations. This bound was highly improved in 1999 by
G. Lettl, A. Pethő and P. Voutier.



Homogeneous variant of E. Thomas family

I. Wakabayashi, using again
the approximants of Padé,
extended these results to the
families of forms, depending
upon two parameters,

sX 3 − tX 2Y − (t + 3s)XY 2 − sY 3,

which includes the family of Thomas for s = 1 (with
t = n − 1).



May 2010, Rio de Janeiro What were we doing on the beach of Rio ?



Suggestion of Claude Levesque
Consider Thomas’s family of cubic Thue equations
Fn(X ,Y ) = ±1 with

Fn(X ,Y ) = X 3 − (n − 1)X 2Y − (n + 2)XY 2 − Y 3.

Write

Fn(X ,Y ) = (X − λ0nY )(X − λ1nY )(X − λ2nY )

where λin are units in the totally real cubic field Q(λ0n). Twist
these equations by introducing a new parameter a ∈ Z :

Fn,a(X ,Y ) = (X − λa0nY )(X − λa1nY )(X − λa2nY ) ∈ Z[X ,Y ].

Then we get a family of cubic Thue equations depending on
two parameters (n, a) :

Fn,a(x , y) = ±1.
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Thomas’s family with two parameters

Joint work with Claude Levesque

Main result (2014) : there is an effectively computable
absolute constant c > 0 such that, if (x , y , n, a) are nonzero
rational integers with max{|x |, |y |} ≥ 2 and

Fn,a(x , y) = ±1,

then
max{|n|, |a|, |x |, |y |} ≤ c .

For all n ≥ 0, trivial solutions with a ≥ 2 :
(1, 0), (0, 1)
(1, 1) for a = 2
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Exotic solutions to Fn,a(x , y) = 1 with a ≥ 2

(n, a) (x , y)

(0, 2) (−14,−9) (−3,−1) (−2,−1) (1, 5) (3, 2) (13, 4)

(0, 3) (2, 1)

(0, 5) (−3,−1) (19,−1)

(1, 2) (−7,−2) (−3,−1) (2, 1) (7, 3)

(2, 2) (−7,−1) (−2,−1)

(4, 2) (3, 2)

No further solution in the range

0 ≤ n ≤ 10, 2 ≤ a ≤ 70, −1000 ≤ x , y ≤ 1000.

Open question : are there further solutions ?
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Computer search by specialists



Further Diophantine results on the family Fn,a(x , y)

Let m ≥ 1. There exists an absolute effectively computable
constant κ such that, if there exists (n, a,m, x , y) ∈ Z5 with
a 6= 0 verifying

0 < |Fn,a(x , y)| ≤ m,

then
log max{|x |, |y |} ≤ κµ

with

µ =

{
(log m + |a| log |n|)(log |n|)2 log log |n| for |n| ≥ 3,

log m + |a| for n = 0,±1,±2.

For a = 1, this follows from the above mentioned result of

M. Mignotte, A. Pethő and F. Lemmermeyer.
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Further Diophantine results on the family Fn,a(x , y)

Let m ≥ 1. There exists an absolute effectively computable
constant κ such that, if there exists (n, a,m, x , y) ∈ Z5 with
a 6= 0 verifying

0 < |Fn,a(x , y)| ≤ m,

with n ≥ 0, a ≥ 1 and |y | ≥ 2 3
√

m, then

a ≤ κµ′

with

µ′ =

(log m + log n)(log n) log log n for n ≥ 3,

1 + log m for n = 0, 1, 2.



Further Diophantine results on the family Fn,a(x , y)

Let m ≥ 1. There exists an absolute effectively computable
constant κ such that, if there exists (n, a,m, x , y) ∈ Z5 with
a 6= 0 verifying

0 < |Fn,a(x , y)| ≤ m,

with xy 6= 0, n ≥ 0 and a ≥ 1, then

a ≤ κmax

{
1, (1 + log |x |) log log(n + 3), log |y |, log m

log(n + 2)

}
.



Conjecture on the family Fn,a(x , y)

Assume that there exists (n, a,m, x , y) ∈ Z5 with xy 6= 0 and
|a| ≥ 2 verifying

0 < |Fn,a(x , y)| ≤ m.

We conjecture the upper bound

max{log |n|, |a|, log |x |, log |y |} ≤ κ(1 + log m).

For m > 1 we cannot give an upper bound for |n|.

Since the rank of the units of Q(λ0) is 2, one may expect a
more general result as follows :
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Conjecture on a family Fn,s,t(x , y)

Conjecture. For s, t and n in Z, define

Fn,s,t(X ,Y ) = (X − λs0nλt1nY )(X − λs1nλt2nY )(X − λs2nλt0nY ).

There exists an effectively computable positive absolute
constant κ with the following property : If n, s, t, x , y ,m are
integers satisfying

max{|x |, |y |} ≥ 2, (s, t) 6= (0, 0) and 0 < |Fn,s,t(x , y)| ≤ m,

then

max{log |n|, |s|, |t|, log |x |, log |y |} ≤ κ(1 + log m).



Sketch of proof

We want to prove the Main result : there is an effectively
computable absolute constant c > 0 such that, if (x , y , n, a)
are nonzero rational integers with max{|x |, |y |} ≥ 2 and

Fn,a(x , y) = ±1,

then
max{|n|, |a|, |x |, |y |} ≤ c .

We may assume a ≥ 2 and y ≥ 1.

We may also assume n sufficiently large, thanks to the
following result which we proved earlier.
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Twists of cubic Thue equations
Consider a monic irreducible cubic polynomial f (X ) ∈ Z[X ]
with f (0) = ±1 and write

F (X ,Y ) = Y 3f (X/Y ) = (X − ε1Y )(X − ε2Y )(X − ε3Y ).

