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1 Sums of two squares

Every odd positive integer which is sum of two squares is congruent to 1 modulo 4: this follows from the
fact that a square is congruent to 0 or 1 modulo 4, hence a sum of two squares is congruent to 0, 1 or 2,
but not 3, modulo 4. The converse is not true: 21 is congruent to 1 modulo 4 but is not a sum of two
squares.

1.1 Prime numbers which are sums of two squares

In this introductory section we will use the following fact related with finite fields:

Let p be a finite field and Fp = Z/pZ the field with p elements. Then
−1 is a sum of two squares in Fp if and only if p is congruent to 1
modulo 4.

In the course we will see several proofs of this fact. One of them rests on the properties of the
multiplicative group F×p : that −1 is a sum of two squares in Fp means that this group, the order of which
is p− 1, contains an element of order 4. If there is an element of order 4, then 4 divides the order of the
group, which means that p is congruent to 1 modulo 4. For the converse, we may invoke the fact that
the multiplicative group F×p is cyclic of order p − 1 (Proposition 19), hence if 4 divides the order of the
group then it contains an element of order 4.

Another proof involves the quadratic reciprocity law (Exercise 62): condition (ii) means that the

Legendre symbol

(
−1

p

)
has the value 1; it also has the value (−1)(p−1)/2 (Exercise 13).

Theorem 1 (Fermat). A prime number p is sum of two squares if and only either p = 2 or p is congruent
to 1 modulo 4.

There are many proofs of Theorem 1 — see for instance [Li], [Wiki] — including a one sentence proof
by D. Zagier [Z].

It remains to show that a prime number which is congruent to 1 modulo 4 is a sum of two squares.
We start with an auxiliary result:

Lemma 2. Let p be an odd prime number. The following conditions are equivalent.
(i) p is congruent to 1 modulo 4.
(ii) There exists t is Z such that t2 is congruent to −1 modulo p.
(iii) The prime number p is decomposed in the quadratic extension Q(i)/Q.

Proof of Lemma 2. The equivalence (i) ⇐⇒ (ii) rests on the preliminary remark. The equivalence with
(iii) rests on classical algebraic number theory (for instance [S] §5.4–5.6): if t ∈ Z satisfies −1 ≡ t2

(mod p), then the principal ideal pZ[i] splits as a product of the two ideals p and p of Z[i] generated by
(t+ i) and (t− i) respectively.:

(p) = pp.

We now complete the proof of Theorem 1.
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Proof of Theorem 1. Here again there are several proofs. For the first one, we use Dirichlet’s box principle.
Assume condition (ii) of Lemma 2 is satisfied. Let t ∈ Z satisfy t2 ≡ −1 mod p. Consider the set of
(x, y) ∈ Z × Z satisfying 0 ≤ x, y <

√
p. This set has (b√pc + 1)2 elements. Since p is not a square, we

have
b√pc < √p < b√pc+ 1,

hence (b√pc + 1)2 > p. Therefore the number of elements (x, y) in this set is > p. It follows that
there exist (x′, y′) and (x′′, y′′) in this set with (x′, y′) 6= (x′′, y′′) and x′ − ty′ ≡ x′′ − ty′′ mod p. Set
x = x′ − x′′ et y = y′ − y′′. We have x ≡ ty mod p, hence

x2 + y2 ≡ x2 − t2y2 ≡ (x− ty)(x+ ty) ≡ 0 mod p.

We also have
0 < x2 + y2 < 2p.

Since p is the only multiple of p in the interval [1, 2p− 1], we deduce x2 + y2 = p.
Another proof [S] uses the decomposition of the ideal (p) generated by p in the quadratic field Q(i)

as the product of two conjugate principal prime ideals p = (x + iy) and p = (x − iy), and to take the
norm of one of the factors.

1.2 Positive integers which are sums of two squares

Corollary 3. A positive integer n is sum of two squares if and only if, in the decomposition of n into
prime factors, each prime congruent to 3 modulo 4 occurs with an even exponent.

Denote by Na,b a positive integer, all prime factor of which are congruent to a modulo b. Then
Corollary 3 can be stated as follows: a positive integer is sum of two squares if and only if it can be
written 2aN1,4N

2
3,4.

Proof. A number of the form 2aN1,4N
2
3,4 is a sum of two squares. This follows from the fact that a

product of sums of two squares is again a sum of two squares, as shown by the identity

(a2 + b2)(x2 + y2) = (ax− by)2 + (ay + bx)2

which expresses the fact that the norm from Q(i) overQ of a product

(a+ bi)(x+ yi) = (ax− by) + (ay + bx)i

is the product of the norms of a + bi and of x + yi. This is the special case d = −1 of Brahmagupta’s
identity which is valid for all d ∈ Z:

(a2 − db2)(x2 − dy2) = (ax− dby)2 − d(ay + bx)2.

For the converse, we are going to show that if n is a positive integer of the form x2 + y2 and p an odd
prime number, if the exponent s = vp(n) of p in the decomposition of n into prime factors is odd, then
p ≡ 1 mod 4. Let d be the gcd of x and y and let t = vp(d) be the exponent of p in the decomposition
of d into prime factors. Write x = da, y = db with a and b relatively prime, so that n = d2m with
m = a2 + b2. The exponent vp(m) of p in the decomposition of m into prime factors is s− 2t, and since
s is odd we have s− 2t ≥ 1. Since a and b are relatively prime, one of them is not a multiple of p (as a
matter of fact, it is true also for the other since p divides a2 + b2). Multiplying by its inverse modulo p,
we deduce that there exists t in Z such that t2 + 1 is a multiple of p. From Lemma 2 we deduce that p
is congruent to 1 modulo 4.
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Exercise 4. The quadratic form X2 + Y 2 is the homogeneous version of the cyclotomic polynomial
φ4(t) = t2 + 1. There are only three cyclotomic polynomials of degree 2, φ4(t), φ3(t) = t2 + t + 1 and
φ6(t) = φ3(−t). The homogeneous version of φ3(t) is the quadratic form X2 +XY + Y 2.
(a) Check that a positive integer congruent to 2 modulo 3 cannot be written as x2 +xy+y2 with integers
x, y.
(b) Let p be a prime number, p 6= 3. Check that the following conditions are equivalent:
(i) p is congruent to 1 modulo 3.
(ii) There exists t in Z such that t2 + t+ 1 is a multiple of p.
(iii) The prime number p is decomposed in the quadratic field Q(j)/Q, where j is a primitive cubic root
of unity.
(c) Prove that a prime number p can be written as x2 +xy+ y2 if and only if p congruent to 1 modulo 3.
(d) Prove that a positive integer n can be written n = x2 + xy + y2 with integers x, y if and only if
n = 3bN1,3N

2
2,3.
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2 Finite projective planes

Here we will use the fact that for a given positive integer q, a field with q elements exists if and only if q
is a power of a prime number p.

The easy direction of this equivalence is that if a field F with q elements exists, then q is a power of
a prime number p. First, we have q ≥ 2, since a ring (hence a field) has always at least two elements,
0 6= 1. Let p be the characteristic of F ; then F is a finite vector space over the prime field Fp, and if r is
the dimension then F has pr elements.

Conversely, let q be a power of a prime. We will prove that for any positive integer r there exists
a polynomial of degree r which is irreducible over Fp (this follows from Theorem 55), hence the field
obtained by adjoining a root of this polynomial to Fp has pr elements. One may also argue that the set
of roots of the polynomial Xq − X in an algebraic closure of Fp is a field with q elements when q is a
power of p (see Theorem 24).
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Let Fq be a finite field with q elements and n ≥ 2 an integer. The projective space Pn(Fq) is the set of
lines (Fq subspaces of dimension 1) of Fn+1

q . Hence it is the quotient of Fn+1
q \ {0} under the equivalence

relation

(x0, . . . , xn) ∼ (y0, . . . , yn)⇐⇒ there exists λ ∈ Fq \ {0} with (y0, . . . , yn) = (λx0, . . . , λxn).

There are qn+1 − 1 elements in Fn+1
q \ {0}, each equivalence class contains q − 1 elements, hence Pn(Fq)

has
qn+1 − 1

q − 1
= qn + qn−1 + · · ·+ q + 1.

elements.
The projective space Pn(Fq) of dimension n is the disjoint union of the affine space Fnq , with qn

elements, and the hyperplane at infinity Pn−1(Fq) with (qn − 1)/(q − 1) elements. In particular P2(Fq),
the projective plane over Fq, has q2 + q+ 1 elements. Each projective line of P2(Fq) contains q+ 1 points;
through each point in P2(Fq) pass q + 1 lines.

Definition. A finite projective plane is a nonempty set X (whose elements are called ”points”), along
with a nonempty collection L of subsets of X (whose elements are called ”lines”), such that:
• For every two distinct points, there is exactly one line that contains both points.
• The intersection of any two distinct lines contains exactly one point.
• There exists a set of four points, no three of which belong to the same line.

The projective plane of order q has q2 + q + 1 points and q2 + q + 1 lines, each line contains q + 1
points, each point belongs to q + 1 lines.

The Fano plane is the projective plane of order 2, with 7 points, 7 lines, each line contains 3 points,
each point belongs to 3 lines.

If q is a power of a prime, there exists a projective plane of order q: one example is P2(Fq), other
examples are known. One conjectures that conversely, if there exists a projective plane of order q, then
q is a power of a prime (see Exercise 105). A few partial results are known. Tarry [T] proved that there
is no finite projective plane of order 6, by showing that there is no example of two 6× 6 orthogonal latin
squares (cf. [D-K]). Further, Bruck and Ryser [B-R] proved that for q ≡ 1 (mod 4) or q ≡ 2 (mod 4),
if there exists a projective plane of order q, then q is the sum of two squares (one of which may be 0).
In 1989, Lam, Thiel and Swiercz [L-T-S] proved that there is no projective plane of order 10. The first
open case is q = 12.

The card game dobble is related with the projective plane of order 7, with 72 + 7 + 1 = 57 elements.
A good reference for the mutually orthogonal latin squares (MOL) and the latin square digraph (LSD)

is [D-K] which come from the incidence matrix.
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Fano Plane: P2(F2)

(1 : 1 : 1) (0 : 1 : 0) (1 : 0 : 1) (1 : 0 : 0) (0 : 1 : 1) (1 : 1 : 0) (0 : 0 : 1)

x0 + x2 = 0 1 1 1 0 0 0 0

x1 + x2 = 0 1 0 0 1 1 0 0

x0 + x1 = 0 1 0 0 0 0 1 1

x2 = 0 0 1 0 1 0 1 0

x0 = 0 0 1 0 0 1 0 1

x1 = 0 0 0 1 1 0 0 1

x0 + x1 + x2 = 0 0 0 1 0 1 1 0

Incidence matrix – coordinates (x0 : x1 : x2)

3 Background: Arithmetic

3.1 Cyclic groups

If G is a finite multiplicative group and x an element of G, the order of x is the least positive integer n
such that xn = 1. For x of order n and for m ∈ Z, the condition xm = 1 is equivalent to n divides m; in
other words, n is the positive generator of the ideal of Z which consists of the m such that xm = 1.

If x has order n, for k ∈ Z the order of xk is n/ gcd(n, k).
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The order of a finite group is the number of elements of this group. A cyclic group is a finite group
generated by one element. Two cyclic groups of the same order are isomorphic. For n ≥ 2, an exemple
of a cyclic additive group of order n is the additive group Z/nZ of integers modulo n. An example of a
cyclic multiplicative group of order n is the group µn of complex numbers z which satisfy zn = 1, namely

{1, e2iπ/n, e4iπ/n, . . . , e2(n−1)iπ/n},

the roots of unity of order dividing n. The subgroups and quotients of a cyclic group are cyclic. For any
cyclic group of order n and for any divisor d of n, there is a unique subgroup of G of order d; if ζ is a
generator of the multiplicative cyclic group G of order n and if d divides n, then ζn/d has order d, hence,
is a generator of the unique subgroup of G of order d.

In a cyclic group, the order of which is a multiple of d, there are exactly d elements whose orders
are divisors of d and these are the elements of the subgroup of order d. In a cyclic group G of order a
multiple of d, the set of elements {xd | x ∈ G} is the unique subgroup of G of index d.

The Cartesian product G1 × G2 of two groups is cyclic if and only if G1 and G2 are cyclic with
relatively prime orders.

The number of generators of a cyclic group of order n is ϕ(n), where ϕ is Euler’s function (see § 3.2).

3.2 Residue classes modulo n

The subgroups of the additive group Z are nZ with n ≥ 0. We denote by sn : Z → Z/nZ the canonical
map, which is a morphism of groups with kernel nZ

Given positive integers a and b, there exists a morphism of groups ϕa,b : Z/aZ → Z/bZ such that
ϕa,b ◦ sa = sb if and only if aZ ⊂ bZ, which means if and only if b divides a. If ϕa,b exists, then ϕa,b is
unique and surjective. Its kernel is bZ/aZ, the unique subgroup of Z/aZ of order a/b, which is cyclic and
isomorphic to Z/(a/b)Z.

The greatest common divisor gcd(a, b) of a and b is the positive generator of aZ+bZ, the least common
multiple lcm(a, b) of a and b is the positive generator of aZ ∩ bZ.

For n ≥ 2, Z/nZ is a ring and sn is a morphism of rings. The order of the multiplicative group (Z/nZ)×

of the ring Z/nZ is the number ϕ(n) of integers k in the interval 1 ≤ k ≤ n satisfying gcd(n, k) = 1. The
map ϕ : Z>0 → Z, with ϕ(1) = 1, is Euler’s function already mentioned in § 3.1. If gcd(a, b) = d, then
a/d and b/d are relatively prime. Hence, the partition of the set of integers in 1 ≤ k ≤ n according to
the value of gcd(k, n) yields:

Lemma 5. For any positive integer n,

n =
∑
d|n

ϕ(d).

(Compare with (44)).

Exercise 6.
(1) Let G be a finite group of order n and let k be a positive integer with gcd(n, k) = 1. Prove that the
only solution x ∈ G of the equation xk = 1 is x = 1.
(2) Let G be a cyclic group of order n and let k be a positive integer. Prove that the number of x ∈ G
such that xk = 1 is gcd(n, k).
(3) Let G be a finite group of order n. Prove that the following conditions are equivalent:
(i) G is cyclic
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(ii) For each divisor d of n, the number of x ∈ G such that xd = 1 is ≤ d.
(iii) For each divisor d of n, the number of x ∈ G such that xd = 1 is d.

An arithmetic function is a map f : Z>0 → Z. A multiplicative function is an arithmetic function
such that f(mn) = f(m)f(n) when m and n are relatively prime. For instance, Euler’s ϕ function is
multiplicative: this follows from the ring isomorphim between the ring product (Z/mZ)×(Z/nZ) and the
ring Z/mnZ when m and n are relatively prime (Chinese remainder Theorem). Also, ϕ(pa) = pa−1(p−1)
for p prime and a ≥ 1. Hence, the value of ϕ(n), for n written as a product of powers of distinct prime
numbers, is

ϕ(pa11 · · · parr ) = pa1−1
1 (p1 − 1) · · · par−1

r (pr − 1).

When p is a prime number, a primitive root modulo p is a generator of the cyclic group (Z/pZ)×.
There are exactly ϕ(p−1) of them in (Z/pZ)×. From the definition, it follows that an element g ∈ (Z/pZ)×

is a primitive root modulo p if and only if

g(p−1)/q 6≡ 1 mod p

for all prime divisors q of p− 1.
If a and n are relatively prime integers, the order of a modulo n is the order of the class of a in the

multiplicative group (Z/nZ)×. In other terms, it is the smallest integer ` such that a` is congruent to 1
modulo n.

Exercise 7. For n a positive integer, check that the multiplicative group (Z/nZ)× is cyclic if and only
if n is either 2, 4, ps or 2ps, with p an odd prime and s ≥ 1.

Remark: For s ≥ 2, (Z/2sZ)× is the product of a cyclic group of order 2 by a cyclic group of order
2s−2, hence, for s ≥ 3 it is not cyclic.

3.3 The ring Z[X]

When F is a field, the ring F [X] of polynomials in one variable over F is an Euclidean domain, hence,
a principal domain and, therefore, a factorial ring. The ring Z[X] is not an Euclidean ring: one cannot
divide X by 2 in Z[X] for instance. But if A and B are in Z[X] and B is monic, then both the quotient
Q and the remainder R of the Euclidean division in Q[X] of A by B

A = BQ+R

are in Z[X].
The gcd of the coefficients of a non–zero polynomial f ∈ Z[X] is called the content of f . We denote

it by c(f). A non–zero polynomial with content 1 is called primitive. Any non–zero polynomial in Z[X]
can be written in a unique way as f = c(f)g with g ∈ Z[X] primitive.

For any non–zero polynomial f ∈ Q[X], there is a unique positive rational number r such that rf
belongs to Z[X] and is primitive.

Lemma 8 (Gauss’s Lemma). For f and g non–zero polynomials in Z[X], we have

c(fg) = c(f)c(g).
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Proof. It suffices to check that the product of two primitive polynomials is primitive. More generally, let
p be a prime number and f , g two polynomials whose contents are not divisible by p. We check that the
content of fg is not divisible by p.

We use the surjective morphism of rings

Ψp : Z[X]→ Fp[X], (9)

which maps X to X and Z onto Fp by reduction modulo p of the coefficients. Its kernel is the principal
ideal pZ[X] = (p) of Z[X] generated by p: it is the set of polynomials whose content is divisible by p.
The assumption is Ψp(f) 6= 0 and Ψp(g) 6= 0. Since p is prime, the ring Fp[X] has no zero divisor, hence,
Ψp(fg) = Ψp(f)Ψp(g) 6= 0, which shows that fg is not in the kernel of Ψp.

The ring Z is an Euclidean domain, hence, a principal domain and, therefore, a factorial ring. It
follows that the ring Z[X] is factorial. The units of Z[X] are {+1,−1}. The irreducible elements in Z[X]
are
– the prime numbers {2, 3, 5, 7, 11, . . . },
– the irreducible polynomials in Q[X] with coefficients in Z and content 1
– and, of course, the product of one of these elements by −1.

From Gauss’s Lemma 8, one deduces that if f and g are two monic polynomials in Q[X] such that
fg ∈ Z[X], then f and g are in Z[X].

A monic polynomial in Z[X] is a product, in a unique way, of irreducible monic polynomials in Z[X].

Exercise 10. Given two rings B1, B2, a subring A1 of B1, a subring A2 of B2, a morphism of ring
f : A1 → A2,

B1 B2

∪ ∪
A1 −−−−−→

f
A2

elements x1, . . . , xn of B1 and elements y1, . . . , yn of B2, a necessary and sufficient condition for the
existence of a morphism F : A1[x1, . . . , xn] → A2[y1, . . . , yn] such that F (a) = f(a) for a ∈ A1 and
F (xi) = yi for 1 ≤ i ≤ n is the following:

For any polynomial P ∈ A1[X1, . . . , Xn] such that

P (x1, . . . , xn) = 0,

the polynomial Q ∈ A2[X1, . . . , Xn], image of P by the extension of
f to A1[X1, . . . , Xn]→ A2[X1, . . . , Xn], satisfies

Q(y1, . . . , yn) = 0.

3.4 Möbius inversion formula

Let f be a map defined on the set of positive integers with values in an additive group. Define another
map g by

g(n) =
∑
d|n

f(d).
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It is easy to check by induction that f is completely determined by g. Indeed, the formula for n = 1
produces f(1) = g(1) and for n ≥ 2, once f(d) is known for all d | n with d 6= n, one obtains f(n) from
the formula

f(n) = g(n)−
∑
d|n
d 6=n

f(d).

