Michel Waldschmaidt Interpolation, January 2021

Exercices: hints, solutions, comments

Second course

1. Prove the two lemmas on entire functions p. 16.

Lemma. An entire function f is periodic of period w # 0 if and only if there exists a function
g analytic in C* such that f(z) = g(e*™*/«).
Solution. The map z — ¢ is analytic and surjective. The condition ¢/™* = ¢i™%'
f(z) = f(2'). Hence there exists a unique map g : C* — C such that g(e*7*) = f(z).

12

implies

Let t € C* and let z € C be such that t = ™. Then g(t) = f(z) and ¢/(t) = 5= f'(2).
This proves the first lemma.

Lemma. If g is an analytic function in C* and if the entire function g(e*™*/*) has a type
< 2(N + 1)r/|w]|, then tNg(t) is a polynomial of degree < 2N.
Therefore, if g(e™*/“) has a type < 27 /|w|, then g is constant.

Solution. Assume that the function f(z) = g(e**"*/“) has a type 7 < 2(N+1)7/|w|. Let t € C*.
Write ¢ = [t|e?® with || < 7. Set

2= —(log |t| + if)

2im ’

so that ¢ = e2™*/%_For any ¢; > 0, we have
w
21 < (5= + ) [log ]
27

for sufficiently large |t| and also for sufficiently small |¢|. We deduce
wT
log|g(t)] = log |f(2)] < (7 +e2)|2l < (5= + e ) | og ]

Notice that

TN+

27
Hence |g|, < e®" for sufficiently large r and also for sufficiently small > 0 with o < N + 1.
Write

g(t) = but".
ne”Z

From

1 dt

by = — —
" 2T ‘t‘:rg thrl



we deduce Cauchy’s inequalities
1
|bﬂ|7an < %|g|r

For n > N, we use these inequalities with r — oo while for n < —N, we use these inequalities
with 7 — 0. We deduce b,, = 0 for [n| > N + 1. Hence

o(t) = 5 A1) + B()

where A and B are polynomials of degree < N.

2. Check ¢!/ = c¢p—1 for n > 1 p. 22.

The function

etz _ e—tz 9
Flat) = o = 2 a2
n>0
satisfies
o\ 2
(62) F(z,t) = t*F(z,t).
Since )
(52) 70 =St = ) + )2 + G + o
n>0
and

F(z,t) = Y en(2)t?" = co(2)t* + cr(2)t* + ca(2)t° + - -
n>0

we deduce ¢fj(z) = 0 and ¢//(z) = ¢p—1(2) for n > 1.
As a matter of fact, co(z) = Ao(2) = 2, cn(2) = An(2) for n > 0.

3. Let S be a positive integer and let z € C. Using Cauchy’s residue Theorem, compute the integral (see p. 26)
L t72nflsh(tz)
270 J|t|=(25+1)7/2 sh(t)

The poles of the function
sh(tz) e —e '

sh(t) et —et

are the complex numbers ¢ such that e?* = 1, namely ¢t € inZ.

The poles inside [¢| < (25 + 1)7/2 are the irs with —5 < s < S.

The residue at ¢t = 0 of ¢t 27! Sbhh((t tz)) is the coefficient ot t=2" in the Taylor expansion of
hence it is A, (2).

Let s be an integer in the range 1 < s < S. Write ¢t = iws + €. Then

sh(tz)
sh(t) ’

el =(-1)(1+e+---), el=(-1) (1—e+--,) e —et=(-1)2e+--,

and



so that

el — e t? Sisin(ms)

et —e~t €

Therefore the residue t = ims of t—27~1 ?h((tg) is

(71)n+s(ﬂs)72n71.

For —§ < s < —1, the residue at i7s is the same.
This proves the formula p. 26 :

S S
2 (=1) t—2n—1Sh(tZ)d

A, (2)=(-1)" sin(smz —l——/
O = V" g X sinlom) g [

for §=1,2,... and z € C.