For a ∈ Z, a 6= 0, define

Fa(X ,Y ) = (X − εa1Y )(X − εa2Y )(X − εa3Y ).

Then there exists an effectively computable constant κ > 0,
depending only on f , such that, for any m ≥ 2, any (x , y , a) in
the set{

(x , y , a) ∈ Z2 × Z | xya 6= 0, max{|x |, |y |} ≥ 2, |Fa(x , y)| ≤ m
}

satisfies
max

{
|x |, |y |, e |a|

}
≤ mκ.
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Sketch of proof (continued)

Write λi for λin, (i = 0, 1, 2) :

Fn(X ,Y )= X 3 − (n − 1)X 2Y − (n + 2)XY 2 − Y 3

= (X − λ0Y )(X − λ1Y )(X − λ2Y ).

We have 
n +

1

n
≤ λ0 ≤ n +

2

n
,

− 1

n + 1
≤ λ1 ≤ − 1

n + 2
,

−1− 1

n
≤ λ2 ≤ −1− 1

n + 1
·
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Sketch of proof (continued)

Define
γi = x − λai y , (i = 0, 1, 2)

so that Fn,a(x , y) = ±1 becomes γ0γ1γ2 = ±1.

One γi , say γi0 , has a small absolute value, namely

|γi0| ≤
m

y 2λa0
,

the two others, say γi1 , γi2 , have large absolute values :

min{|γi1|, |γi2|} > y |λ2|a.
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Sketch of proof (continued)

Use λ0, λ2 as a basis of the group of units of Q(λ0) : there
exist δ = ±1 and rational integers A and B such that

γ0,a = δλA0λ
B
2 ,

γ1,a = δλA1λ
B
0 = δλ−A+B

0 λ−A2 ,

γ2,a = δλA2λ
B
1 = δλ−B0 λA−B2 .

We can prove

|A|+ |B | ≤ κ

(
log y

log λ0
+ a

)
.



Sketch of proof (continued)

The Siegel equation

γi0,a(λai1 − λ
a
i2

) + γi1,a(λai2 − λ
a
i0

) + γi2,a(λai0 − λ
a
i1

) = 0

leads to the identity

γi1,a(λai2 − λ
a
i0

)

γi2,a(λai1 − λ
a
i0

)
− 1 = −

γi0,a(λai1 − λ
a
i2

)

γi2,a(λai1 − λ
a
i0

)

and the estimate

0 <

∣∣∣∣γi1,a(λai2 − λ
a
i0

)

γi2,a(λai1 − λ
a
i0

)
− 1

∣∣∣∣ ≤ 2

y 3λa0
·



Sketch of proof (completed)

We complete the proof by means of a lower bound for a linear
form in logarithms of algebraic numbers ( Baker’s method)



Families of Thue equations (continued)

E. Lee and M. Mignotte with N. Tzanakis studied in 1991 and
1992 the family of cubic Thue equations

X 3 − nX 2Y − (n + 1)XY 2 − Y 3 = 1.

The left hand side is X (X + Y )(X − (n + 1)Y )− Y 3.

For n ≥ 3.33 · 1023, there are only the solutions (1, 0), (0,−1),
(1,−1), (−n − 1,−1), (1,−n).

In 2000, M. Mignotte proved the same result for all n ≥ 3.
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Families of Thue equations (continued)

I. Wakabayashi proved in 2003 that for n ≥ 1.35 · 1014, the
equation

X 3 − n2XY 2 + Y 3 = 1

has exactly the five solutions (0, 1), (1, 0), (1, n2), (±n, 1).

A. Togbé considered the family of equations

X 3 − (n3 − 2n2 + 3n − 3)X 2Y − n2XY 2 − Y 3 = ±1

in 2004. For n ≥ 1, the only solutions are (±1, 0) and (0,±1).
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A. Togbé considered the family of equations

X 3 − (n3 − 2n2 + 3n − 3)X 2Y − n2XY 2 − Y 3 = ±1

in 2004. For n ≥ 1, the only solutions are (±1, 0) and (0,±1).



Families of Thue equations (continued)

I. Wakabayashi in 2002 used Padé approximation for solving
the Diophantine inequality

|X 3 + aXY 2 + bY 3| ≤ a + |b|+ 1

for arbitrary b and a ≥ 360b4 as well as for b ∈ {1, 2} and
a ≥ 1.



Families of Thue equations (continued)
E. Thomas considered some families of Diophantine equations

X 3 − bX 2Y + cXY 2 − Y 3 = 1

for restricted values of b and c .

Family of quartic equations :

X 4 − aX 3Y − X 2Y 2 + aXY 3 + Y 4 = ±1

(A. Pethő 1991 , M. Mignotte, A. Pethő and R. Roth, 1996).
The left hand side is X (X − Y )(X + Y )(X − aY ) + Y 4.
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Families of Thue equations (continued)

Split families of E. Thomas (1993) :

n∏
i=1

(X − pi(a)Y )− Y n = ±1,

where p1, . . . , pn are polynomials in Z[a].

Further results by J.H. Chen, B. Jadrijević, R. Roth,
P. Voutier, P. Yuan, V. Ziegler. . .
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P. Voutier, P. Yuan, V. Ziegler. . .



Surveys

Surveys by I. Wakabayashi (2002) and C. Heuberger (2005).



Families of Thue equations (continued)

Further contributors are :
Istvan Gaál, Günter Lettl, Claude Levesque, Maurice Mignotte,

Attila Pethő, Robert Tichy, Nikos Tzanakis, AlainTogbé
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