We wish to write this formula in a close form. If p is a prime, the formula becomes f(p) = g(p) − g(1).
Next, f(p2) = g(p2)− g(p). More generally, for p prime and m ≥ 1,

f(pm) = g(pm)− g(pm−1).

It is convenient to write this formula as

f(pm) =

m∑
h=0

µ(pm−h)g(ph),

where µ(1) = 1, µ(p) = −1, µ(pm) = 0 for m ≥ 2. In order to extend this formula for writing f(n)
in terms of g(d) for d | n, one needs to extend the function µ and it is easily seen by means of the
convolution product (see Exercise 11) that the right thing to do is to require that µ be a multiplicative
function, namely that µ(ab) = µ(a)µ(b) if a and b are relatively prime.

The Möbius function µ (see, for instance, [9] § 2.6) is the map from the positive integers to {0, 1,−1}
defined by the properties µ(1) = 1, µ(p) = −1 for p prime, µ(pm) = 0 for p prime and m ≥ 2 and
µ(ab) = µ(a)µ(b) if a and b are relatively prime. Hence, µ(a) = 0 if and only if a has a square factor,
while for a squarefree number a, which is a product of s distinct primes we have µ(a) = (−1)s:

µ(p1 · · · ps) = (−1)s.

One of the many variants of the Möbius inversion formula states that, for f and g two maps defined on
the set of positive integers with values in an additive group, the two following properties are equivalent:
(i) For any integer n ≥ 1,

g(n) =
∑
d|n

f(d).

(ii) For any integer n ≥ 1,

f(n) =
∑
d|n

µ(n/d)g(d).

For instance, Lemma 5 is equivalent to

ϕ(n) =
∑
d|n

µ(n/d)d for all n ≥ 1.

An equivalent statement of the Möbius inversion formula is the following multiplicative version, which
deals with two maps f , g from the positive integers into an abelian multiplicative group. The two following
properties are equivalent:
(i) For any integer n ≥ 1,

g(n) =
∏
d|n

f(d).
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(ii) For any integer n ≥ 1,

f(n) =
∏
d|n

g(d)µ(n/d).

A third form of the Möbius inversion formula (which we will not use here) deals with two functions F
and G from [1,+∞) to C. The two following properties are equivalent:
(i) For any real number x ≥ 1,

G(x) =
∑
n≤x

F (x/n).

(ii) For any real number x ≥ 1,

F (x) =
∑
n≤x

µ(n)G(x/n).

As an illustration, take F (x) = 1 and G(x) = [x] for all x ∈ [1,+∞). Then∑
n≤x

µ(n)[x/n] = 1

Exercise 11. Let A be a (commutative, as always) ring and let R denote the set of arithmetic functions,
namely the set of applications from the positive integers into A. For f and g in R, define the convolution
product

f ? g(m) =
∑
ab=m

f(a)g(b).

(a) Check that R, with the usual addition and with this convolution product, becomes a commutative
ring.
Hint:

f ? g ? h(m) =
∑
abc=m

f(a)g(b)h(c).

Check that the unity is δ ∈ R defined by

δ(a) =

{
1 for a = 1,

0 for a > 1.

(b) Check that if f and g are multiplicative, then so is f ? g.
(c) Define 1 ∈ R by 1(x) = 1 for all x ≥ 1. Check that µ and 1 are inverse each other in R:

µ ? 1 = δ.

(d) Check that the formula
µ ? 1 ? f = f for all f ∈ R

is equivalent to Möbius inversion formula.
(e) Define j by j(n) = n and, for k ≥ 0, σk(n) =

∑
d|n d

k. Check

µ ? j = ϕ, jk ? 1 = σk.

11



4 The theory of finite fields

References:
M. Demazure [2], Chap. 8.
D.S. Dummit & R.M. Foote [3], § 14.3.
S. Lang [6], Chap. 5 § 5.
R. Lidl & H. Niederreiter [7].
V. Shoup [9], Chap. 20.

4.1 Gauss fields

A field with finitely many elements is also called a Gauss Field. For instance, given a prime number p,
the quotient Z/pZ is a Gauss field. Given two fields F and F ′ with p elements, p prime, there is a unique
isomorphism F → F ′. Hence, we denote by Fp the unique field with p elements.

The characteristic of a finite field F is a prime number p, hence, its prime field is Fp. Moreover, F is
a finite vector space over Fp; if the dimension of this space is s, which means that F is a finite extension
of Fp of degree [F : Fp] = s, then F has ps elements. Therefore, the number of elements of a finite field
is always a power of a prime number p and this prime number is the characteristic of F .

The multiplicative group F× of a field with q elements has order q − 1, hence, xq−1 = 1 for all x in
F× and xq = x for all x in F . Therefore, F× is the set of roots of the polynomial Xq−1 − 1, while F is
the set of roots of the polynomial Xq −X:

Xq−1 − 1 =
∏
x∈F×

(X − x), Xq −X =
∏
x∈F

(X − x). (12)

Exercise 13. (a) Let F be a finite field with q elements. Denote by C the set of non–zero squares in F ,
which is the image of the endomorphism x 7→ x2 of the multiplicative group F×:

C = {x2 | x ∈ F×}.

Assume q is even; check C = F×, hence Xq−1 − 1 =
∏
x∈C(X − x).

Assume q is odd; check

X(q−1)/2 − 1 =
∏
x∈C

(X − x) and X(q−1)/2 + 1 =
∏

x∈F×\C

(X − x)

(b) Let p be an odd prime. For a in Fp, denote by
(
a
p

)
the Legendre symbol:

(
a

p

)
=


0 if a = 0

1 if a is a non–zero square in Fp
−1 if a is not a square in Fp.

Check
X(p−1)/2 − 1 =

∏
a∈Fp, ( ap )=1

(X − a)

12



and
X(p−1)/2 + 1 =

∏
a∈Fp, ( ap )=−1

(X − a).

Deduce that for a in Fp, (
a

p

)
= a(p−1)/2.

Exercise 14. Let Fq be a finite field. A polynomial f ∈ Fq[T ] computes squares if α = f(α)2 for each
α ∈ Fq which is a square.
(a) Assume q is even. Show that the polynomial f(T ) = T q/2 computes squares and that no polynomial
of degree < q/2 computes squares.
(b) Assume that q is odd. Show that no polynomial of degree < (q + 1)/4 computes squares.
(c) Assume that q ≡ 3 mod 4. Show that the polynomial f(T ) = T (q+1)/4 computes squares.
(d) Assume that q ≡ 1 mod 4. Show that there exists a polynomial of degree ≤ (q− 1)/2 that computes
squares.

Exercise 15. Prove that in a finite field, any element is a sum of two squares.

Exercise 16. Let F be a finite field, q the number of its elements, k a positive integer. Denote by Ck
the image of the endomorphism x 7→ xk of the multiplicative group F×:

Ck = {xk | x ∈ F×}.

How many elements are there in Ck?

Exercise 17. Find the irreducible polynomial of
√

2 +
√

3 over Z and prove that it is reducible modulo
p for all primes p.

Exercise 18. Prove that if F is a finite field with q elements, then the polynomial Xq −X + 1 has no
root in F . Deduce that F is not algebraically closed.

Proposition 19. Any finite subgroup G of the multiplicative group of a field K is cyclic. If n is the
order of G, then G is the set of roots of the polynomial Xn − 1 in K.

Proof. Let e be the exponent of G. By Lagrange’s theorem, e divides n. Any x in G is a root of the
polynomial Xe−1. Since G has order n, we get n roots in the field K of this polynomial Xe−1 of degree
e ≤ n. Hence e = n. We conclude by using the fact that there exists in G at least one element of order
e, hence, G is cyclic.

The last part of the statement is easy: any element x of G satisfies xn = 1 by Lagrange’s theorem,
hence the polynomial Xn − 1, which has degree n, has n roots in K, namely the elements in G. Since K
is a field, we deduce

Xn − 1 =
∏
x∈G

(X − x),

which means that G is the set of roots of the polynomial Xn − 1 in K.

Second proof of Proposition 19. The following alternative proof of Proposition 19 does not use the expo-
nent. Let K be a field and G a finite subgroup of K× of order n. For each d | n, the number of elements
x in K satisfying xd = 1 is at most d (the polynomial Xd − 1 has at most d roots in K). The result now
follows from exercise 6 (3).
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Recall that when F = Fp, a rational integer a is called a primitive root modulo p if a is not divisible
by p and if the class of a modulo p is a generator of the cyclic group (Z/pZ)×. More generally, when Fq
is a finite field with q elements, a generator of the cyclic group F×q is called a primitive root or a primitive
element in Fq. A nonzero element α in Fq is a primitive root in Fq if and only if α is a primitive (q− 1)th
root of unity. There are ϕ(q−1) primitive roots in Fq. Programs giving primitive roots in Fq are available
online1.

The discrete logarithm. Let G be a finite cyclic group of order n written multiplicatively and a a
generator. Any element of G can be written x = ak, with an integer which is unique modulo n. This
integer (or its class in the additive cyclic group Z/nZ) is called the logarithm of x in basis a. We consider
only the case where G is the multiplicative group of the non zero elements of a finite field.

Let Fq be a finite field and α a primitive root in Fq, so that F×q = {1, α, α2, . . . , αq−2}. Any γ ∈ F×q
can be written in a unique way as αm for some 0 ≤ m ≤ q− 2. This integer m, or the class of m modulo
q−1, is the discrete logarithm in Fq of γ with respect to α (also called the index of γ or the multiplicative
order of γ with respect to α). We denote it by Indαγ:

Indα(αn) = n ∈ Z/(q − 1)Z, αIndαγ = γ.

For α a primitive root in Fq and γ, γ1, γ2 in F×q , we have

Indα(γ1γ2) ≡ Indα(γ1) + Indα(γ2) mod (q − 1), Indα(γ−1) ≡ −Indα(γ) mod (q − 1).

If α and β are primitive roots in Fq, then

Indα(β)Indβ(α) ≡ 1 mod (q − 1).

Example 20 (The discrete logarithm in F4). The field F4 is a quadratic extension of F2 (see Ex-
ample 30). Let x be a root of the polynomial X2 +X+1 ∈ F2[X], so that F4 = F2(x) and F×4 = {1, x, x2}.
The tables of exponentials in F×4 are

αn :
n = 1 2
α = x x x2

α = x2 x2 x

hence the tables of discrete logarithms in F4 are

Indαγ :
γ = x x2

α = x 1 2
α = x2 2 1

Exercise 21. For each prime p ≤ 13 and also for p = 31, list the values α ∈ F×p which are primitive
roots in Fp. Next, for each α and for n = 0, 1, 2, . . . , p − 2, compute αn. Deduce a table of the discrete
logarithm in Fp with respect to the primitive root α.

1One of them (in French) is
http://jean-paul.davalan.pagesperso-orange.fr/mots/comb/gfields/index.html

Computation on finite fields can be done also with Pari GP; see
http://wims.unice.fr/~wims/
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The theorem of the primitive element for finite fields is:

Proposition 22. Let F be a finite field and K a finite extension of F . Then there exist α ∈ K such that
K = F (α).

Proof. Let q = ps be the number of elements in K, where p is the characteristic of F and K; the
multiplicative group K× is cyclic (Proposition 19); let α be a generator. Then

K =
{

0, 1, α, α2, . . . , αq−2
}

= Fp(α),

and, therefore, K = F (α).

Hence the field K is isomorphic to the quotient Fp[X]/(P ) where P ∈ Fp[X] is some irreducible
polynomial over Fp of degree s. We prove below (cf. Theorem 24) that K is isomorphic to the quotient
Fp[X]/(P ) where P ∈ Fp[X] is any irreducible polynomial over Fp of degree s.

Lemma 23. Let K be a field of characteristic p. For x and y in K, we have (x+ y)p = xp + yp.

Proof. When p is a prime number and n an integer in the range 1 ≤ n < p, the binomial coefficient( p
n

)
=

p!

n!(p− n)!

is divisible by p.

We now prove that for any prime number p and any integer s ≥ 1, there exists a finite field with ps

elements.

Theorem 24. Let p be a prime number and s a positive integer. Set q = ps. Then there exists a field with
q elements. Two finite fields with the same number of elements are isomorphic. If Ω is an algebraically
closed field of characteristic p, then Ω contains one and only one subfield with q elements.

Proof. Let F be a splitting field over Fp of the polynomial Xq −X. Since the derivative of Xq −X is
−1, there is no multiple root, hence Xq −X has q distinct roots in F . From Lemma 23 it follows that
the set of these roots is a field. Hence this set is F and F has q elements.

If F ′ is a field with q elements, then F ′ is the set of roots of the polynomial Xq −X, hence, F ′ is the
splitting field of this polynomial over its prime field and, therefore, is isomorphic to F .

If Ω is an algebraically closed field of characteristic p, then the unique subfield of Ω with q elements
is the set of roots of the polynomial Xq −X.

According to (12), if Fq is a finite field with q elements and F an extension of Fq, then for a ∈ F , the
relation aq = a holds if and only if a ∈ Fq. We will use the following more general fact:

Lemma 25. Let Fq be a finite field with q elements, F an extension of Fq and f ∈ F [X] a polynomial
with coefficients in F . Then f belongs to Fq[X] if and only if f(Xq) = f(X)q.

Proof. Since q is a power of the characteristic p of F , if we write

f(X) = a0 + a1X + · · ·+ anX
n,

then, by Lemma 23,
f(X)p = ap0 + ap1X

p + · · ·+ apnX
np
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and by induction
f(X)q = aq0 + aq1X

q + · · ·+ aqnX
nq.

Therefore, f(X)q = f(Xq) if and only if aqi = ai for all i = 0, 1, . . . , n.

From Lemma 23, we deduce:

Proposition 26. Let F be a field of characteristic p.
(a) The map

Frobp : F → F
x 7→ xp

is an endomorphism of F .
(b) If F is finite, or if F is algebraically closed, then Frobp is surjective, hence is an automorphism of
the field F .

Remark. An example of a field of characteristic p for which the endomorphism Frobp is not surjective is
the field Fp(X) of rational fractions in one variable over the prime field Fp.

Proof. Indeed, this map is a morphism of fields since, by Lemma 23, for x and y in F ,

Frobp(x+ y) = Frobp(x) + Frobp(y)

and
Frobp(xy) = Frobp(x)Frobp(y).

It is injective since it is a morphism of fields. If F is finite, it is surjective because it is injective. If F is
algebraically closed, any element in F is a p–th power.

This endomorphism of F is called the Frobenius of F over Fp. It extends to an automorphism of the
algebraic closure of F .

If s is a non–negative integer, we denote by Frobsp or by Frobps the iterated automorphism

Frob0
p = 1, Frobps = Frobps−1 ◦ Frobp (s ≥ 1),

so that, for x ∈ F ,

Frob0
p(x) = x, Frobp(x) = xp, Frobp2(x) = xp

2

, . . . , Frobps(x) = xp
s

(s ≥ 0).

If F has ps elements, then the automorphism Frobsp = Frobps of F is the identity.
If F is a finite field with q elements and K a finite extension of F , then Frobq is a F–automorphism

of K called the Frobenius of K over F .
Let F be a finite field of characteristic p with q = pr elements. According to Proposition 19, the

multiplicative group F× of F is cyclic of order q− 1. Let α be a generator of F×, that means an element

of order q − 1. For 1 ≤ ` < r, we have 1 ≤ p` − 1 < pr − 1 = q − 1, hence, αp
`−1 6= 1 and Frob`p(α) 6= α.

Since Frobrp is the identity on F , it follows that Frobp has order r in the group of automorphisms of F .
Recall that a finite extension L/K is called a Galois extension if the group G of K–automorphisms

of L has order [L : K] and in this case the group G is the Galois group of the extension, denoted by
Gal(L/K). It follows that the extension F/Fp is Galois, with Galois group Gal(F/Fp) = Aut(F ) the
cyclic group of order s generated by Frobp.

We extend this result to the more general case where the ground field Fp is replaced by any finite
field.

Theorem 27. [Galois theory for finite fields]
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Let F be a finite field with q ele-
ments and K a finite extension of F
of degree s. Then the extension K/F is
Galois with Galois group Gal(K/F ) =
AutF (K) the cyclic group generated
by the Frobenius Frobq. Define G =
Gal(K/F ).

K

s/d
(
|
E

d
(

|
F

)
s

There is a bijection between
(i) the divisors d of s.
(ii) the subfields E of K containing F
(iii) the subgroups H of G.
• If E is a subfield of K containing F , then the degree d = [K : E] of E over K divides s, the number of
elements in E is qd, the extension K/F is Galois with Galois group the unique subgroup H of G of order
d, which is the subgroup generated by Frobqd ; furthermore, H is the subgroup of G which consists of the
elements σ ∈ G such that σ(x) = x for all x ∈ E.
• Conversely, if d divides s, then K has a unique subfield E with qd elements, which is the fixed field by
Frobqd :

E = {α ∈ K | Frobqd(α) = α},

this field E contains F and the Galois group of K over E is the unique subgroup H of G of order d.

Proof. Since G is cyclic generated by Frobq, there is a bijection between the divisors d of s and the
subgroups H of G: for d|s, the unique subgroup of G of order s/d (which means of index d) is the cyclic
subgroup generated by Frobqd . The fixed field of H, which is by definition the set of x in K satisfying
σ(x) = x for all σ ∈ H, is the fixed field of Frobqd , hence it is the unique subfield of E with qd elements;
the degree of K over E is therefore d. If E is the subfield of K with qd elements, then the Galois group
of K/E is the cyclic group generated by Frobqd .

Under the hypotheses of Theorem 27, the Galois group of E over F is the quotient Gal(K/F )/Gal(K/E).

Exercise 28.
Let F be a field, m and n two positive integers.
(a) Let r be the remainder of the Euclidean division of n by m in Z. Prove that the remainder of the
Euclidean division of Xn − 1 by Xm − 1 in F [X] is Xr − 1.
(b) Check

gcd(Xn − 1, Xm − 1) = Xgcd(m,n) − 1.

(c) Let further a and b be two integers ≥ 2. Prove that the following conditions are equivalent.
(i) n divides m.
(ii) In F [X], the polynomial Xn − 1 divides Xm − 1.
(iii) an − 1 divides am − 1.
(ii’) In F [X], the polynomial Xan −X divides Xam −X.
(iii’) ba

n − b divides ba
m − b.

Let F be a finite field with qm elements and let n ≥ 1. Then F contains a subfield with n elements if
and only if n divides m. In this case, such a subfield is unique.
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Fix an algebraic closure Fp of Fp. For each s ≥ 1, denote by Fps the unique subfield of Ω with ps

elements. For n and m positive integers, we have the following equivalence:

Fpn ⊂ Fpm ⇐⇒ n divides m. (29)

If these conditions are satisfied, then Fpm/Fpn is cyclic, with Galois group of order m/n generated by
Frobpn .

Let F ⊂ Fp be a finite field of characteristic p with q elements and let x be an element in Fp. The
conjugates of x over F are the roots in Fp of the irreducible polynomial of x over F and these are exactly
the images of x by the iterated Frobenius Frobqi , i ≥ 0.

Two fields with ps elements are isomorphic (cf. Theorem 24), but if s ≥ 2, there is no unicity of such
an isomorphic, because the set of automorphisms of Fps has more than one element (indeed, it has s
elements).

Remarks.

• The additive group (F,+) of a finite field F with q elements is cyclic if and only if q is a prime number.

• The multiplicative group (F×,×) of a finite field F with q elements is cyclic, hence, is isomorphic to the
additive group Z/(q − 1)Z.

• A finite field F with q elements is isomorphic to the ring Z/qZ if and only if q is a prime number (which
is equivalent to saying that Z/qZ has no zero divisor).