4. Prove the proposition p. 31 :
Let f be an entire function. The two following conditions are equivalent.
() f@R)(0) = fER (1) =0 for all k>0.

(i) f is the sum of a series

Z an sin(nmz)

n>1

which converges normally on any compact.
Prove also the following result :
Let f be an entire function. The two following conditions are equivalent.

() fEEED0) = FCR (1) =0 for all k> 0.
Zancos( 2”;—1) Z)

(i) f is the sum of a series
n>1

which converges normally on any compact.

(a) For n > 1, the function z — sin(nnz) satisfies (7). Hence (i¢) implies (7).

Let us check that (i) implies (7). The conditions f(%)(0) = 0 for all & > 0 mean f(—z) =
—f(2). The conditions f(?*)(1) = 0 for all k > 0 mean f(1+ z) = —f(1 — z). Hence f(%)(0) =
f@R) (1) = 0 for all k > 0 imply f(242) = f(2), which means that f is periodic of period 2. Since f
is an entire function, from the first lemma p. 16, we deduce that there exists a function g analytic
in C* such that f(z) = g(e"™*). Now the condition f(z) = —f(—z) implies g(1/t) = —g(t). Let

us write
= bat".
nez

The Laurent series on the right hand side converges normally on every compact in C*. The
condition g(1/t) = —g(t) implies b_,, = —b,, for all n € Z, hence by = 0 and

Z b t—n

n>1

which implies condition (i7) with a,, = 2ib,,.
(b) For n > 1, the function z — cos (Wz) satisfies (7). Hence (i) implies (¢).

Let us check that (i) implies (i7). The conditions f(*+1(0) = 0 for all £k > 0 mean f(—z) =
f(2). The conditions f(¥)(1) = 0 for all k& > 0 mean f(1 + z) = f(1 — z). We deduce that



f is periodic of period 4. Since f is an entire function, from the first lemma p. 16, we deduce
that there exists a function g analytic in C* such that f(z) = g(e"™*/2). Now the condition
f(z) = f(—=) implies g(1/t) = g(t). We deduce in the same way as above

=> by (t"+17)
n>1
which implies condition (7).

5. Complete the three proofs of the Lemma p. 33.

Lemma. Let f be a polynomial satisfying
FEFY0) = fC(1) = 0 for all n > 0.

Then f = 0.
Let f be a polynomial satisfying

fE Y 0) = £C(1) = 0 for all n > 0.

e First proof By induction on the degree of the polynomial f.

If f has degree < 1, say f(z) = agz + a1, the conditions f'(0) = f(1) = 0 imply ag = a1 = 0,
hence f = 0.

If f has degree < n with n > 2 and satisfies the hypotheses, then f” also satisfies the
hypotheses and has degree < n, hence by induction f” = 0 and therefore f has degree < 1. The
result follows.

e Second proof The assumption f**+1(0) = 0 for all n > 0 means that f is an even function :
f(=2) = f(2). The assumption f™ (1) = 0 for all n > 0 means that f(1—z) is an odd function :
fA=2)==f(1+2). Wededuce f(z+2)=f(1+2+1)=—f(1—2-1)=—f(—2) = —f(2),
hence f(z+4) = f(2); it follows that the polynomial f is periodic, and therefore it is a constant.
Since f(1) = 0, we conclude f = 0.

e Third proof Write

f(2) = ao + ag2? + agz* + ag2® +ag2® + -+ ag 2+ -

(finite sum). We have f(1) = f(1) = fV(1)=--- =0
ap  +az  tas +as A+ +azn +---=0
2a2 +12a4  +30as +--- +2n(2n—1az, +---=0
24a4 +360as +

+(2(2n4)|a2n +--=0

The matrix of this system is triangular with maximal rank.

6. Let (Mn(z))n>0 and (Mn(z))nzo be two sequences of polynomials such that any polynomial f € C[z] has a
finite expansion

o0
1) = 32 (£ M)+ £ (0) M (2))
n=0
with only finitely many nonzero terms in the series (see p. 34). Check

Mp(2) = =M}, (1 - 2)

n



for n > 0.
Hint: Consider f/(1 — z).