Example 30 (Simplest example of a finite field which is not a prime field). A field F with
4 elements has two elements besides 0 and 1. These two elements play exactly the same role: the map
which permutes them and sends 0 to 0 and 1 to 1 is an automorphism of F : this automorphism is nothing
else than Frob2. Select one of these two elements, call it j. Then j is a generator of the multiplicative
group F×, which means that F× = {1, j, j2} and F = {0, 1, j, j2}.

Here are the addition and multiplication tables of this field F :

(F,+) 0 1 j j2

0 0 1 j j2

1 1 0 j2 j
j j j2 0 1
j2 j2 j 1 0

(F,×) 0 1 j j2

0 0 0 0 0
1 0 1 j j2

j 0 j j2 1
j2 0 j2 1 j

There are 4 polynomials of degree 2 over F2, three which split in F2, namely X2, X2 + 1 = (X + 1)2 and
X2 +X = X(X + 1) and just one which is irreducible, X2 +X + 1, the roots of which are the elements
of F other than 0 and 1.

Example 31 (The field F5). .
Denote by i and −i the two roots of X2 + 1; one of them is 2, the other is 3. We have F5 =

{0, 1,−1, i,−i}. If we do not specify our choice, we cannot tell what is i + 1 for instance: it is −i if we
select i = 2 and it is −1 if we select i = 3. Notice that there is no automorphism of F5 mapping i to −i.
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Exercise 32. Check the following isomorphisms and give a generator of the multiplicative group of
non–zero elements in the field.
(a) F4 = F2[X]/(X2 +X + 1).
(b) F8 = F2[X]/(X3 +X + 1).
(c) F16 = F2[X]/(X4 +X + 1).
(d) F16 = F2[X,Y ]/(Y 2 + Y + 1, X2 +X + Y ).

Exercise 33. (a) Give the list of all irreducible polynomials of degree ≤ 5 over F2.
(b) Give the list of all monic irreducible polynomials of degree ≤ 2 over F4.

Recall (Theorem 27) that any finite extension of a finite field is Galois. Hence, in a finite field F , any
irreducible polynomial is separable: finite fields are perfect.

Normal basis Theorem

Theorem 34 (Normal basis theorem). Given a finite extension L ⊃ K of finite fields, there exists an
element α in L× such that the conjugates of α over K form a basis of the vector space L over K.
With such a basis, the Frobenius map Frobq, where q is the number of elements in K, becomes a shift
operator on the coordinates.

The normal basis Theorem may be viewed as an additive analog of the cyclicity of the multiplicative
group of a finite field (cf. Exercise 38).
Remark. The normal basis Theorem holds in zero characteriztic: given any finite Galois extension L/K,
there exists α ∈ L such that the conjugates of α give a basis of the K vector space L.

Proof of Theorem 34.
Let σ be a generator of G. The elements of G are distinct characters of L×, namely homomorphisms
of multiplicative groups L× → L× and therefore they are linearly independent by Dedekind Theorem
(theorem of linear independence of characters). We now consider σ as an endomorphism of the K–vector
space L: since 1, σ, . . . , σd−1 are linearly independent over K, with d = [L : K], the minimal polynomial
of the endomorphism σ is Xd − 1, which is also the characteristic polynomial of this endomorphism. It
follows that there is a cyclic vector, which is an element α in L solution of our problem.

For such a basis α, αq, αq
2

, . . . , αq
d−1

, an element γ in L has coordinates a0, a1, . . . , ad−1 with

γ = a0α+ a1α
q + a2α

q2 + · · ·+ ad−1α
qd−1

,

and the image of γ under the Frobenius map Frobq is

γq = ad−1 + a0α
q + a1α

q2 + · · ·+ ad−2α
qd−1

,

the coordinates of which are ad−1, a0, a1, . . . , ad−2. Hence the Frobenius is a shift operator on the coor-
dinates.

Remark. For α ∈ L, a necessary and sufficient condition for the conjugates of α to give a basis of L over
K is

det
(
τ−1σ(α)

)
τ,σ∈G 6= 0.
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Exercise 35.
(a) Let G be a group, N be a normal subgroup of finite index in G and H a subgroup of G. Show that
the index of H ∩N in H is finite and divides the index of N in G. Deduce that if H ∩N = {1}, then H
is finite and its order divides the index of N in G.
(b) Let L/K be a finite abelian extension and E1, E2 two subfields of L containing K. Assume that the
compositum of E1 and E2 is L. Show that [L : E1] divides [E2 : K].
(c) Let F be a finite field, E an extension of F and α, β two elements in E which are algebraic over F of
degree respectively a and b. Assume a and b are relatively prime. Prove that [F (α, β) : F ] = ab and that

F (α, β) = F (α+ β).

One of the main results of the theory of finite fields is the following:

Theorem 36. Let F be a finite field with q elements, α an element in an algebraic closure of F . There

exist integers ` ≥ 1 such that αq
`

= α. Denote by n the smallest:

n = min{` ≥ 1 | Frob`q(α) = α}.

Then the field F (α) has qn elements, which means that the degree of α over F is n and the minimal
polynomial of α over F is

n−1∏
`=0

(
X − Frob`q(α)

)
=

n−1∏
`=0

(
X − αq

`
)
. (37)

Proof. Since F is finite, the set of αq
`

with ` ≥ 0 is finite, hence there exists `1 > `2 such that αq
`1

= αq
`2

.

Recall that the Frobenius Frobq is an automorphism; we apply Frob−`2q and get αq
`

= α with ` = `1− `2.
Define s = [F (α) : F ]. By Theorem 27, the extension F (α)/F is Galois with Galois group the cyclic

group of order s generated by Frobq. The conjugates of α over F are the elements Frobiq(α), 0 ≤ i ≤ s−1.
Hence s = n.

4.2 Trace and Norm

Let F be a finite field with q elements and let E be a finite extension of degree s of F . For α ∈ E, the
trace of α from E to F is the sum of the conjugates, while the norm of α from E to F is the product
of the conjugates of α over F :

TrE/F (α) =

s−1∑
i=0

Frobiq(α) =

s−1∑
i=0

αq
i

, NE/F (α) =

s−1∏
i=0

Frobiq(α) = α(qs−1)/(q−1).

For α ∈ F , we have TrE/F (α) = sα and NE/F (α) = αs.
The trace TrE/F is a F–linear map from E onto F (a linear form). The kernel is the set of roots

of the polynomial X + Xq + · · · + Xqs−1

in E, it has at most qs−1 elements, hence there exists γ ∈ E
such that TrE/F (γ) 6= 0. It follows that this linear form is surjective, hence its kernel has qs−1 elements.
Therefore for each δ ∈ F there are qs−1 elements α in E such that TrE/F (α) = δ.

Let β ∈ E, β 6= 0; there exists α such that αβ is not in the kernel of TrE/F . Hence the linear form
α 7→ TrE/F (αβ) is not 0. It follows that for β1 6= β2 in E, the two linear forms α 7→ TrE/F (αβ1) and
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α 7→ TrE/F (αβ2) are distinct. Hence the set of linear forms α 7→ TrE/F (αβ) is the set of all linear forms
on E, which is the dual of E as an F–vector space. It is an F–vector space of dimension s.

A similar result holds for the norm: the map α 7→ NE/F (α) is a homomorphism from the multiplicative
group E× to F×, its kernel has at most (qr − 1)/(q − 1) elements and its image at most q − 1 elements,
hence the kernel has (qr − 1)/(q − 1) elements and the image q − 1 elements: the norm is surjective, for
each δ ∈ F× there are (qr − 1)/(q − 1) elements α ∈ E such that NE/F (α) = δ.

Exercise 38. (Hilbert Theorem 90). This is the version, for finite fields, of a theorem on cyclic extensions
due to Kummer (1855), namely the 90th theorem of Hilbert’s Zahlbericht (1897).
Let F be a finite field with q elements and E be a finite extension of F .
(a) Additive version.
Prove that for α ∈ E, the condition TrE/F (α) = 0 is equivalent to the existence of β ∈ E such that
α = βq − β.
(b) Multiplicative version.
Prove that for α ∈ E×, the condition NE/F (α) = 1 is equivalent to the existence of β ∈ E× such that
α = βq/β.

Exercise 39. (Artin–Schreier extensions).
Let p be a prime number, r a positive integer and Fq a finite field with q = pr elements.
(a) Denote by ur and tr the maps Fq → Fq defined by

ur(α) = αp − α, tr(α) = α+ αp + · · ·+ αp
r−1

.

Check that ur and tr are Fp–linear endomorphisms of Fq, that kerur = Fp, im(ur) = ker tr and im(tr) =
Fp. In other terms the sequence

{0} −→ Fp −→ Fq
ur−→ Fq

tr−→ Fp −→ {0}

is exact.
(b) Check ∏

a∈Fp

(X +Xp + · · ·+Xpr−1

− a) = Xpr −X.

(c) Let Ω be an algebraic closure of Fq, let γ ∈ Ω and let r = [Fp(γ) : Fp]. Prove that
(i) If tr(γ) = 0, then the polynomial Xp −X − γ splits completely in Fpr .
(ii) If tr(γ) 6= 0, then the polynomial Xp −X − γ is irreducible over Fpr .
Example. For each a ∈ F×p , the polynomial Xp −X − a is irreducible over Fp.

Exercise 40. (a) Let F be a finite field, E a finite extension of F and α a generator of the cyclic group
E×. Check that NE/F (α) is a generator of the cyclic group F×.
(b) Deduce that the norm NE/F induces a surjective morphism from E× onto F×.
(c) Given extensions of finite fields K ⊂ F ⊂ E, check NE/K = NE/F ◦NF/K .
(d) For x ∈ F , define ( a

F

)
=


0 if a = 0

1 if a is a non–zero square in F

−1 if a is not a square in F .

21



Hence Legendre symbol (Exercise 13) is (
a

p

)
=

(
α

Fp

)
for a ∈ Z and α = a (mod p) ∈ Fp. Check that if F has q elements with q odd, then, for a ∈ F ,( a

F

)
= a(q−1)/2.

Deduce, for a ∈ E, ( a
E

)
=

(
NE/F (a)

F

)
·

Exercise 41. Let Fq be a finite field of odd characteristic p with q = pr elements.
(a) Check −1 is a square if and only if q ≡ 1 mod 4.
(b) Assume p ≡ −1 mod 4. Let i be a root of X2 + 1 in Fp2 . For a and b in Fp, check

(a+ ib)p = a− ib.

(Automorphisms of Fp2).
(c) Let p be a Mersenne prime, p = 2`−1 with ` prime. Check that for a and b in Fp, a+ ib is a generator
of the cyclic group F×p2 if and only if a2 + b2 is a generator of the cyclic group F×p .

Exercise 42. (a) Let n ≥ 1. Prove that any prime divisor of 2n + 1 is congruent to 1 modulo 2n.

(b) From (a) it follows that the prime divisors of the Fermat number F5 = 225

+1 are congruent to 1 modulo
64. Check that F5 is divisible by 641, without performing the division 4 294 967 297 = 641 · 6 700 417 but
only using 641 = 54 + 24 = 5 · 27 + 1.

4.3 Cyclotomic polynomials

Let n be a positive integer. A n–th root of unity in a field K is an element of K× which satifies xn = 1.
This means that it is a torsion element of order dividing n.

A primitive n–th root of unity is an element of K× of order n: for k in Z, the equality xk = 1 holds
if and only if n divides k.

For each positive integer n, the n–th roots of unity in F form a finite subgroup of F×tors having at
most n elements. The union of all these subgroups of F×tors is just the torsion group F×tors itself. This
group contains 1 and −1, but it could have just one element, like for F2 = Z/2Z or F2(X) for instance.
The torsion subgroup of R× is {±1}, the torsion subgroup of C× is infinite.

Let K be a field of finite characteristic p and let n be a positive integer. Write n = prm with r ≥ 0
and gcd(p,m) = 1. In K[X], we have

Xn − 1 = (Xm − 1)p
r

.

If x ∈ K satisfies xn = 1, then xm = 1. Therefore, the order of a finite subgroup of K× is prime to p.
It also follows that the study of Xn − 1 reduces to the study of Xm − 1 with m prime to p.
Let n be a positive integer and Ω be an algebraically closed field of characteristic either 0 or a prime

number not dividing n. Then the number of primitive n-th roots of unity in Ω is ϕ(n). These ϕ(n)
elements are the generators of the unique cyclic subgroup Cn of order n of Ω×, which is the group of n-th
roots of unity in Ω:

Cn = {x ∈ Ω | xn = 1}.
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4.3.1 Cyclotomic polynomials over C[X]

The map C→ C× defined by z 7→ e2iπz/n is a morphism from the additive group C to the multiplicative
group C×; this morphism has kernel nZ. Hence, it factors to an injective morphism from the group C/nZ
to C×: we denote it also by z 7→ e2iπz/n. In particular e2iπz/n makes sense for z ∈ Z/nZ. The unique
subgroup of order n in C/nZ is Z/nZ, its image under z 7→ e2iπz/n is µn ⊂ C×.

For n a positive integer, we define a polynomial Φn(X) ∈ C[X] by

Φn(X) =
∏

k∈(Z/nZ)×

(X − e2iπk/n). (43)

This polynomial is called the cyclotomic polynomial of index n; it is monic and has degree ϕ(n). Since

Xn − 1 =

n−1∏
k=0

(X − e2iπk/n),

the partition of the set of roots of unity according to their order shows that

Xn − 1 =
∏

1≤d≤n
d|n

Φd(X). (44)

The degree of Xn − 1 is n and the degree of Φd(X) is ϕ(d), hence, Lemma 5 follows also from (44).
The name cyclotomy comes from the Greek and means divide the circle. The complex roots of Xn−1

are the vertices of a regular polygon with n sides.
From (44), it follows that an equivalent definition of the polynomials Φ1,Φ2, . . . in Z[X] is by induction

on n:

Φ1(X) = X − 1, Φn(X) =
Xn − 1∏

d6=n
d|n

Φd(X)
· (45)

This is the most convenient way to compute the cyclotomic polynomials Φn for small values of n.
Möbius inversion formula (see the second form in § 3.4 with G the multiplicative group Q(X)×) yields

Φn(X) =
∏
d|n

(Xd − 1)µ(n/d).

Notice that for m ≥ 3, the polynomial Φm has real coefficients (in fact integer coefficients) and no real
root, hence its degree ϕ(m) is even.

First examples. One has

Φ2(X) =
X2 − 1

X − 1
= X + 1, Φ3(X) =

X3 − 1

X − 1
= X2 +X + 1,

and more generally, for p prime

Φp(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 + · · ·+X + 1.
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The next cyclotomic polynomials are

Φ4(X) =
X4 − 1

X2 − 1
= X2 + 1 = Φ2(X2),

Φ6(X) =
X6 − 1

(X3 − 1)(X + 1)
=
X3 + 1

X + 1
= X2 −X + 1 = Φ3(−X).

The next page is reproduced from
https://en.wikipedia.org/wiki/Cyclotomic_polynomial
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Φ1(x) = x− 1

Φ2(x) = x+ 1

Φ3(x) = x2 + x+ 1

Φ4(x) = x2 + 1

Φ5(x) = x4 + x3 + x2 + x+ 1

Φ6(x) = x2 − x+ 1

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1

Φ8(x) = x4 + 1

Φ9(x) = x6 + x3 + 1

Φ10(x) = x4 − x3 + x2 − x+ 1

Φ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

Φ12(x) = x4 − x2 + 1

Φ13(x) = x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

Φ14(x) = x6 − x5 + x4 − x3 + x2 − x+ 1

Φ15(x) = x8 − x7 + x5 − x4 + x3 − x+ 1

Φ16(x) = x8 + 1

Φ17(x) = x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

Φ18(x) = x6 − x3 + 1

Φ19(x) = x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

Φ20(x) = x8 − x6 + x4 − x2 + 1

Φ21(x) = x12 − x11 + x9 − x8 + x6 − x4 + x3 − x+ 1

Φ22(x) = x10 − x9 + x8 − x7 + x6 − x5 + x4 − x3 + x2 − x+ 1

Φ23(x) = x22 + x21 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11

+ x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

Φ24(x) = x8 − x4 + 1

Φ25(x) = x20 + x15 + x10 + x5 + 1

Φ26(x) = x12 − x11 + x10 − x9 + x8 − x7 + x6 − x5 + x4 − x3 + x2 − x+ 1

Φ27(x) = x18 + x9 + 1

Φ28(x) = x12 − x10 + x8 − x6 + x4 − x2 + 1

Φ29(x) = x28 + x27 + x26 + x25 + x24 + x23 + x22 + x21 + x20 + x19 + x18 + x17 + x16 + x15 + x14

+ x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

Φ30(x) = x8 + x7 − x5 − x4 − x3 + x+ 1.

It is known that if n has at most two odd prime divisors, then the coefficients of Φn are 0, 1 or −1.
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The least integer that has three distinct odd prime divisors is 105. In the polynomial Φ105, the coefficients
of x7 and x41 are −2:

Φ105(x) = x48 + x47 + x46 − x43 − x42 − 2x41 − x40 − x39 + x36 + x35 + x34 + x33 + x32 + x31 − x28 − x26

− x24 − x22 − x20 + x17 + x16 + x15 + x14 + x13 + x12 − x9 − x8 − 2x7 − x6 − x5 + x2 + x+ 1.

Exercise 46.
(a) Let n ≥ 2 be an integer. Denote by R the radical (maximal square free factor) of n, namely the
product of the prime factors of n. Check

φn(X) = φR(Xn/R). (47)

(b) Let p be a prime number and let m1 a positive integer prime to p. Set m = pm1. Prove

Φm1
(Xp) = Φm(X)Φm1

(X).

(c) Let p be a prime number and m a positive integer multiple of p. Write m = prm1 with gcd(p,m1) = 1
and r ≥ 1. Deduce from (a) and (b)

Φm1
(Xpr ) = Φm(X)Φm1

(Xpr−1

).

(d) For r ≥ 0, p prime and m a multiple of p, check

Φprm(X) = Φm(Xpr ) and ϕ(prm) = prϕ(m).

Deduce
Φpr (X) = Xpr−1(p−1) +Xpr−1(p−2) + · · ·+Xpr−1

+ 1 = Φp(X
pr−1

)

when p is a prime and r ≥ 1 (also a consequence of (47)).

(e) Let n be a positive integer. Prove

ϕ(2n) =

{
ϕ(n) if n is odd,

2ϕ(n) if n is even,

Φ2n(X) =


−Φ1(−X) if n = 1,

Φn(−X) if n is odd and ≥ 3,

Φn(X2) if n is even.

Deduce, for ` ≥ 1 and for m odd ≥ 3,

Φ2`(X) = X2`−1

+ 1

Φ2`m(X) = Φm(−X2`−1

),

Φm(X)Φm(−X) = Φm(X2).
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(f) Check, for n ≥ 1,

Φn(1) =


0 for n = 1,

p if n = pr with p prime and r ≥ 1;

1 otherwise.

(g) Check, for n ≥ 1,

Φn(−1) =


−2 for n = 1,

1 if n is odd ≥ 3;

Φn/2(1) if n is even.

In other terms, for n ≥ 3,

Φn(−1) =

{
p if n = 2pr with p a prime and r ≥ 1;

1 if n is odd or if n = 2m where m has at least two distinct prime divisors.

Theorem 48. For any positive integer n, the polynomial Φn(X) has its coefficients in Z. Moreover,
Φn(X) is irreducible in Z[X].

Proof of the first part of Theorem 48. We check Φn(X) ∈ Z[X] by induction on n. The results holds for
n = 1, since Φ1(X) = X − 1. Assume Φm(X) ∈ Z[X] for all m < n. From the induction hypothesis, it
follows that

h(X) =
∏
d|n
d 6=n

Φd(X)

is monic with coefficients in Z. We divide Xn − 1 by h in Z[X]: let Q ∈ Z[X] be the quotient and
R ∈ Z[X] the remainder:

Xn − 1 = h(X)Q(X) +R(X).