Define f(z) = f'(1 — z). Write

1) =3 (FED ) Ma(2) + FE D (0) M (2) )

n=0

Then

oo

@) =3 (FE M=) + OO0 (2))

n=0

and
oo

J2) = (1= 2) =3 (FEIOML( = 2) + fEHD )M (1~ 2))

n=0
The coefficient of f?"+2) (1) is M), (1 — z).
However we also have

o0

For = 3 (FE WM () + FE D 03T, (5))

n=0

Since f(2n)(1) = —f@ntD(0) and f2r+D(0) = — f(2n+2)(1), this yields

o0

Fo) = 3 (— e 000, (2) - DI (2))
n=0

The coefficient of f(2n+2)(1) is —M,(2).
From the unicity of the expansion we conclude

~My(2) = M) 1 (1 - 2)
for n > 0 (and M} = 0).

7. Let S be a positive integer and let z € C. Using Cauchy’s residue Theorem, compute the integral (see p. 39)
1 t72n71Ch(tZ)

270 J|t|=5n ch(t)

The poles of the function
ch(tz) e +e7 "

ch(t)  et4et

are the complex numbers ¢ such that e* = —1, namely ¢ = (s + %) im, s € 7.

The poles inside [¢| < S7 are the numbers (s + 3) im and (—s — 3) im with 0 < s < S.

The residue at t = 0 of t_2”_1% is the coefficient ot t=2" in the Taylor expansion of
hence it is M,,(2).
Let s be an integer in the range 0 < s < S. Write t = (5 + %) im + €. Then

ch(tz)
ch(t)

et = (=1)%e™2ef = (—1)%i(1+e+---), e t=(=1)e"/2e = —(=1)%(-1)*(L—e+---,)



el et =(—1)%2e+ -,

2 1
etz—|—e_tz:2COS( 8;_ 7TZ>—|—~-

Therefore, for s > 0, the residue t = (s + %) im of t‘2”_1% is

—2n—1
1 2 1
(=1)nte (s + 2) 72" cos ( 5;— 7rz> .

For 0 < s < S, the residue at (75 — %) i7 is the same.
This proves the formula p. 39 :

92n+2 S (1) (25 + )7 1 ch(tz)
M, (z) = (-1)" — t—2n—t dt
(2) = (1" T £ (25 + 1) €08 ( 2 Z) T om /t_sﬂ ch(t)

and

for S=1,2,... and z € C.

8. Give examples of complete, redundant and indeterminate systems in Whittaker classification p. 43.

e Complementary sequences (each integer belongs to one and only one of the two sets) are
complete. For instance the set of two sequences

(1,3,5,...,2n+1,...), (0,2,4,...,2n,...)
is complete (Whittaker).
e The set of two sequences
(0,2,4...,2n,...), (0,2,4...,2n,...)
is complete (Lidstone).
e The set of two sequences
(1,3,5,...,2n+1,...), (1,3,5,....2n+1,...)
is indeterminate (more than one solution to the interpolation problem). If one adds 0 to one set,
(0,1,3,5,....2n+1,...), (1,3,5,...,2n+1,...)
one gets a complete set.
e Given any sequence (qo, q1,¢2, - - - ), the set of two sequences

(071u27"'an>"')7 (CIO7(]1aQ27---)

is redundant (no solution to the interpolation problem).

e The set of two sequences

(0,2,4,6,8,...,2n,...), (0,1,3,5,....2n+1,...)



is redundant (no solution to the interpolation problem).

e According to [?], a pair of sequences (po,p1,p2,---), (¢0,4q1,42,---) is complete if and only if
the sequence (D(1), D(2), D(3),...), defined by

D(m) is the number of p and ¢ which are < m

satisfies
D(m) > m for all m > 1 and D(m) = m for infinitely many m.

Given a complete pair of sequences, if we remove some elements, we get an indeterminate pair.
Given an indeterminate pair of sequences, it is possible to add some elements and get a complete
pair.
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