We also have Xn − 1 = h(X)Φn(X) in C[X], as shown by (44). From the unicity of the quotient and
remainder in the Euclidean division in C[X], we deduce Q = Φn and R = 0, hence, Φn ∈ Z[X].

We now show that Φn is irreducible in Z[X]. Since it is monic, its content is 1. It remains to check
that it is irreducible in Q[X].

Here is a proof of the irreducibility of the cyclotomic polynomial in the special case where the index
is a prime number p. It rests on Eisenstein’s Criterion:

Proposition 49 (Eisenstein criterion). Let

C(X) = c0X
d + · · ·+ cd ∈ Z[X]

and let p be a prime number. Assume C to be product of two polynomials in Z[X] of positive degrees.
Assume also that p divides ci for 1 ≤ i ≤ d but that p does not divide c0. Then p2 divides cd.

Proof. Let
A(X) = a0X

n + · · ·+ an and B(X) = b0X
m + · · ·+ bm

be two polynomials in Z[X] of degrees m and n such that C = AB. Hence, d = m + n, c0 = a0b0,
cd = anbm. We use the morphism (9) of reduction modulo p, namely Ψp : Z[X] −→ Fp[X]. Write

Ã = Ψp(A), B̃ = Ψp(B), C̃ = Ψp(C),

Ã(X) = ã0X
n + · · ·+ ãn, B̃(X) = b̃0X

m + · · ·+ b̃m
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and
C̃(X) = c̃0X

d + · · ·+ c̃d.

By assumption c̃0 6= 0, c̃1 = · · · = c̃d = 0, hence, C̃(X) = c̃0X
d = Ã(X)B̃(X) with c̃0 = ã0b̃0 6= 0. Now

Ã and B̃ have positive degrees n and m, hence, ãn = b̃m = 0, which means that p divides an and bm and,
therefore, p2 divides cd = anbm.

Proof of the irreducibility of Φp over Z in Theorem 48 for p prime. We set X − 1 = Y , so that

Φp(Y + 1) =
(Y + 1)p − 1

Y
= Y p−1 +

(
p

1

)
Y p−2 + · · ·+

(
p

2

)
Y + p ∈ Z[Y ].

We observe that p divides all coefficients – but the leading one – of the monic polynomial Φp(Y + 1)
and that p2 does not divide the constant term. We conclude by using Eisenstein’s Criterion Proposition
49.

We now complete the proof of Theorem 48.

Proof of the irreducibility of Φn over Z in Theorem 48 for all n. Let f ∈ Z[X] be an irreducible factor
of Φn with a positive leading coefficient and let g ∈ Z[X] satisfy fg = Φn. Our goal is to prove f = Φn
and g = 1.

Since Φn is monic, the same is true for f and g. Let ζ be a root of f in C and let p be a prime number
which does not divide n. Since ζp is a primitive n-th root of unity, it is a zero of Φn.

The first and main step of the proof is to check that f(ζp) = 0. If ζp is not a root of f , then it is a
root of g. We assume g(ζp) = 0 and we will reach a contradiction.

Since f is irreducible, f is the minimal polynomial of ζ, hence, from g(ζp) = 0, we infer that f(X)
divides g(Xp). Write g(Xp) = f(X)h(X) and consider the morphism Ψp of reduction modulo p already
introduced in (9). Denote by F , G, H the images of f , g, h. Recall that fg = Φn in Z[X], hence,
F (X)G(X) divides Xn − 1 in Fp[X]. The assumption that p does not divide n implies that Xn − 1 has
no square factor in Fp[X].

Let P ∈ Z[X] be an irreducible factor of F . From G(Xp) = F (X)H(X), it follows that P (X) divides
G(Xp). But G ∈ Fp[X], hence (see Lemma 25), G(Xp) = G(X)p and, therefore, P divides G(X). Now
P 2 divides the product FG, which is a contradiction.

We have checked that for any root ζ of f in C and any prime number p which does not divide n, the
number ζp is again a root of f . By induction on the number of prime factors of m, it follows that for any
integer m with gcd(m,n) = 1 the number ζm is a root of f . Now f vanishes at all the primitive n–th
roots of unity, hence, f = Φn and g = 1.

Let n be a positive integer. The cyclotomic field of level n over Q is

Rn = Q
({
e2iπk/n | k ∈ (Z/nZ)×

})
⊂ C.

This is the splitting field of Φn over Q. If ζ ∈ C is any primitive n–th root of unity, then Rn = Q(ζ) and
{1, ζ, . . . , ζϕ(n)−1} is a basis of Rn as a Q–vector space.

For example we have

R1 = R2 = Q, R3 = R6 = Q(j), R4 = Q(i),

where j is a root of the polynomial X2 + X + 1. It is easy to check that for n ≥ 1 we have ϕ(n) = 1
if and only if n ∈ {1, 2}, ϕ(n) = 2 if and only if n ∈ {3, 4, 6} and ϕ(n) is even and ≥ 4 for n ≥ 5 with
n 6= 6. That ϕ(n), the degree of Rn, tends to infinity with n can be checked in an elementary way.
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Exercise 50. Check
n ≤ 2.685ϕ(n)1.161

for all n ≥ 1.

Proposition 51. There is a canonical isomorphism between Gal(Rn/Q) and the multiplicative group
(Z/nZ)×.

Proof. Let ζn be a primitive n-th root of unity and let µn be the group of n-th roots of unity, which is
the subgroup of C× generated by ζn. The map Z −→ µn which maps m to ζmn is a group homomorphism
of kernel nZ. When c is a class modulo n, we denote by ζc the image of c under the isomorphism
Z/nZ ∼−→ µn.

For σ ∈ Gal(Rn/Q), define θ(σ) ∈ (Z/nZ)× by

σ(ζn) = ζθ(σ)
n .

Then θ is well defined and is a group isomorphism from Gal(Rn/Q) onto (Z/nZ)×.

Example 52. The element τ in Gal(Rn/Q) such that θ(τ) = −1 satisfies τ(ζn) = ζ−1
n . But ζ−1

n is the
complex conjugate of ζn, since |ζn| = 1. Hence τ is the (restriction to Rn of the) complex conjugation.

Assume n ≥ 3. The subfield of Rn fixed by the subgroup θ−1({1,−1}) of Gal(Rn/Q) is the maximal
real subfield of Rn:

R+
n = Q(ζn + ζ−1

n ) = Q
(
cos(2π/n)

)
= Rn ∩ R

with [Rn : R+
n ] = 2.

4.3.2 Cyclotomic Polynomials over a finite field

Since Φn has coefficients in Z, for any field K, we can view Φn(X) as an element in K[X]: in zero
characteristic, this is plain since K contains Q; in finite characteristic p, one considers the image of Φn
under the morphism Ψp introduced in (9): we denote again this image by Φn.

Proposition 53. Let K be a field and let n be a positive integer. Assume that K has characteristic
either 0 or else a prime number p prime to n. Then the polynomial Φn(X) is separable over K and its
roots in K are exactly the primitive n–th roots of unity which belong to K.

Proof. The derivative of the polynomial Xn − 1 is nXn−1. In K, we have n 6= 0 since p does not divide
n, hence, Xn − 1 is separable over K. Since Φn(X) is a factor of Xn − 1, it is also separable over K.
The roots in K of Xn − 1 are precisely the n–th roots of unity contained in K. A n-th root of unity is
primitive if and only if it is not a root of Φd when d|n, d 6= n. From (45), this means that it is a root of
Φn.

Recall that when n = prm with r ≥ 0 and m ≥ 1, in characteristic p we have

Xn − 1 = (Xm − 1)p
r

.

Therefore, if p divides n, there is no primitive n–th root of unity in a field of characteristic p.
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Exercise 54.
The polynomials below are over a field of characteristic p.
(a) Prove that for r ≥ 0 and m ≥ 1 with p 6 |m,

Φprm(X) = Φm(X)ϕ(pr) with ϕ(pr) =

{
1 if r = 0,

pr − pr−1 if r ≥ 1.

(b) Deduce that if p divides m, then in characteristic p we have

Φprm(X) = Φm(X)p
r

.

According to (12), given q = pr, the unique subfield of Fp with q elements is the set Fq of roots of
Xq −X in Fp. The set {X − x | x ∈ Fq} is the set of all monic degree 1 polynomials with coefficients
in Fq. Hence, (12) is the special case n = 1 of the next statement.

Theorem 55. Let F be a finite field with q elements and let n be a positive integer.The polynomial
Xqn − X is the product of all monic irreducible polynomials in F [X] whose degree divides n. In other
terms, for any n ≥ 1,

Xqn −X =
∏
d|n

∏
f∈Eq(d)

f(X)

where Eq(d) is the set all monic irreducible polynomials in Fq[X] of degree d.

Proof. The derivative of Xqn − X is −1, which has no root, hence, Xqn − X has no multiple factor in
characteristic p.

Let f ∈ Fq[X] be an irreducible factor of Xqn−X, d its degree and α a root of f in Fp. The polynomial
Xqn −X is a multiple of f , therefore, it vanishes at α, hence, αq

n

= α, which means α ∈ Fqn . From the
field extensions

Fq ⊂ Fq(α) ⊂ Fqn ,

we deduce that the degree of α over Fq divides the degree of Fqn over Fq, that is d divides n.
Conversely, let f be an irreducible polynomial in Fq[X] of degree d where d divides n. Let α be a

root of f in Fp. The field Fq(α) has degree d over Fq, hence it has qd elements; since d divides n, it is a
subfield of Fqn , hence α ∈ Fqn satisfies αq

n

= α and, therefore, f divides Xqn −X.
This shows that Xqn −X is a multiple of all irreducible polynomials of degree dividing n.
In the factorial ring Fq[X], the polynomial Xqn −X, having no multiple factor, is the product of the

monic irreducible polynomials which divide it. Theorem 55 follows.

Denote by Nq(d) the number of elements in Eq(d), that is the number of monic irreducible polynomials
of degree d in Fq[X]. Theorem 55 yields, for n ≥ 1,

qn =
∑
d|n

dNq(d). (56)

From Möbius inversion formula (§ 3.4), one deduces:

Nq(n) =
1

n

∑
d|n

µ(d)qn/d.
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For instance, when ` is a prime number,

Nq(`) =
q` − q
`
· (57)

Exercise 58. Let F be a finite field with q elements.

(a) Give the values of N2(n) for 1 ≤ n ≤ 6.
(b) Check, for n ≥ 2,

qn

2n
≤ Nq(n) ≤ qn

n
·

(c) More precisely, check, for n ≥ 2,

qn − qbn/2c+1

n
< Nq(n) ≤ qn − q

n
·

(d) Let F be a finite field of characteristic p. Denote by Fp the prime subfield of F . Check that more

than half of the elements α in F satisfy F = Fp(α).
(e) Check that when pn tends to infinity, the probability that a polynomial of degree n over Fp be

irreducible in Fp[X] tends to 1/n.

Remark. From (c) one deduces that the number Nq(n) of monic irreducible polynomials of degree n over
Fq satisfies

Nq(n) =
qn

n
+O

(
qn/2

n

)
.

This Prime Polynomial Theorem is the analog for polynomials of the Prime Number Theorem which
asserts that the number π(x) of primes p ≤ x is asymptotically equal to

Li(x) =

∫ x

2

dt

log t
∼ x

log x
,

while the Riemann Hypothesis is equivalent to the assertion that the remainder term π(x) − Li(x) is
bounded above by x1/2+o(1). This analogy takes into account the fact that x is the number of integers
≤ x while qn is the number of monic polynomials of degree n over Fq.

The abstract of the lecture by Will Sawin on The distribution of prime polynomials over finite fields
on October 29, 2020 at the Number Theory Web Seminar https://www.ntwebseminar.org/ starts with:
Many conjectures in number theory have analogues for polynomials in one variable over a finite field. In
recent works with Mark Shusterman, we proved analogues of two conjectures about prime numbers - the
twin primes conjecture and the conjecture that there are infinitely many primes of the form n2 + 1. The
analogy is:

Number Theory Polynomials
Z ←→ Fq[T ]

Z× = {±1} ←→ Fq[T ]× = F×q
N ←→ monic polynomials

prime numbers ←→ irreducible monic polynomials
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4.4 Decomposition of cyclotomic polynomials over a finite field

In all this section, we assume that n is not divisible by the characteristic p of Fq.
We apply Theorem 36 to the cyclotomic polynomials.

Theorem 59. Let Fq be a finite field with q elements and let n be a positive integer not divisible by
the characteristic of Fq. Then the cyclotomic polynomial Φn splits in Fq[X] into a product of irreducible
factors, all of the same degree d, where d is the order of q modulo n.

Recall (see § 3.2) that the order of q modulo n is by definition the order of the class of q in the
multiplicative group (Z/nZ)× (hence, it is defined if and only if n and q are relatively prime), it is the
smallest integer ` such that q` is congruent to 1 modulo n.

Proof. Let ζ be a root of Φn in a splitting field K of the polynomial Φn over Fq. The order of ζ in the
multiplicative group K× is n. According to Theorem 36, the degree of ζ over Fq is the smallest integer

` ≥ 1 such that ζq
`

= ζ, that is ζq
`−1 = 1. Hence it is the smallest positive integer ` such that n divides

q` − 1 and this is the order of the image of q in the multiplicative group (Z/nZ)×.

Since an element ζ ∈ F×p has order n in the multiplicative group F×p if and only if ζ is a root of Φn,
an equivalent statement to Theorem 59 is the following.

Corollary 60. If ζ ∈ F×p has order n in the multiplicative group F×p , then its degree d = [Fq(ζ) : Fq] over
Fq is the order of q modulo n.

The special case d = 1 of corollary 60 produces the next result:

Corollary 61. The polynomial Φn(X) splits completely in Fq[X] (into a product of linear polynomials)
if and only if q ≡ 1 mod n.

This follows from Theorem 59, but it is also plain from Proposition 19 and the fact that the cyclic
group F×q of order q−1 contains a subgroup of order n if and only if n divides q−1, which is the condition
q ≡ 1 mod n.

Exercise 62. Let p and q be two distinct odd primes with at least one of them congruent to 1 modulo
4. Assume that the polynomial Xq − 1 splits completely in the finite field Fp. Show that the polynomial
X2 − q splits in Fp.
Hint. One may use the Legendre reciprocity law: for p and q distinct odd primes,(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

Remark. Class Field Theory elaborates on such results.

The special case d = ϕ(n) of corollary 60 produces the next result:

Corollary 63. The following conditions are equivalent:
(i) The polynomial Φn(X) is irreducible in Fq[X].
(ii) The class of q modulo n has order ϕ(n).
(iii) q is a generator of the group (Z/nZ)×.
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This can be true only when this multiplicative group is cyclic, which means (see Exercise 7) that n is
either

2, 4, `s, 2`s

where ` is an odd prime and s ≥ 1. Any cyclotomic polynomial Φn with n ≥ 2 not in this list is reducible
over any finite field (including the fields with characteristic p which divides n - see Exercise 54) while it
irreducible over Z.

Exercise 64. What are the degrees of the irreducible factors of the polynomials Φ8(X) = X4 + 1 and
Φ12(X) = X4 −X2 + 1 over a finite field Fq?

Corollary 65. Let q be a power of a prime, s a positive integer and n = qs − 1. Then q has order s
modulo n. Hence, Φn splits in Fq[X] into irreducible factors, all of which have degree s.

Notice that the number of factors in this decomposition is ϕ(qs− 1)/s, hence it follows that s divides
ϕ(qs − 1).

Numerical examples
Recall that we fix an algebraic closure Fp of the prime field Fp and for q a power of p we denote by

Fq the unique subfield of Fp with q elements. Of course, Fp is also an algebraic closure of Fq.

Example 66. The field F4, quadratic extension of F2 (see also Example 30). We consider the
quadratic extension F4/F2. There is a unique irreducible polynomial of degree 2 over F2, which is
Φ3 = X2 +X + 1. Denote by ζ one of its roots in F4. The other root is ζ2 with ζ2 = ζ + 1 and

F4 = {0, 1, ζ, ζ2}.

If we set η = ζ2, then the two roots of Φ3 are η and η2, with η2 = η + 1 and

F4 = {0, 1, η, η2}.

There is no way to distinguish these two roots, they play the same role. It is the same situation as with
the two roots ±i of X2 + 1 in C.

In F4 there are two elements of trace 0 over F2, namely 0 and 1, and two elements of trace 1, namely
ζ and ζ2. The three elements of F×4 have norm 1 over F2.

Example 67. The field F8, cubic extension of F2. We consider the cubic extension F8/F2. There
are 6 elements in F8 which are not in F2, each of them has degree 3 over F2, hence, there are two
irreducible polynomials of degree 3 in F2[X]. Indeed, from (57), it follows that N2(3) = 2. The two
irreducible factors of Φ7 are the only irreducible polynomials of degree 3 over F2:

X8 −X = X(X + 1)(X3 +X + 1)(X3 +X2 + 1).

The 6 = ϕ(7) elements in F×8 of degree 3 are the six roots of Φ7, hence, they have order 7. If ζ is any of
them, then

F8 = {0, 1, ζ, ζ2, ζ3, ζ4, ζ5, ζ6}.

Since [F8 : F2] = 3, there are three automorphisms of F8, namely the identity, Frob2 and Frob4 = Frob2
2.

If ζ is a root of Q1(X) = X3 + X + 1, then the two other roots are ζ2 and ζ4, while the roots of
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Q2(X) = X3 +X2 + 1 are ζ3, ζ5 and ζ6. Notice that ζ6 = ζ−1 and Q2(X) = X3Q1(1/X). Set η = ζ−1.
Then

F8 = {0, 1, η, η2, η3, η4, η5, η6}

and
Q1(X) = (X − ζ)(X − ζ2)(X − ζ4), Q2(X) = (X − η)(X − η2)(X − η4).

For transmission of data, it is not the same to work with ζ or with η = ζ−1. For instance, the map
x 7→ x+ 1 is given by

ζ + 1 = ζ3, ζ2 + 1 = ζ6, ζ3 + 1 = ζ, ζ4 + 1 = ζ5, ζ5 + 1 = ζ4, ζ6 + 1 = ζ2

and by
η + 1 = η5, η2 + 1 = η3, η3 + 1 = η2, η4 + 1 = η6, η5 + 1 = η, η6 + 1 = η4.

In F8 there are four elements of trace 0 over F2, namely 0 and the three roots of X3 + X + 1, and four
elements of trace 1, namely 1 and the three roots of X3 +X2 + 1. The seven elements of F×8 have norm
1 over F2.

Exercise 68. List the values α ∈ F×8 which are primitive roots in F8. Next, for each α and for n =
0, 1, 2, . . . , 6, write the table of the discrete logarithm in F8 with respect to the primitive root α.

Example 69. The field F9, quadratic extension of F3. We consider the quadratic extension F9/F3.
Over F3,

X9 −X = X(X − 1)(X + 1)(X2 + 1)(X2 +X − 1)(X2 −X − 1).

In F×9 , there are 4 = ϕ(8) elements of order 8 (the four roots of Φ8) which have degree 2 over F3. There
are two elements of order 4, which are the roots of Φ4; they are also the squares of the elements of order
8 and they have degree 2 over F3, their square is −1. There is one element of order 2, namely −1 and
one of order 1, namely 1. From (57), it follows that N3(2) = 3: the three monic irreducible polynomials
of degree 2 over F3 are Φ4 and the two irreducible factors of Φ8.

Since [F9 : F3] = 2, there are two automorphisms of F9, namely the identity and Frob3. Let ζ be a
root of X2 +X − 1 and let η = ζ−1. Then η = ζ7, η3 = ζ5 and

X2 +X − 1 = (X − ζ)(X − ζ3), X2 −X − 1 = (X − η)(X − η3).

We have
F9 = {0, 1, ζ, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7}

and also
F9 = {0, 1, η, η2, η3, η4, η5, η6, η7}.

The element ζ4 = η4 = −1 is the element of order 2 and degree 1 and the two elements of order 4 (and
degree 2), roots of X2 + 1, are ζ2 = η6 and ζ6 = η2.

In F9 there are three elements of trace 0 over F3, namely 0 and the two roots of X2 +1, three elements
of trace 1, namely 1 and the two roots of X2−X − 1 and three elements of trace −1, namely −1 and the
two roots of X2 +X − 1. There are four elements of norm 1 over F3, namely 1, −1 and the two roots of
X2 + 1 and four elements of norm −1, namely the roots of X2 −X − 1 and X2 +X − 1.

Exercise 70. List the values α ∈ F×9 which are primitive roots in F9. Next, for each α and for n =
0, 1, 2, . . . , 7, write the table of the discrete logarithm in F9 with respect to the primitive root α.
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Exercise 71. Check that 3 has order 5 modulo 11 and that

X11 − 1 = (X − 1)(X5 −X3 +X2 −X − 1)(X5 +X4 −X3 +X2 − 1)

is the decomposition of X11 − 1 into irreducible factors over F3.
Remark. Compare with § 5.9.2.

Exercise 72. Check that 2 has order 11 modulo 23 and that X23 − 1 over F2 is the product of three
irreducible polynomials, namely X − 1,

X11 +X10 +X6 +X5 +X4 +X2 + 1

and
X11 +X9 +X7 +X6 +X5 +X + 1.

Remark. Compare with § 5.9.1.

Example 73. Assume that q is odd and consider the polynomial Φ4(X) = X2 + 1. Corollary 61 implies:

• If q ≡ 1 mod 4, then X2 + 1 has two roots in Fq.

• If q ≡ −1 mod 4, then X2 + 1 is irreducible over Fq.

Example 74. Assume again that q is odd and consider the polynomial Φ8(X) = X4 + 1.

• If q ≡ 1 mod 8, then X4 + 1 has four roots in Fq.

• Otherwise X4 + 1 is a product of two irreducible polynomials of degree 2
in Fq[X].

(see Exercise 64).
For instance, Example 69 gives over F3

X4 + 1 = (X2 +X − 1)(X2 −X − 1).

Using Example 73, one deduces that in the decomposition of X8 − 1 over Fq, there are

8 linear factors if q ≡ 1 mod 8,
4 linear factors and 2 quadratic factors if q ≡ 5 mod 8,
2 linear factors and 3 quadratic factors if q ≡ −1 mod 4.

Exercise 75. (a) Check that the polynomials X4 + 1 and X4 −X2 + 1 are irreducible over Q but that
they are reducible over Fp for all prime numbers p.
(b) Show that a polynomial in Z[X] which is irreducible modulo p for all p has degree 1.

Exercise 76. Let n be an odd positive integer of the form x4 + y4 with x and y in Z. Show that there
are two integers N and M such that n = NM4, where N is the product of odd prime numbers congruent
to 1 modulo 8 and M is a product of odd prime numbers congruent to 3, 5 or 7 modulo 8.

Example 77. The group (Z/5Z)× is cyclic of order 4, there are ϕ(4) = 2 generators which are the classes
of 2 and 3. Hence,
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• If q ≡ 2 or 3 mod 5, then Φ5 is irreducible in Fq[X],

• If q ≡ 1 mod 5, then Φ5 has 4 roots in Fq,

• If q ≡ −1 mod 5, then Φ5 splits as a product of two irreducible polynomials
of degree 2 in Fq[X].

Exercise 78. Let Fq be a finite field with q elements. What are the degrees of the irreducible factors of
the cyclotomic polynomial Φ15 over Fq? For which values of q is Φ15 irreducible over Fq?

Exercise 79. Let p be a prime number, r a positive integer, q = pr. Denote by Fq2 a field with q2

elements.
(a) Consider the homomorphism of multiplicative groups F×q2 −→ F×q2 which maps x to xq−1. What is
the kernel? What is the image?
(b) Show that there exists α ∈ Fq2 such that αq−1 is not in Fq. Deduce that (α, αq) is a basis of the
Fq–vector space Fq2 .

Decomposition of Φn into irreducible factors over Fq
As usual, we assume gcd(n, q) = 1. Theorem 59 tells us that Φn is product of irreducible polynomials

over Fq all of the same degree d. Denote by G the multiplicative group (Z/nZ)×. Then d is the order of
q in G. Let H be the subgroup of G generated by q:

H = {1, q, q2, . . . , qd−1}.

Let ζ be any root of Φn (in an algebraic closure of Fq, or if you prefer in the splitting field of Φn(X) over
Fq). Then the conjugates of ζ over Fq are its images under the iterated Frobenius Frobq which maps x
to xq. Hence, the minimal polynomial of ζ over Fq is

PH(X) =

d−1∏
i=0

(X − ζq
i

) =
∏
h∈H

(X − ζh).

This is true for any root ζ of Φn. Now fix one of them. Then the others are ζm where gcd(m,n) = 1.
The minimal polynomial of ζm is, therefore,

d−1∏
i=0

(X − ζmq
i

).

This polynomial can be written

PmH(X) =
∏

h∈mH

(X − ζh)

where mH is the class of m modulo H in G:

mH = {mqi | 0 ≤ i ≤ d− 1}.

36



There are ϕ(n)/d classes of G modulo H and the decomposition of Φn(X) into irreducible factors over
Fq is

Φn(X) =
∏

mH∈G/H

PmH(X).

Factors of Xn − 1 in Fq[X]
Again we assume gcd(n, q) = 1. We just studied the decomposition over Fq of the cyclotomic polyno-
mials and Xn − 1 is the product of the Φd(X) for d dividing n. This gives all the information on the
decomposition of Xn − 1 in Fq[X]. Proposition 80 below follows from these results, but is also easy to
prove directly.

Let ζ be a primitive n-th root of unity in an extension F of Fq. Recall that, given ζ, for j in Z, ζj

depends only on the class of j modulo n. Hence, ζi makes sense when i is an element of Z/nZ:

Xn − 1 =
∏

i∈Z/nZ

(X − ζi).

For each subset I of Z/nZ, define

QI(X) =
∏
i∈I

(X − ζi).

For I ranging over the 2n subsets of Z/nZ, we obtain all the monic divisors of Xn − 1 in F [X]. Lemma
25 implies that QI belongs to Fq[X] if and only if QI(X

q) = QI(X)q.
Since q and n are relatively prime, the multiplication by q, which we denote by [q], defines a permu-

tation of the cyclic group Z/nZ:
Z [q]−−−−−→ Zy

y
Z/nZ [q]−−−−−→ Z/nZ
x 7−→ qx.

The condition QI(X
q) = QI(X)q is equivalent to saying that [q](I) = I, which means that multiplication

by q induces a permutation of the elements in I. We will say for brevity that a subset I of Z/nZ with
this property is stable under multiplication by q. Therefore:

Proposition 80. The map I 7→ QI is a bijective map between the subsets I of Z/nZ which are stable
under multiplication by q on the one hand and the monic divisors of Xn− 1 in Fq[X] on the other hand.

An irreducible factor of Xn− 1 over Fq is a factor Q such that no proper divisor of Q has coefficients
in Fq. Hence,

Corollary 81. Under this bijective map, the irreducible factors of Xn − 1 correspond to the minimal
nonempty subsets I of Z/nZ which are stable under multiplication by q.

This bijective map is not canonical: it depends on a choice of a primitive n–th root of unity ζ.
Here are some examples:

1. For I = ∅, Q∅(X) = 1.

2. For I = {0}, Q0(X) = X − 1.
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3. For I = Z/nZ, QZ/nZ(X) = Xn − 1.

4. For I = (Z/nZ)×, Q(Z/nZ)×(X) = Φn(X). Recall that the order of

ζk is n/ gcd(n, k); hence ζk is a generator of the multiplicative group
{1, ζ, ζ2, . . . , ζn−1} if and only if gcd(n, k) = 1, meaning that k modulo n
is a generator of the additive group Z/nZ, or equivalently that k modulo
n belongs to (Z/nZ)×.

5. For I = (Z/nZ)\{0}, QI(X) = 1+X+X2+· · ·+Xn−1 = (Xn−1)/(X−1).

6. If n is even (and q odd, of course), then for I = {n/2}, Q{n/2}(X) = X+1.

7. Let r be a divisor of n. There is a unique subgroup Cr of order r in
the cyclic additive group Z/nZ. This subgroup is generated by the class
of n/r, it is the set of k ∈ Z/nZ such that rk = 0, it is stable under
multiplication by any element prime to n. Then QCr (X) = Xr − 1.

8. Let m be a divisor of n and let Em be the set of generators of Cm: this
set has ϕ(m) elements which are the elements of order m in the cyclic
additive group Z/nZ. This subset of Z/nZ is stable under multiplication
by any element prime to n. Then QEm is the cyclotomic polynomial Φm
of degree ϕ(m).

For instance the minimal nonempty subsets of Z/7Z which are stable under multiplication by 2 are
{0}, {1, 2, 4}, {3, 5, 6}. This is related with the fact that the decomposition of X7 − 1 over F2 is

(X − 1)(X3 +X + 1)(X3 +X2 + 1)

(cf Example 67).
For q odd, the following 8 subsets of Z/4Z are stable under multiplication by q:

∅, {0}, {0, 1, 2, 3}, {1, 3}, {1, 2, 3}, {2}, {0, 2}, {0, 1, 3}.

The subsets {1} and {3} are stable under multiplication by q if and only if q ≡ 1 mod 4. For q ≡ 1
mod 4 the polynomial X4 − 1 splits into linear factors over Fq, in which case all the 16 subsets of Z/4Z
are stable under multiplication by q, and the minimal nonempty ones are {0}, {1}, {2}, {3}. If q ≡ 3
mod 4, the decomposition of X4 − 1 into irreducible polynomials over Fq is (X − 1)(X + 1)(X2 + 1), in
which case the minimal nonempty subsets of Z/4Z stable under multiplication by q are {0}, {2}, {1, 3};
among the 16 subsets of Z/4Z, only 8 are stable under multiplication by q .

Example 82. The field F16, quartic extension of F2. Take n = 15, q = 2. The minimal nonempty
subsets of Z/15Z which are stable under multiplication by 2 modulo 15 are the classes of

{0}, {5, 10}, {3, 6, 9, 12}, {1, 2, 4, 8}, {7, 11, 13, 14}.

We recover the fact that in the decomposition

X15 − 1 = Φ1(X)Φ3(X)Φ5(X)Φ15(X)
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over F2, the factor Φ1 is irreducible of degree 1, the factors Φ3 and Φ5 are irreducible of degree 2 and 4
respectively, while Φ15 splits into two factors of degree 4 (use the fact that 2 has order 2 modulo 3, order
4 modulo 5 and also order 4 modulo 15).

It is easy to find the two factors of Φ15 of degree 4 over F2. There are four polynomials of degree 4
over F2 without roots in F2 (the number of monomials with coefficient 1 should be odd, hence should be
3 or 5) and X4 +X2 + 1 = Φ3(X2) = Φ3(X)2 is reducible; hence, there are three irreducible polynomials
of degree 4 over F2:

X4 +X3 + 1, X4 +X + 1, Φ5(X) = X4 +X3 +X2 +X + 1.

Therefore, in F2[X],
Φ15(X) = (X4 +X3 + 1)(X4 +X + 1).

We check the result by computing Φ15: we divide (X15−1)/(X5−1) = X10+X5+1 by Φ3(X) = X2+X+1
and get in Z[X]:

Φ15(X) = X8 +X7 +X5 +X4 +X3 −X + 1.

Let ζ is a primitive 15-th root of unity (that is, a root of Φ15). Then ζ15 = 1 is the root of Φ1, ζ5 and
ζ10 are the roots of Φ3 (these are the primitive cube roots of unity, they belong to F8), while ζ3, ζ6, ζ9, ζ12

are the roots of Φ5 (these are the primitive 5-th roots of unity). One of the two irreducible factors of Φ15

has the roots ζ, ζ2, ζ4, ζ8, the other has the roots ζ7, ζ11, ζ13, ζ14. Also, we have

{ζ7, ζ11, ζ13, ζ14} = {ζ−1, ζ−2, ζ−4, ζ−8}.

The splitting field over F2 of any of the three irreducible factors of degree 4 of X15 − 1 is the field F16

with 24 elements, but for one of them (namely Φ5) the 4 roots have order 5 in F×16, while for the two
others the roots have order 15.

Hence, we have checked that in F×16, there are

• 1 element of order 1 and degree 1 over F2, namely {1} ⊂ F2,

• 2 elements of order 3 and degree 2 over F2, namely {ζ5, ζ10} ⊂ F4,

• 4 elements of order 5 and degree 4 over F2, namely {ζ3, ζ6, ζ9, ζ12},

• 8 elements of order 15 and degree 4 over F2.

Example 83. The field F27, cubic extension of F3.
We have X26 − 1 = (X13 − 1)(X13 + 1) with

X13 − 1 = (X − 1)Φ13(X), X13 + 1 = (X + 1)Φ26(X) and Φ26(X) = Φ13(−X).

Since 3 has order 3 modulo 13 and modulo 26 and since Φ13 and Φ26 have degree 12, over F3 the
polynomial Φ26(X) is a product of four irreducible polynomials of degree 3, say Φ26 = f1f2f3f4 and
Φ13 = f5f6f7f8, where f4+i(X) = −fi(−X) (i = 1, 2, 3, 4). The roots of f1, f2, f3, f4 are the 12 = ϕ(26)
generators of the cyclic group F×27 = C26, the roots of f5, f6, f7, f8 are the 12 = ϕ(13) elements of order
13, each of which generates the unique cyclic subgroup of F×27 of order 13.

We are going to exhibit the set {f1, . . . , f8} by looking at the degree 3 irreducible polynomials over
F3.
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In order to get the decomposition of X13 + 1, we write the table of discrete logarithms for F27. For
this we need a generator, which means to select one of the four factors of Φ26. Let us take a root α of
X3 −X + 1. With this choice we have

α3 = α− 1 α4 = α2 − α α5 = −α2 + α− 1
α6 = α2 + α+ 1 α7 = α2 − α− 1 α8 = −α2 − 1
α9 = α+ 1 α10 = α2 + α α11 = α2 + α− 1
α12 = α2 − 1 α13 = −1 α14 = −α
α15 = −α2 α16 = −α+ 1 α17 = −α2 + α
α18 = α2 − α+ 1 α19 = −α2 − α− 1 α20 = −α2 + α+ 1
α21 = α2 + 1 α22 = −α− 1 α23 = −α2 − α
α24 = −α2 − α+ 1 α25 = −α2 + 1 α26 = 1.

Hence the roots of X3 − X + 1 are α, α3 = α − 1 and α9 = α + 1. We deduce that the roots
of the reciprocal polynomial X3 + X2 + 1 are α−1 = α25 = −α2 + 1, α−3 = α23 = −α2 − α and
α−9 = α17 = −α2 + α.

We compute the irreducible polynomial of α7 = α2 − α− 1, which is also the irreducible polynomial
of α21 = α2 + 1 and of α63 = α11 = α2 + α+ 1, we find X3 +X2 −X + 1.

The irreducible polynomial of α5 = −α2 +α−1, which is also the irreducible polynomial of α15 = −α2

and of α45 = α19 = −α2−α−1 is the reciprocal polynomial of the previous one, namely X3−X2 +X+1.
Therefore

X13 + 1 = (X + 1)(X3 −X + 1)(X3 −X2 + 1)(X3 +X2 −X + 1)(X3 −X2 +X + 1).

The roots of X3 −X + 1 are α, α3, α9.
The roots of X3 −X2 + 1 are α25, α23, α17.
The roots of X3 +X2 −X + 1 are α7, α21, α11.
The roots of X3 −X2 +X + 1 are α19, α5, α15.
This gives the list of 12 generators of F×27.

The twelve elements of order 13 in F×27 are the roots of (X13 − 1)/(X − 1), where

X13 − 1 = (X − 1)(X3 −X − 1)(X3 −X2 − 1)(X3 −X2 −X − 1)(X3 +X2 +X − 1).

Exercise: list the three roots of each of the four factors of (X13 − 1)/(X − 1) over F3 (they are the 12
elements of order 13).
Hint: consider the change of variable x 7→ −x using −1 = α13.

Exercise 84. The field F16, quadratic extension of F4.
Write F4 = F2(j) with j root of X2 +X + 1.

(1) List the irreducible polynomials of degree 2 over F4.
(2) Decompose the 6 irreducible polynomials of F2 of degree 4 into irreducible factors of degree 2 over
F2.
(Explain why it should be so)
(3) Select a generator of F×16 and an irreducible polynomial of degree 2 over F4 of which α is a root in F16.
Write the discrete logarithm table of F×16 with basis α. For each of the 15 elements αk with 0 ≤ k ≤ 14,
tell which one is the irreducible polynomial of αk.
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Exercise 85. The field F64 is an extension of degree 6 of the prime field F2.
(a) List the subfields of F64.
(b) Decompose X64 − X into irreducible polynomials over F2. Check the correspondence between the
minimal subsets of Z/63Z which are stable under multiplication by 2 and the irreducible factors of X63−1
over F2.
(c) Which are the degrees of the elements α ∈ F64 with TrF64/F2

(α) = 0?

Exercise 86. Let Fq be a finite field with q elements of characteristic p. Show that the following
conditions are equivalent.
(i) Any element α in Fq such that Fq = Fp(α) is a generator of the cyclic group F×q .
(ii) The number q − 1 is a prime number.

4.5 Infinite Galois theory

Let p be a prime number. For each pair (n,m) of positive integers such that n divides m, there exists a
field homomorphism from Fpn into Fpm . Such a morphism is not unique if n < m: if we compose it with
the Frobenius over Fp, we get another one. For each n|m, we choose one of them, say ιn,m, which allow
us to consider Fpn as a subfield of Fpm .Then one checks that the union of the increasing family of fields
Fpn! is an algebraic closure of Fp.

Let Fp be an algebraic closure of Fp. The extension Fp/Fp is algebraic, infinite, normal and separable:
it is an infinite Galois extension. Its Galois group Gal(Fp/Fp) is the group of automorphisms of Fp. It is
the projective limit of the Galois groups of the finite extensions of Fp contained in Fp/Fp:

Gal(Fp/Fp) = lim←−
[L:Fp]<∞

Gal(L/Fp).

This group Gal(Fp/Fp) is

Ẑ := lim←−
n→∞

Z/nZ.

The projective limite is the set of (an)n≥1 in the Cartesian product
∏
n≥1 Z/nZ which satisfy snm(an) =

am for all pairs of positive integers (n,m) where m divides n, where

sn,m : Z/nZ −→ Z/mZ

lis the canonical surjective morphism.
We also have

Ẑ :=
∏
p

Zp with Zp = lim←−
r→∞

Z/prZ.

See, for instance, [3] exercise 19 p. 635. and [4] Appendice p. 288.

5 Error correcting codes

From http://en.wikipedia.org/wiki/Coding_theory

Coding theory is an approach to various science disciplines – such
as information theory, electrical engineering, digital communication,
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mathematics, and computer science – which helps design efficient
and reliable data transmission methods so that redundancy can be
removed and errors corrected.

Channel encoding adds extra data bits to make the transmission of
data more robust to disturbances present on the transmission chan-
nel.

Error detection is the ability to detect the presence of errors caused by noise or other impairments during
transmission from the transmitter to the receiver.
Error correction is the additional ability to reconstruct the original, error–free data.

5.1 Some historical dates

Among important dates are the following

• 1949: Marcel Golay (specialist of radars): produced two remarkably efficient codes.

• 1950: Richard W. Hamming, Error detecting and error correcting codes, The Bell System Technical
Journal 26 (April 1950), N◦ 2, 147–160.

• 1955: Convolutional codes.

• 1959: Bose Chaudhuri Hocquenghem codes (BCH codes).

• 1960: Reed Solomon codes.

• 1963 John Leech uses Golay’s ideas for sphere packing in dimension 24 - classification of finite simple
groups

• 1971: no other perfect code than the two found by Golay.

• 1970: Goppa codes.

• 1981: Algebraic geometry codes.

5.2 Hamming distance

The Hamming distance on the set Fnq is

d(x, y) = #{i ; 1 ≤ i ≤ n, xi 6= yi}

for x = (x1, . . . , xn) and y = (y1, . . . , yn). It satisfies, as it should with the name distance (see, for
instance, [1], Prop. 10.D),

d(x, y) = 0⇐⇒ x = y

and
d(y, x) = d(x, y)

for x and y in Fnq , as well as the triangle inequality for x, y and z in Fnq ,

d(x, z) ≤ d(x, y) + d(y, z).

We define the minimum distance d(C) of a code C ⊂ Fnq by

d(C) = min{d(x, y) ; x, y ∈ C, x 6= y}.
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The Hamming weight w(x) of an element of Fnq is its Hamming distance with 0: for x = (x1, . . . , xn):

w(x) = #{i ; 1 ≤ i ≤ n, xi 6= 0}.

Hence, for x and y in Fnq ,
d(x, y) = w(x− y).

For t a non–negative integer, the Hamming ball B(c, t) of center c ∈ Fnq and radius t is the set of
elements of Fnq having Hamming distance to c at most t:

B(c, t) = {x ∈ Fnq ; d(x, c) ≤ t}.

The number of elements in B(c, t) is 1 for t = 0, it is 1 + n(q − 1) for t = 1, and more generally

#B(c, t) = 1 +

(
n

1

)
(q − 1) + · · ·+

(
n

t

)
(q − 1)t for t ≥ 0. (87)

As usual,
(
a
b

)
is defined as 0 when a < b. For t ≥ n the formula (87) reduces to #B(c, n) = qn.

5.3 Codes

A code of length n on a finite alphabet A with q elements is a subset C of An. A word is an element of
An, a codeword is an element of C. We speak of a q-ary code as a reference to the number of elements of
the alphabet; it is a binary code for q = 2, a ternary code for q = 3.

Here we will assume A is a finite field Fq and C is a Fq–vector subspace of Fnq . A linear code over a
finite field Fq of length n and dimension d is a Fq–vector subspace of Fnq of dimension d (such a code is
also called a [n, d]–code). Its rate is defined as d/n, the number n− d is the redundancy.

A subspace C of Fnq of dimension d can be described by giving a basis e1, . . . , ed of C over Fq, so that

C = {m1e1 + · · ·+mded ; (m1, . . . ,md) ∈ Fdq}.

An alternative description of a subspace C of Fnq of codimension n−d is by giving n−d linearly independent
linear forms L1, . . . , Ln−d in n variables x = (x1, . . . , xn) with coefficients in Fq, such that

C = kerL1 ∩ · · · ∩ kerLn−d.

The sender replaces his message (m1, . . . ,md) ∈ Fdq of length d by the longer message m1e1 + · · ·+mded ∈
C ⊂ Fnq of length n. The receiver checks whether the message x = (x1, . . . , xn) ∈ Fnq belongs to C
by computing the n − d–tuple L(x) = (L1(x), . . . , Ln−d(x)) ∈ Fn−dq . If there is no error during the
transmission, then x ∈ C and L1(x) = · · · = Ln−d(x) = 0. On the opposite, if the receiver observes that
some Li(x) is non–zero, he knows that the received message has at least one error. The message with
was sent was an element c of the code C, the message received x is not in C, the error is ε = x− c. The
values of L(x) may enable him to correct the errors in case there are not too many of them. We give a
few examples.

For a linear code C, the minimum distance d(C) equals the minimal weight of a non–zero element in
C.

43



5.4 First examples

Trivial codes of length n are C = {0} of dimension 0 and C = Fnq of dimension n.
We now take q = 2 (binary codes).

Example 88. Repetition [2, 1] code detecting one error.
n = 2, d = 1, rate = 1/2.

C =
{

(0, 0), (1, 1)
}
, e1 = (1, 1), L0(x0, x1) = x0 + x1.

Example 89. Repetition [3, 1] code correcting one error.
n = 3, d = 1, rate = 1/3.

C =
{

(0, 0, 0), (1, 1, 1)
}
, e1 = (1, 1, 1),

L1(x) = x1 + x3, L2(x) = x2 + x3.

If the message which is received is correct, it is either (0, 0, 0) or (1, 1, 1), and the two numbers L1(x) and
L2(x) are 0 (in F2). If there is exactly one mistake, then the message which is received is either one of

(0, 0, 1), (0, 1, 0), (1, 0, 0),

or else one of
(1, 1, 0), (1, 0, 1), (0, 1, 1).

In the first case the message which was sent was (0, 0, 0), in the second case it was (1, 1, 1).
A message with a single error is obtained by adding to a codeword one of the three possible errors

(1, 0, 0), (0, 1, 0), (0, 0, 1).

If the mistake was on x1, which means that x = c + ε with ε = (1, 0, 0) and c ∈ C a codeword, then
L1(x) = 1 and L2(x) = 0. If the mistake was on x2, then ε = (0, 1, 0) and L1(x) = 0 and L2(x) = 1.
Finally if the mistake was on x3, then ε = (0, 0, 1) and L1(x) = L2(x) = 1. Therefore, the three possible
values for the pair L(x) = (L1(x), L2(x)) other than (0, 0) correspond to the three possible positions for
a mistake. We will see that this is a perfect one error correcting code (see the definition after Theorem
101).

More generally, for n ≥ 2 and d = 1 the repetition [n, 1] codeis the subspace generated by (1, 1, . . . , 1),
with only two elements. It is the intersection of the n− 1 hyperplanes which are the kernels of the linear
forms

x0 + x1, x0 + x2, . . . , x0 + xn−1

(for instance).

Example 90. Parity bit [3, 2] code detecting one error.
n = 3, d = 2, rate = 2/3.

C =
{

(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)
}

=
{

(m1,m2,m1 +m2) ; (m1,m2) ∈ F2
2

}
⊂ F3

2,

e1 = (1, 0, 1), e2 = (0, 1, 1), L1(x1, x2, x3) = x1 + x2 + x3.

This is the easiest example of the bit parity check.
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Example 91. A one error linear correcting [5, 2] code using the parity bit idea.
n = 5, d = 2, rate = 2/5.

C =
{

(0, 0, 0, 0, 0), (0, 1, 0, 1, 1), (1, 0, 1, 0, 1), (1, 1, 1, 1, 0)
}

=
{

(m1,m2,m1,m2,m1 +m2) ; (m1,m2) ∈ F2
2

}
⊂ F5

2,

e1 = (1, 0, 1, 0, 1), e2 = (0, 1, 0, 1, 1),

L1(x) = x1 + x3, L2(x) = x2 + x4, L3(x) = x1 + x2 + x5,

The possible values for the triple L(x) corresponding to a single error are displayed in the following table.

x x1 x2 x3 x4 x5

L(x) (1, 0, 1) (0, 1, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1)

Therefore, when there is a single error, the value of L(x) enables one to correct the error.
One may observe that a single error will never produce the triple (1, 1, 0) nor (1, 1, 1) for L(x): there

are 8 elements x ∈ F5
2 which cannot be received starting from a codeword and adding at most one mistake,

namely (x1, x2, x1 + 1, x2 + 1, x5), with (x1, x2, x5) ∈ F3
2.

Example 92. A one error correcting [6, 3] codeusing the parity bit idea.
n = 6, d = 3, rate = 1/2.

C =
{

(m1,m2,m3,m2 +m3,m1 +m3,m1 +m2) ; (m1,m2,m3) ∈ F3
2

}
=
{

(0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 1), (0, 1, 0, 1, 0, 1), (0, 1, 1, 1, 1, 0),
(1, 0, 0, 1, 1, 0), (1, 0, 1, 1, 0, 1), (1, 1, 0, 0, 1, 1), (1, 1, 1, 0, 0, 0)

}
⊂ F7

2,

e1 = (1, 0, 0, 0, 1, 1), e2 = (0, 1, 0, 1, 0, 1), e3 = (0, 0, 1, 1, 1, 0),

L1(x) = x2 + x3 + x4, L2(x) = x1 + x3 + x5, L3(x) = x1 + x2 + x6.

The possible values for the triple L(x) corresponding to a single error are displayed in the following table.

x x1 x2 x3 x4 x5 x6

L(x) (0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1)

Therefore, when there is a single error, the value of L(x) enables one to correct the error.
One may observe that a single error will never produce the triple (1, 1, 1) for L(x): there are 8 elements

x ∈ F5
2 which cannot be received starting from a codeword and adding at most one mistake, namely:

(x1, x2, x3, x2 + x3 + 1, x1 + x3 + 1, x1 + x2 + 1) with (x1, x2, x3) ∈ F3
2.

Example 93. Hamming [7, 4] binary code correcting one error.
n = 7, d = 4, rate = 7/4, corrects one error.

C is the set of
(m0,m0 +m1,m1 +m2,m0 +m2 +m3, ,m1 +m3,m2,m3) ∈ F7

2

45



where (m0,m1,m2,m3) ranges over F4
2. A basis of C is

e0 = (1, 1, 0, 1, 0, 0, 0), e1 = (0, 1, 1, 0, 1, 0, 0),
e2 = (0, 0, 1, 1, 0, 1, 0), e3 = (0, 0, 0, 1, 1, 0, 1)

and C is also the intersection of the hyperplanes defined as the kernels of the linear forms

L1(x) = x0 + x2 + x3 + x4, L2(x) = x0 + x1 + x2 + x5, L3(x) = x1 + x2 + x3 + x6.

This corresponds to the next picture from
http://en.wikipedia.org/wiki/Hamming_code

Hamming [7,4] code

The possible values for the triple L(x) corresponding to a single error are displayed in the following
table.

x x0 x1 x2 x3 x4 x5 x6

L(x) (1, 1, 0) (0, 1, 1) (1, 1, 1) (1, 0, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1)

This table gives a bijective map between the set {1, 2, 3, 4, 5, 6, 7} of indices of the unique wrong letter
in the word x which is received with a single mistake on the one hand, the set of values of the triple

L(x) = (L1(x), L2(x), L3(x)
)
∈ F3

2 \ {0}

on the second hand.
This is a perfect 1–error correcting code.
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Exercise 94. Let n ∈ {1, 2, 3, 4}. Among 2n playing cards, you select one without telling me which one
it is. I display some of them and I ask you whether the card you selected is one of them. You answer yes
or no.

1. How many questions should I ask in order to know which card you se-
lected?

2. Same problem, but now you are allowed to give me at most one wrong
answer, and I want to decide whether or not all you answers were right. If
you gave always the right answer, I want to know which card you selected.

3. Same problem, again you are allowed to give me at most one wrong answer,
but now, I want to know which card you selected, even if one of your
answers was wrong.

Exercise 95. Three people are in a room, each has a hat on his head, the colour of which is black or
white. Hat colours are chosen randomly. Everybody sees the colour of the hat of everyone else, but not
on one’s own. People do not communicate with each other. Everyone tries to guess (by writing on a piece
of paper) the colour of their hat. They may write: Black/White/Abstain.

The people in the room win together or lose together as a team. The team wins if at least one of
the three persons does not abstain, and everyone who did not abstain guessed the colour of their hat
correctly.

1. What could be the strategy of the team to get the highest probability of
winning? What is this probability?

2. Same questions with seven people.

5.5 Cyclic codes

A cyclic code C of length n over an alphabet with q elements is a Fq–vector subspace of Fnq such that, for
any (a0, a1, . . . , an−1) ∈ C, the element (an−1, a0, a1, . . . , an−2) also belongs to C.

The codes from Examples 88, 89 and 93 are cyclic, while the codes from Examples 90, 91 and 92 are
not cyclic.

We denote by T : Fnq −→ Fnq the linear map (right shift – T for translation2)

T (a0, a1, . . . , an−1) = (an−1, a0, . . . , an−2);

In the group of automorphism of the Fq–vector space Fnq , this element T satisfies Tn = I (the unit of
Aut(Fnq /Fq), namely the identity map). This is how the polynomial Xn − 1 comes into the picture.

Assume gcd(n, q) = 1. A natural basis of the Fq–space Fq[X]/(Xn−1) is given by the classes modulo
Xn − 1 of 1, X, . . . ,Xn−1. This gives a Fq–isomorphism

Ψ : Fnq −→ Fq[X]/(Xn − 1)
(a0, a1, . . . , an−1) 7−→ a0 + a1X + · · ·+ an−1X

n−1.

Hence,
Ψ ◦ T (a0, a1, . . . , an−1) = X(a0 + a1X + · · ·+ an−1X

n−1) mod (Xn − 1),

2The translation into French of shift is translation.
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which is Ψ ◦ T = XΨ. As a consequence, a subset C of Fnq is stable under the shift T if and only if Ψ(C)
is stable under multiplication by X in Fq[X]/(Xn − 1).

A vector subspace I of Fq[X]/(Xn − 1) is stable under multiplication by X if and only if I is an
ideal of the quotient ring Fq[X]/(Xn − 1). Furthermore, there is a bijective map between the ideals of
Fq[X]/(Xn−1) and the ideals of Fq[X] which contain Xn−1. Since the ring Fq[X] is principal, the ideals
containing Xn − 1 are the ideals (Q) generated by a divisor Q of Xn − 1. Given such an ideal, there is
a single generator Q which is monic. If r is the degree of Q, then the ideal of Fq[X]/(Xn − 1) generated
by the class of Q modulo Xn − 1 is a Fq–vector space of dimension d = n− r: a basis of (Q)/(Xn − 1) is
Q,XQ, . . . ,Xd−1Q. Also, the following sequence of Fq–linear maps is exact:

0 −→ (Q)

(Xn − 1)
−→ Fq[X]

(Xn − 1)
−→ Fq[X]

(Q)
−→ 0.

The dimensions of these three vector spaces are d, n and r respectively, with n = r + d, as it should.
Combining these results with Proposition 80, we deduce

Proposition 96. Given a finite field Fq and an integer n with gcd(n, q) = 1, there are bijective maps
between the following subsets.
(i) The cyclic codes C of length n over Fq.
(ii) The ideals I of Fq[X]/(Xn − 1).
(iii) The monic divisors Q of Xn − 1 in Fq[X].
(iv) The subsets I of Z/nZ which are stable under multiplication by q.
Under this correspondence, the dimension d of the code is the dimension of the Fq–vector space I, the
degree of Q is r = n− d, and the number of elements in I is r.

The code C is the set of (a0, a1, . . . , an−1) in Fnq such that a0 + a1X + · · · + an−1X
n−1 belongs to

I. The ideal I is the ideal generated by the class of Q modulo Xn − 1. The correspondence given by
Proposition 80 between I and Q depends on a choice of a primitive n–th root of unity ζ.

Here are some examples:

1. For the empty subset I = ∅ of Z/nZ, we have r = 0, d = n, Q∅(X) = 1,
I = (1) = Fq[X]/(Xn − 1) and C is the full [n, n] code Fnq .

2. For I = {0}, we have r = 1, d = n − 1, Q0(X) = X − 1, I = (X − 1), C
is the parity bit check [n, n − 1] codewhich is the hyperplane of equation
x1 + · · ·+ xn = 0 in Fnq .

3. For I = Z/nZ, we have r = n, d = 0, QI(X) = Xn − 1, I = (0) and C is
the trivial code {0}.

4. For I = (Z/nZ)×, we have r = ϕ(n) and QI(X) = Φn(X).

5. For I = (Z/nZ) \ {0}, we have r = n− 1, d = 1, QI is the divisor

Xn − 1

X − 1
= 1 +X + · · ·+Xn−1

of Xn−1, I is the ideal
(
(Xn−1)/(X−1)

)
of Fq[X]/(Xn−1) and C is the

repetition [n, 1] code {(a, a, . . . , a) ; a ∈ Fq} ⊂ Fnq , generalising Examples
88 and 89.
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6. If n is even, for I = {n/2}, we have QI(X) = X + 1, hence C is the
(n, n− 1) code which is the set of (a0, a1, . . . , an−1) ∈ C such that

a0 − a1 + a2 − · · ·+ an−2 − an−1 = 0.

7. For r a divisor of n and I = Cr the additive subgroup of Z/nZ of order r,
we have QI(X) = Xr − 1. The associated code C ⊂ Fnq is the intersection
of the r hyperplanes(a0, a1, . . . , an−1) ∈ Fnq |

(n/r)−1∑
i=0

aj+ir = 0 for j = 0, 1, . . . , r − 1


(see Exercise 98 (b)).

8. For m a divisor of n and I = Em the set of elements of order m in the
additive group Z/nZ, we have QI(X) = Φm(X) and r = ϕ(m). The code
C ⊂ Fnq is the set of (a0, a1, . . . , an−1) such that

a0 + a1ζ
jn/m + a2ζ

2jn/m + · · ·+ an−1ζ
(n−1)jn/m = 0

for j = 0, 1, . . . ,m− 1 with gcd(j,m) = 1.

Example 97. Take n = 4 and, of course, q odd. Here are some subsets I of Z/4Z which are stable under
multiplication by q, the associated polynomial QI , the degree r of QI and the dimension d = 4− r of the
associated code C ⊂ F4

q.

(1) (2) (3) (4) (5) (6, 8) (7)
I = ∅ {0} {0, 1, 2, 3} {1, 3} {1, 2, 3} {2} {0, 2}
QI = 1 X − 1 X4 − 1 X2 + 1 X3 +X2 +X + 1 X + 1 X2 − 1
r = 0 1 4 2 3 1 2
d = 4 3 0 2 1 3 2

For I = {1, 3} we have C = {(a0, a1, a0, a1) | (a0, a1) ∈ F2
q}.

For I = {0, 2} we have C = {(a0, a1,−a0,−a1) | (a0, a1) ∈ F2
q}.

Exercise 98.
(a) For q odd, write the code in F4

q associated with the subset I = {0, 1, 3} of Z/4Z.
(b) For q prime to n and r a divisor of n, let Cr be the cyclic subgroup of Z/nZ of order r. Write the
cyclic code in Fnq associated with the subset I = Cr of Z/nZ as an intersection of r hyperplanes with
coefficients in Fq.
(c) For q prime to n and ` a prime divisor of n, let E` be the set of elements of order ` in the additive
group Z/nZ. Write the cyclic code in Fnq associated with the subset I = E` of Z/nZ as an intersection
of `− 1 hyperplanes with coefficients in Fq.

5.6 Detection, correction and minimal distance

A transmission with at most t errors is a mapping f : C −→ Fnq such that for all c ∈ C,

d
(
f(c), c

)
≤ t.
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The error is ε(c) = f(c) − c. The message which is sent is c, a codeword, the message which is received
is f(c).

The first question is to detect if an error occurred, that means to detect whether ε(c) is zero or not.
A code C can detect t errors if for all c ∈ C,

B(c, t) ∩ C = {c}.

This means that for a transmission f : C −→ Fnq with at most t errors, f(c) ∈ C if and only if ε(c) = 0.
The receiver checks whether f(c) is in C or not (for instance, by using a check matrix H). If f(c) ∈ C,
if the code is t–error detecting and if the transmission had at most t errors, then ε(c) = 0: there was no
error.

A code C of length n over Fq can correct t errors (one also says that it is t–error correcting) if for all
x ∈ Fnq ,

#B(x, t) ∩ C ≤ 1.

This means that any transmission f : C −→ Fnq with at most t errors is injective: for all y ∈ f(C) there
is a single c such that y = f(c). After receiving y = f(c), knowing that the transmission had at most t
errors, the receiver computes the unique c for which d(y; c) ≤ t. Then he knows that f(c) = y and he
also knows the error ε(c) = f(c)− y.

Lemma 99. A code C of length n over Fq can detect t errors if and only if d(C) ≥ t+ 1. The code C can
correct t errors if and only if d(C) ≥ 2t+ 1.

Proof. The condition d(C) ≥ t+ 1 means that a word at Hamming distance at most t from an element c
of C and distinct from c does not belong to C. This is equivalent to saying that C can detect t errors.

For the second part of Lemma 99, assume first that d(C) ≥ 2t+ 1. Let x ∈ Fnq and let c1 and c2 in C
satisfy d(x, c1) ≤ t and d(x, c2) ≤ t. Then by the triangle inequality

d(c1, c2) ≤ 2t < d(C).

Therefore, c1 = c2.
Conversely, assume d(C) ≤ 2t: there is a non–zero element c in C with w(c) ≤ 2t, hence, c has at most 2t
non–zero components. Split the set of indices of the non–zero components of c into two disjoint subsets
I1 and I2 having each at most t elements. Next define x ∈ Fnq as the point having the same components
xi as c for i ∈ I1 and 0 for i not in I1. Then in the Hamming ball of center x and radius t there are at
least two points of C, namely 0 and c. Hence, C is not t–error correcting.

Proposition 100. For a [n, d] code C, the minimum distance is bounded by

d(C) ≤ n+ 1− d.

Proof. The subspace

V = {(x1, . . . , xn+1−d, 0, . . . , 0) ; (x1, . . . , xn+1−d) ∈ Fn+1−d
q }

of Fnq has dimension n+1−d, the sum of this dimension with the dimension d of C exceeds the dimension
n of the ambient space Fnq , hence, there is a non–zero element in the intersection. This is a non–zero
element of C with weight ≤ n+ 1− d.
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A [n, d] code Cfor which d(C) = n+ 1− d is called MDS (Maximal Distance Separable). Examples 88,
89 and 90 are MDS codes.

Hamming [7, 4] code (Example 93 and § 5.7) has minimum distance 3, hence, is not MDS.
From (87), we deduce Hamming’s bound on the error correcting capacity of a [n, d] code over Fq (see

[8] Theorem 3.3.1).

Theorem 101. For a [n, d] code C which is t–error correcting,

1 +

(
n

1

)
(q − 1) + · · ·+

(
n

t

)
(q − 1)t ≤ qn−d.

A t–error correcting code over Fq of length n is perfect if this upper bound is an equality, meaning
that Fnq is the disjoint union of the balls of radius t around the codewords in C.

For a perfect 1–error correcting [n, d] code over Fq, the union of the qd Hamming balls of radius 1
gives a packing of the set Fnq with qn elements, hence,

qd
(
1 + n(q − 1)

)
= qn.

We set d = n − r, so that n = (qr − 1)/(q − 1). One easily checks that the order of q modulo n is r.
According to Theorem 59, the polynomial Φn(X), splits into irreducible factors of degree r. Each of these
factors gives a cyclic code which is Hamming q-ary [n, d] code of length n and dimension d.

For instance, take q = 2. For r = 2 we have n = 3, d = 1 and this is the repetition [3, 1] code
{(0, 0, 0) , (1, 1, 1)} of Example 89. For r = 3 we have n = 7, d = 4 which are the parameters of
Hamming [7, 4] code considered in Example 93 and § 5.7.

5.7 Hamming codes

From http://en.wikipedia.org/wiki/Hamming_code

In telecommunication, a Hamming code is a linear error-correcting
code named after its inventor, Richard Hamming. Hamming codes
can detect up to two simultaneous bit errors, and correct single-bit
errors; thus, reliable communication is possible when the Hamming
distance between the transmitted and received bit patterns is less than
or equal to one. By contrast, the simple parity code cannot correct
errors, and can only detect an odd number of errors.

Hamming worked at Bell Labs in the 1940s on the Bell Model V
computer, an electromechanical relay-based machine with cycle times
in seconds. Input was fed in on punch cards, which would invariably
have read errors. During weekdays, special code would find errors
and flash lights so the operators could correct the problem. During
after-hours periods and on weekends, when there were no operators,
the machine simply moved on to the next job.

Hamming worked on weekends, and grew increasingly frustrated with
having to restart his programs from scratch due to the unreliability
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of the card reader. Over the next few years he worked on the prob-
lem of error-correction, developing an increasingly powerful array of
algorithms. In 1950 he published what is now known as Hamming
Code, which remains in use in some applications today.

Let Fq be a finite field with q elements and let r be a positive integer. Define

n =
qr − 1

q − 1
= 1 + q + q2 + · · ·+ qr−1.

Therefore, q is prime to n and the class of q in (Z/nZ)× has order r. The subset I = {1, q, q2, . . . , qr−1}
of Z/nZ is stable under multiplication by q. This defines a cyclic [n, d] code of length n and dimension
d = n− r over Fq.

Hamming [7, 4] binary code.
We first develop the special case already considered in Example 93, where r = 3, q = 2, hence, n = 7

and d = 4. We have seen in Example 67 that the decomposition of Φ7 over F2 is

Φ7(X) = (X3 +X + 1)(X3 +X2 + 1).

We choose Q(X) = 1 + X + X3. The vector of its coordinates in the basis 1, X,X2, X3, X4, X5, X6 is
e0 = (1, 1, 0, 1, 0, 0, 0) ∈ F7

2. Next define e1, e2 and e3 by taking the coordinates in the same basis of XQ,
X2Q, X3Q:

Q(X) = 1 +X +X3 e0 = (1, 1, 0, 1, 0, 0, 0),
XQ(X) = X +X2 +X4, e1 = (0, 1, 1, 0, 1, 0, 0) = Te0,
X2Q(X) = X2 +X3 +X5, e2 = (0, 0, 1, 1, 0, 1, 0) = Te1,
X3Q(X) = X3 +X4 +X6, e3 = (0, 0, 0, 1, 1, 0, 1) = Te2.

We have e1 = Te0, e2 = T 2e0, e3 = T 3e0, T 7 = 1.
The components of e0, e1, e2, e3 in F7

2 are the rows of the following matrix

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

The elements in the code C are the 16 elements

m0e0 +m1e1 +m2e2 +m3e3

with (m0,m1,m2,m3) ∈ F4
2. This subspace C of F7

2 has dimension 4, hence, it is an intersection of 3
hyperplanes. Let us recall how to find a basis of the Fq–vector space of linear forms vanishing on a
subspace V of Fn given by a basis with d elements. We write the d × n matrix whose rows are the
coordinates of the given basis. We add one further row with the variables x1, . . . , xn. By elementary
columns operations (replacing a column by its sum with a linear combination of the other columns, which
corresponds to the multiplication on the right by a regular n× n matrix), we get a matrix of the form(

Id 0 . . . 0
y1 y2 . . . yd yd+1 . . . yn

)
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where Id is the identity d × d matrix and y1, . . . , yn are linearly independent linear forms in x1, . . . , xn.
Then the (n − d)–tuple yd+1, . . . , yn is a basis of the space of linear forms vanishing on V . This can be
checked by reducing to the simple case of a hyperplane xn = t1x1 + · · · + tn−1xn−1 with d = n − 1 and
the matrix 

t1

In−1

...
tn−1

x1 x2 . . . xn−1 xn


We perform this process with the matrix G above: therefore, we introduce

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
x0 x1 x2 x3 x4 x5 x6

 .

Here is the last row of the successive matrices obtained by the triangulation process (we work over F2)

x0 x1 x2 x3 x4 x5 x6

x0 x1 + x0 x2 x3 + x0 x4 + x0 + x1 x5 x6

x0 x1 + x0 x2 + x0 + x1 x3 + x0 x4 + x0 + x1 x5 x6

x0 x1 + x0 x2 + x0 + x1 x3 + x1 + x2 x4 + x0 + x1 x5 + x0 + x1 + x2 x6

x0 x1 + x0 x2 + x0 + x1 x3 + x1 + x2 x4 + x0 + x2 + x3 x5 + x0 + x1 + x2 x6

x0 x1 + x0 x2 + x0 + x1 x3 + x1 + x2 x4 + x0 + x2 + x3 x5 + x0 + x1 + x2 x6 + x1 + x2 + x3

Hence, we introduce the three linear forms

L0(x) = x0 + x2 + x3 + x4

L1(x) = x0 + x1 + x2 + x5

L2(x) = x1 + x2 + x3 + x6.

H =

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

 (102)

The 7 column vectors are all the non–zero elements in F3
2. The product G · tH of G with the transpose

of H is the zero 4× 3 matrix.

Hamming [n, n− r] code with n = (qr − 1)/(q − 1).
The same construction can be performed in the general case of Fnq with n = (qr − 1)/(q − 1). Let Q

be an irreducible factor of Φn over Fq. Since q has order r modulo n, the degree of Q is r. The Hamming
[n, d] code of length n and dimension d = n− r over Fq is the code C associated to Q by Proposition 96:
it is the set of x = (x0, . . . , xn−1) ∈ Fnq such that Q(X) divides x0 + x1X + · · ·+ xn−1X

n−1 in Fq[X].
Let ζ be a root of Q (in a splitting field). Since Q divides Φn, ζ is a primitive n–th root of unity. The

code Cis the set of x = (x0, . . . , xn−1) ∈ Fnq such that
∑n−1
i=0 xiζ

i = 0. We have

Q(X) =
∏
i∈I

(X − ζi)

where I = {1, q, q2, . . . , qr−1}. The ideal I of Fq[X]/(Xn−1) generated by the class of Q modulo Xn−1
is the Fq–vector space of dimension d = n−r spanned by the classesmodulo Xn−1 of Q,XQ, . . . ,Xd−1Q.

53



Since ζ has degree r over Fq, given (mr, . . . ,mn−1) ∈ Fdq , there is a unique (m0, . . . ,mr−1) ∈ Frq, so
that

m0 +m1ζ + · · ·+mr−1ζ
r−1 = −mrζ

r − · · · −mn−1ζ
n−1.

From
∑n−1
i=0 miζ

i we deduce that c = (m0, . . . ,mn−1) ∈ Fnq is a codeword. In other words, the projection

Fnq → Fdq on the last d coordinates induces a bijective map C → Fdq .
Given x = (x0, . . . , xn−1) ∈ Fnq , if the sum

∑n−1
i=0 xiζ

i is nonzero and if c ∈ C satisfies d(x, c) ≤ 1, then
the error ε = x− c = (0, . . . , 0, εk, 0, . . . , 0) ∈ Fnq has its nonzero component in position k with

εkζ
k =

n−1∑
i=0

xiζ
i.

Since εkζ
k 6= εhζ

h for k 6= h, if there is such a c, it is unique. Now there are qd elements in the code, each
Hamming ball of radius 1 in Fnq contains 1 + n(q − 1) elements. We have qr − 1 = n(q − 1), the number

of elements in Fnq is qn = qd(n(q− 1) + 1), hence for each x ∈ Fnq there is a unique c ∈ C with d(x, c) ≤ 1:
the unit balls of radius 1 centred at the elements in the code give a partition of Fnq , which means that C
is a perfect 1–error correcting code.

The code C is the kernel of a linear map Fnq → Frq which is given by r independent linear forms in n
variables L0, . . . , Lr−1.

Let H be the r × n matrix, the rows of which are the components of the linear forms L0, . . . , Lr−1.
Any two rows of H are linearly independent over Fq. The columns of H define n elements of Fnq , no
two of them lie on the same line. In Frq, there are qr − 1 non–zero elements, each of them defines a line
(Fq–subspace of dimension 1) having q − 1 non–zero elements and, therefore, there are n lines in Frq,
which are the 1-dimensional subspaces spanned by the columns of H.

The tuple (L0(x), . . . , Lr−1(x)) takes qr different values when x ranges over Fnq , with qr = 1+n(q−1);
the value (0, . . . , 0) for this tuple corresponds to a code word, any of the other n(q − 1) values tells, for
an element x not in the code, the position i of the error x−m and the value of the coordinate mi for m
the unique element in the code at Hamming distance 1 of x.

5.8 Generator matrix and check matrix

Among many others, a reference for this section is [8], Chapter 3.
Given a linear [n, d] code Cover Fq, a generator matrix is a d×n matrix G with coefficients in Fq, the

rows of which are the components of a basis of C. The code is the set of elements mG where m ranges
over Fdq (viewed as a 1× d row vector). From the definition, it follows that G has rank d.

A check matrix is a (n−d)×n matrix H with coefficients in Fq, the rows of which are the components
of a basis of the space of linear forms vanishing on C. The code C is the set of elements c in Fnq such that
H · tc = 0, where t denotes the transposition, so that tc is a n× 1 column vector in Fnq . Therefore,

G · tH = 0

where G is a d× n matrix of rank d and H a r × n matrix of rank r = n− d.
The code is said to be in systematic form if H =

(
A Ir

)
, where Ir is the identity r× r matrix and A

is a r × d matrix.
Two codes are isomorphic if they have the same check matrix in suitable bases - for instance, the

two descriptions that we gave of the Hamming [7, 4] code in Example 93 and § 5.7 are isomorphic.
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5.9 Further examples

5.9.1 The binary Golay [23, 12] code

A perfect code with q = 2, n = 23, d = 12 and minimal distance 7 (hence, it is 3–error correcting but
not MDS) has been constructed by Golay as follows.

We have 211−1 = 23×89 = 2047, which is the smallest integer of the form Mp = 2p−1 with p prime
but which is not itself a prime (primes of the form Mp = 2p − 1 are called Mersenne primes). We take
the multiplicative subset I of (Z/23Z)× generated by 2, which is

I = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}.

The decomposition of Φ23 over F2 has been given in Exercise 72.
There are 212 codewords, for each of them the Hamming ball of radius 3 has(

23

0

)
+

(
23

1

)
+

(
23

2

)
+

(
23

3

)
= 1 + 23 + 253 + 1771 = 2048 = 211

elements, these balls are disjoint and the total number of elements in their union is 211212 = 223.

5.9.2 The ternary Golay [11, 6] code

An other perfect code constructed by Golay has the parameters q = 3, n = 11, d = 6 and minimal
distance 5 (it is 2–error correcting not MDS). We have 35 − 1 = 11 × 23. We take the multiplicative
subset I of (Z/11Z)× generated by 3, which is I = {1, 3, 4, 5, 9}. The decomposition of Φ11 over F3 has
been given in Exercise 71.

There are 36 codewords, for each of them the Hamming ball of radius 2 has(
11

0

)
+ 2

(
11

1

)
+ 22

(
11

2

)
= 1 + 22 + 220 = 243 = 35

elements, they are disjoint the total number of elements in F11
3 is 3635 = 311.

5.9.3 BCH (Bose–Chaudhuri–Hocquenghem) codes

Given a finite field Fq and an integer r, let n be a divisor of qr−1. Hence, the order of q modulo n divides
r. Let ζ ∈ Frq be a primitive n-th root of unity and let δ ≥ 2 be an integer. Consider the morphism of
rings

Fq[X]/(Xn − 1) −→ Fδ−1
q

P 7−→
(
P (ζj)

)
1≤j≤δ−1

The kernel is a cyclic q–ary code of length n and minimal distance δ, the generating polynomial is the
lcm of the minimal polynomials over Fq of the elements ζj , 1 ≤ j ≤ δ − 1: the subset I of Z/nZ is the
smallest subset containing {1, . . . , q} and stable under multiplication by q.
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5.9.4 Reed–Solomon code

The Reed–Solomon codes are special cases of BCH codes. Let q = 2m, n = q− 1 and let ζ be a primitive
n–th–th root of unity, that means a generator of F×q . For 1 ≤ d ≤ n the code associated with the subset
I = {1, 2, 3, . . . , n− d} of Z/nZ and to the polynomial

n−d∏
i=1

(X − ζi)

has dimension d and minimal distance q− d. This code is MDS; it is used in CD’s. This code is specially
efficient when errors occur often consecutively, since the words here have length m.

It is known that the only perfect codes are

• The trivial code with a single element 0.

• The full code Fnq .

• A binary repetition code with odd length (see [8] Exercise 3.12).

• For r ≥ 2, the q-ary Hamming code of length n = (qr− 1)/(q− 1), dimen-
sion n− r and minimal distance 3.

• The ternary Golay code over F3 of length 11, dimension 6 and minimal
distance 5.

• The binary Golay code over F2 of length 23, dimension 12 and minimal
distance 7.

5.10 Minimum distance of a code

We state two results which are useful tools to compute the minimum distance of a code. For the first
one, see [1], Prop. 11C.

Proposition 103. Let C be a linear code over Fq of length n with check matrix H and let s be a positive
integer. Then C has minimum distance ≥ s+1 if and only if any s columns of H are linearly independent
over Fq.

As a consequence, if any s columns of H are linearly independent over Fq, and if further there exists
s+ 1 columns of H which are linearly dependent over Fq, then d(C) = s+ 1. This enables one to check
that Hamming code has minimum distance 3. Indeed in the matrix (102) all rows are non–zero and
distinct (hence, any two rows are linearly independent over F2), but there are sets of three rows which
are linearly dependent. If we add a row with 1’s, then for the new matrix any sum of an odd number of
rows is non–zero, hence, any three rows are linearly independent. This means that we extend the code
of Hamming of lenth 7 to a code of length 8 by adding a parity check bit.

G =


1 1 0 1 0 0 0 1
0 1 1 0 1 0 0 1
0 0 1 1 0 1 0 1
0 0 0 1 1 0 1 1

 . H =


1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 1 1 1 1 1 1


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This code has, therefore, minimum distance 4, it cannot correct more than one error, but it can detect
up to 3 errors.

Hamming extended [8, 4] code

To any code C ⊂ Fnq we can associate an extended code C̃ ⊂ Fn+1
q by adding a parity bit:

C̃ = {(x1, . . . , xn+1) ∈ C × Fq ; (x1, . . . , xn) ∈ C, x1 + · · ·+ xn+1 = 0} ⊂ Fn+1
q .

One can check d(C) ≤ d(C̃) ≤ d(C).
A variant is to take the even subcode

C′ = {(x1, . . . , xn) ∈ C ; x1 + · · ·+ xn = 0} ⊂ Fnq .

Then d(C) ≤ d(C′).

Proposition 104. Let C be a cyclic linear code of length n over Fq associated with a subset I of Z/nZ
stable under multiplication by q. Assume that there exist i and s such that {i + 1, i + 2, . . . , i + s} ⊂ I.
Then d(C) ≥ s+ 1.

For instance, Hamming code is associated with the subset I = {1, 2, 4, . . . , 2r−1} of Z/nZ, with two
consecutive elements, hence, its distance is at least 3 (and here it is just 3).

6 Further exercises

Exercise 105. Latin squares
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Given n symbols z1, . . . , zn, a latin square of order n is a square n×n matrix with entries in {z1, . . . , zn}
such that each row contains each symbol exactly once, and each column contains each symbol exactly
once. Two latin squares of the same order (aij)1≤i,j≤n and (bij)1≤i,j≤n are orthogonal if the set of
couples (aij , bij) for 1 ≤ i, j ≤ n has n2 elements: they are the n2 elements (zh, zk), 1 ≤ h, k ≤ n.
(a) Check that a set of mutually orthogonal latin squares of order n has at most n− 1 elements.
(b) Let Fq be a finite field with q elements. Write Fq = {x0, x1, . . . , xq−1} with x0 = 0 and x1 = 1. check
that for s = 1, 2, . . . , q − 1,

As =
(
xixs + xj

)
0≤i,j≤q−1

, s = 1, 2, . . . , q − 1

are q − 1 mutually orthogonal latin squares of order q.
(c) Give an example of two mutually orthogonal latin squares of order 3 and an example of three mutually
orthogonal latin squares of order 4.
Remark. For each n ≥ 3 with n 6= 6, there exists a pair of orthogonal latin squares of order n. However
it is not known whether there exists an integer n which is not a power of a prime for which there exist
n− 1 mutually orthogonal latin squares of order n.

Exercise 106. (a) Write the decomposition of the polynomial X12 − 1 into irreducible factors over Z.
(b) Write the decomposition of the polynomial X12 − 1 into irreducible factors over the finite field F5

with 5 elements.
(c) How many elements are there in the splitting field over F5 of the polynomial X12 − 1?
(d) Let p be a prime number and Fp the finite field with p elements. What are the degrees of the
irreducible factors of X12 − 1 over Fp?

Exercise 107. (a) What are the degrees of the irreducible factors of the cyclotomic polynomials Φ5, Φ7

and Φ11 over F2? Over F3?
(b) Decompose the polynomial Φ15 into irreducible factors over F2.
(c) Is the polynomial X4 +X + 1 irreducible over F4? over F8?
(d) For each of the fields F2, F4, F8 and F16, give the list of irreducible cyclotomic polynomials.

Exercise 108. Let Fq the finite field with q elements. Show that the number of squarefree monic
polynomials in Fq[X] of degree n is 

1 for n = 0,

q for n = 1,

qn − qn−1 for n ≥ 2.

Exercise 109. Check that over the field F3 with 3 elements, the cyclotomic polynomial Φ728 splits into
a product of 48 irreducible factors, each of which has degree 6.

Exercise 110. Check that if α is any root of the polynomial X3 +X + 1 in characteristic 5, then 2α is
a primitive root of the cubic extension F53 of F5.

Exercise 111. Let Fq be a finite field with q elements of characteristic p.
(a) Let K be a field containing Fq and let ζ ∈ K satisfy ζq−1 = −1. Check ζ2 ∈ F×q .
(b) How many irreducible factors are there in the decomposition of the polynomial X2q−1 −X over Fq?

Which are their degrees?

Hint. Consider separately the case where p = 2 is even and the case where it is odd.
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Exercise 112. Given a finite field F with q elements, determine all integers n such that x 7→ xn is an
automorphism of F .

Exercise 113. (a) Let p and q be two prime numbers. Assume q divides 2p − 1. Check q ≡ 1 mod p.
(b) Let n be a positive integer and q a prime number. Assume that q divides 22n + 1. Check q ≡
1 mod 2n+1.

Exercise 114. Let p be a prime number and f ∈ Z[X] a polynomial. Check that the following conditions
are equivalent.

(i) For all a ∈ Z, f(a) ≡ 0 mod p.

(ii) There exist two polynomials g and h in Z[X] such that

f(X) = (Xp −X)g(X) + ph(X).

Exercise 115. Let p be a prime number Consider the endomorphism f of the multiplicative group
(Z/p2Z)× given by x→ xp:

f : (Z/p2Z)× −→ (Z/p2Z)×

x 7−→ xp

What are the image and kernel (and their number of elements)?

Exercise 116.
(a) Check that any element in GLn(Fq) has order ≤ qn − 1. Give an example where the order does not
divide qn − 1.
(b) Show that for A ∈ GLn(Fq), the following conditions are equivalent:
(i) A has order qn − 1
(ii) The subring Fq[A] of Matn×n(Fq) generated by A is a field and A is a primitive element in this field.
(iii) The characteristic polynomial det(XIn−A) ∈ Fq[X] of A is a primitive polynomial (see the definition
in Exercise 118).

Exercise 117. Let m ∈ Z, 1 ≤ m ≤ 12. Does there exist a domain A (commutative ring without zero
divisor) such that the group of units of A has m elements?

Exercise 118. Let Fq be a finite field and f ∈ Fq[X] be a monic irreducible polynomial with f(X) 6= X.

(a) Show that the roots α of f in Fp all have the same order in the multiplicative group F×p . We denote
this order by p(f) and call it the period of f .
(b) For ` a positive integer, check that p(f) divides ` if and only if f(X) divides X` − 1.
(c) Check that if f has degree n, then p(f) divides qn − 1. Deduce that q and p(f) are relatively prime.
(d) A monic irreducible polynomial f is primitive if its degree n and its period p(f) are related by
p(f) = qn − 1. Explain the definition.
(e) Recall that X2 +X + 1 is the unique irreducible polynomials of degree 2 over F2, that there are two
irreducible polynomials of degree 3 over F2:

X3 +X + 1, X3 +X2 + 1,

three irreducible polynomials of degree 4 over F2:

X4 +X3 + 1, X4 +X + 1, X4 +X3 +X2 +X + 1
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and three monic irreducible polynomials of degree 2 over F3:

X2 + 1, X2 +X − 1, X2 −X − 1.

For each of these 9 polynomials compute the period. Which ones are primitive?
(f) Which are the irreducible polynomials over F2 of period 15? Of period 5?

Exercise 119. Let Fp be the prime field with p elements and let ` be a prime number. Show that if
a ∈ Fp is not an `–th power in Fp, then x` − a is irreducible over Fp.

Exercise 120. (Galois Theorem) Let p be a prime number and P a polynomial of Fp[X] of degree n ≥ 1
such that P (0) 6= 0. The goal is to prove that there exist m < pn such that P divides Xm − 1.
(a) Using Euclidean division, show that there exists k with 1 ≤ k ≤ pn such that P divides Xk − 1.
(b) Show that one may select k < pn.
(c) Find the integer m < 8 such that X3 +X + 1 divides Xm − 1 in F2[X].

Exercise 121. Let u ∈ F×p . Denote by m the order of u in F×p . Set k = (p− 1)/m.
(a) Show that in the decomposition of the polynomial Xp−1 − u into irreducible polynomials over Fp, all
factors have degree m
(b) Show that there are k elements v1, . . . , vk in F×p such that vki = u.
(c) Write the the decomposition of the polynomial Xp−1 − u into irreducible polynomials over Fp.

Exercise 122. Decompose the polynomial Xp+1 − 1 into irreducible polynomials over Fp.

Exercise 123. How many (x, y) ∈ F2
8 are there satisfying

x3y + y3 + x = 0?

Exercise 124. For each of the following values of p (a prime number), r (a positive integer, q = pr) and
n a positive integer,
(1) Give the list of monic irreducible polynomials of degree n over the field Fq
(2) Select a primitive root of unity of order qn − 1 in Fqn and write the table of discrete logarithms of
basis α
(3) For each of the polynomials listed in (1), give the list of its roots in Fqn
(4) If r 6= 1, decompose each polynomials of degree rn over Fp into irreducible factors over Fq.

p r n
2 1 2
3 1 2
5 1 2
7 1 2
2 1 3
3 1 3
2 2 2
3 2 2
2 3 2

Exercise 125. Let Fq be a finite field with q elements of characteristic 6= 5. How many cyclic codes are
there on Fq of dimension 5? What are their dimensions?
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Exercise 126. Let r be a positive integer. Denote by nr the least positive integer such that 2n−r ≥ 1+n.
(a) Show that for n < nr there is no 1–error correcting code on F2n of dimension r.
(b) For each of the values r = 0, 1, 2, 3, 4, give an example of a 1–error correcting code on F2nr of dimension
r.

Exercise 127. What is the least positive integer n such that there exists a 1–error correcting code of
length n?

Exercise 128. Let f : F2
3 → F4

3 be the linear map

F (a, b) = (a, b, a+ b, a− b)

and C be the image of f .
(a) What are the length and the dimension of the code C? How many elements are there in C? List them.
(b) What is the minimum distance d(C) of C? How many errors can the code C detect? How many errors
can the code C correct? Is it a MDS code?
(c) How many elements are there in a Hamming ball of F4

3 of radius 1? Write the list of elements in the
Hamming ball of F4

3 of radius 1 centred at (0, 0, 0, 0).
(d) Check that for any element x in F4

3, there is a unique c ∈ C such that d(c, x) ≤ 1.
What is c when x = (1, 0,−1, 1)?

Exercise 129. Let Fq be a finite field with q elements. Assume q ≡ 3 mod 7. How many cyclic codes of
length 7 are there on Fq? For each of them describe the code: give its dimension, the number of elements,
a basis, a basis of the space of linear forms vanishing on it, its minimum distance, the number of errors
it can detect or correct and whether it is MDS or not.

Exercise 130. Let (Pi)i∈I be a family of polynomials with coefficients in Z. Show that the following
properties are equivalent.
(a) The Pi ’s have a common zero in C.
(b) There exists an infinite set of primes p such that the Pi ’s have a common zero in Fp.
(c) For every prime p, except a finite number, there exists a field of characteristic p in which the Pi’s
have a common zero.
Example with a family having a single element P . Show that for the polynomial P (X) = X2 − 5 there
are infinitely many p for which the congruence P (x) ≡ 0 mod p has a solution x ∈ Z and there are also
infinitely many p for which the congruence P (x) ≡ 0 mod p has no solution x ∈ Z.
Reference: Jean-Pierre Serre, How to use finite fields for problems concerning infinite fields,
http://arxiv.org/abs/0903.0517

Hint.

Let n be the number of variables.
(a) implies (b). Assume (a). Show that there is a number field K in which the Pi’s have a common
zero α ∈ Kn. Using Chebotarev density Theorem, show that there exist infinitely many prime numbers
p totally split in K such that the reduction of α modulo a prime ideal above p in K is well defined and
produces a common zero of the Pi’s in Fnp . Deduce (b).
(a) implies (c). Use the same argument but without the condition that p splits completely in K.
(b) or (c) implies (a). Assume that the Pi’s have no common zero in Cn. Using Hilbert Nullstel-
lensatz, deduce that the ideal of Z[X1, . . . , Xn] generated by the Pi’s contains a nonzero integer m. For
F a field of characteristic not dividing m, check that the Pi’s have no common root in Fn.
Remark. A special case (namely with a single polynomial P (X) = X2 − a) is quoted by Serre in his
Course in arithmetic, §4.4.
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7 Solutions of some Exercises

Solution to Exercise 4.
(a) For x and y in Z, the integer x2 + xy + y2 is congruent to 0 or 1 modulo 3.
(b) The group F×p is cyclic of order p− 1. It contains an element of order 3 if and only if p is congruent
to 1 modulo 3. Hence (i)⇔ (ii).

The equivalence with (iii) uses algebraic number theory – see for instance [S] §5.4.
(c) If p = x2 + xy + y2, then either p = 3 or p is congruent to 1 modulo 3.

For the converse, assume p is congruent to 1 modulo 3. Using (b), let t ∈ Z satisfy t2 − t + 1 ≡ 0
mod p. From Dirichlet’s box principle it follows that there exist x and y in Z such that 0 ≤ x <

√
p,

0 ≤ y < √p, (x, y) 6= (0, 0) and x ≡ ty mod p. From

−p < x2 − xy + y2 < 2p

with x2 − xy + y2 6= 0 we deduce x2 − xy + y2 = p.
Another proof is to use the fact that the ring of integers Z[j] of the quadratic field Q(j) is principal.

A generator of the ideal p can be written x+ jy with x and y in Z. Hence

p = (x+ yj)(x+ yj2) = x2 + xy + y2.

(d) The fact that a positive integer of the form 3bN1,3N
2
2,3 can be written x2 + xy + y2 follows from the

identity
(a2 + ab+ b2)(x2 + xy + y2) = u2 + uv + v2

with
u = ax− by, v = bx+ (a− b)y,

which expresses the fact that the norm from Q(j) to Q (where j2 + j + 1 = 0) of the product

(a+ bj)(x+ yj) = (ax− by) + (ay + bx− by)j

is the product of the norms of a+ bj and x+ yj.
For the converse, let n = x2 +xy+y2 and let p be a prime number 6= 3. Let s = vp(n) be the exponent

of p in the prime decomposition of n. Assume that s is odd. We need to show p ≡ 1 mod 3.
Let d be the gcd of x and y and let t = vp(d) be the exponent of p in the prime decomposition of d.

Write x = da, y = db with a and b relatively prime, so that n = d2m with m = a2 + ab + b2. Since s is
odd, the number vp(m) = s− 2t is ≥ 1. One at least of the two integers a, b is not multiple of p; it has
an inverse modulo p, and therefore there exists t in Z such that t2 + t + 1 is congruent to 0 modulo p.
From (c) we deduce that p is congruent to 1 modulo 3.

Solution to Exercise 6.
(1) Let a and b be two integers satisfying an+ bk = 1. For x ∈ G, we have xn = 1. Hence xk = 1 implies
x = (xn)a(xk)b = 1.
(2) If d divides n, G has a unique subgroup of order d and the elements x in this subgroup are the
solutions x ∈ G of the equation xd = 1.
In general, write an+ bk = d. Since xn = 1 for any x ∈ G, an element x ∈ G satisfies xk = 1 if and only
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if xd = 1. Hence the number of such x is d.
(3)
(i) ⇒ (iii) From (2), we deduce that if G is a cyclic group of order n, then for each divisor d of n, the
number of x ∈ G such that xd = 1 is d. If ζ is a generator of the cyclic group G, these d elements are
ζjn/d for j = 0, 1, . . . , d− 1.
(iii)⇒ (ii) is obvious.
(ii) ⇒ (i) Assume that G is a finite group of order n such that, for each divisor d of n, the number of
x ∈ G such that xd = 1 is ≤ d.

By Lagrange’s Theorem, any element in G has an order d dividing n; the order yields a partition of
G. When d is a divisor of n, denote by N(d) the number of elements of G of order d. Hence

n =
∑
d|n

N(d).

Let d | n. If N(d) ≥ 1, then G has at least one cyclic subgroup H of order d, all the elements x in this
subgroup H satisfy xd = 1, hence the hypothesis implies that there is a single cyclic subgroup of order
d. The elements in G of order d are the generators of H, therefore N(d) = ϕ(d). Therefore for any d
dividing n, the number N(d) is either 0 or ϕ(d). In any case N(d) ≤ ϕ(d). Using Lemma 5, we deduce

n =
∑
d|n

N(d) ≤
∑
d|n

ϕ(d) = n,

which implies N(d) = ϕ(d) for all d | n. In particular N(n) ≥ 1, which means that G is cyclic.

Solution to Exercise 7. (Following [9], § 10.2).
From the Chinese Remainder Theorem, it follows that for n = pe11 · · · perr , the multiplicative group
(Z/nZ)× is isomorphic to the product of the multiplicative groups (Z/peii Z)×, of orders pei−1(pi − 1).
If (Z/nZ)× is cyclic, then each of these factors is a cyclic group and their orders are pairwise relatively
prime. It follows that n is either a power of a prime (r = 1), or twice a power of an odd prime (r = 2,
p1 = 2, e1 = 1). It remains to show that (Z/2Z)×, (Z/4Z)×, (Z/peZ)× and (Z/2preZ)× are cyclic when
p is an odd prime and e ≥ 1, and that (Z/2eZ)× is not cyclic if e ≥ 3.

Clearly the groups (Z/2Z)× and (Z/4Z)×, of order 1 and 2 respectively, are cyclic.
For p an odd prime and for e ≥ 1 the groups (Z/peZ)× and (Z/2peZ)× are isomorphic of order

ϕ(pe) = pe−1(p− 1).
For p an odd prime number, the fact that (Z/pZ)× is cyclic follows from Proposition 19. Assume now

e ≥ 2. Let x ∈ Z be a primitive root of unity modulo p. The class of x modulo pe has an order which is
a multiple of p− 1, hence (Z/peZ)× contains a cyclic subgroup of order p− 1. From the congruences

(1 + p)p
j

≡ 1 + pj+1 mod pj+2

for j = 0, 1, . . . , e− 1, which are easy to check by induction, one deduces that the class of 1 + p modulo
pe has order pe−1. Hence (Z/peZ)× contains also a cyclic subgroup of order pe−1; it follows that it is
cyclic, as the direct product of two cyclic groups of relatively prime orders.

Finally we deal with (Z/2eZ)× for e ≥ 3. In the group (Z/8Z)×, the 3 elements 3, 5, 7 have order
2, hence this group is isomorphic the (additive) Klein group (Z/2Z) × (Z/2Z) of order 4, which is not
cyclic. In general, for e ≥ 3, using the congruences

52j = (1 + 4)2j ≡ 1 + 2j+2 mod 2j+3
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for j = 1, . . . , e − 2, we deduce that 5 has order 2e−2 modulo 2e and that 52e−3

is not congruent to −1
modulo 2e. It follows that (Z/2eZ)× is the direct product of a cyclic group of order 2 and a cyclic group
of order 2e−2, hence is not cyclic.

Solution to Exercise 10.
Let ϕ be the morphism of algebras A1[X1, . . . , Xn] → A2[y1, . . . , yn] which maps Xi to yi and whose
restriction to A1 is f . The kernel of ϕ is the set of polynomials P in A1[X1, . . . , Xn] such that the
polynomial Q ∈ A2[X1, . . . , Xn], image of P by the extension of f to A1[X1, . . . , Xn]→ A2[X1, . . . , Xn],
satisfies

Q(y1, . . . , yn) = 0.

The kernel of the morphism ψ : A1[X1, . . . , Xn] → A1[x1, . . . , xn], which maps Xi to xi and whose
restriction to A1 is the identity, is the set of polynomials P in A1[X1, . . . , Xn] such that P (x1, . . . , xn) = 0.
The result is that F exists if and only if kerψ ⊂ kerϕ.

Solution to Exercise 11.
See, for instance, [9] § 2.6.

Solution to Exercise 13.
(a) The kernel of the endomorphism x 7→ x2 of the multiplicative group F× is {±1}. If q is even,
that means in characteristic 2, we have −1 = +1, this endomorphism is an automorphism (namely the
Frobenius Frob2).

When q is odd, the kernel is a subgroup with 2 elements of F×, hence the image C, which is the set of
non–zero squares in F , has index 2 in F×: there are (q − 1)/2 squares and (q − 1)/2 nonsquares in F×.
Each square is a root of X(q−1)/2 − 1; therefore

X(q−1)/2 − 1 =
∏
x∈C

(X − x).

Since ∏
a∈F×

(X − a) = Xq−1 − 1 = (X(q−1)/2 − 1)(X(q−1)/2 + 1),

we deduce
X(q−1)/2 + 1 =

∏
x∈F×\C

(X − x).

(b) From (a) we deduce

X(p−1)/2 − 1 =
∏

a∈Fp, ( ap )=1

(X − a)

and
X(p−1)/2 + 1 =

∏
a∈Fp, ( ap )=−1

(X − a).

It follows that for a in Fp, (
a

p

)
= a(p−1)/2.
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Solution to Exercise 14.
(a) In a finite field Fq of characteristic 2, any element α satisfies αq = α, hence α = β2 with β = αq/2.
Therefore any element is a square (in a unique way since β2 = γ2 implies β = γ).
If a polynomial g ∈ Fq[T ] of degree < q/2 satisfies g(α) = α2, then the polynomial g(T )2 − T q/2 is non
zero, it has degree < q and vanishes on Fq, hence has q roots, which is not possible
(b) Assume q is odd and let g ∈ Fq[T ] satisfies g(α) = α2 for each α in Fq which is a square. There are
(q − 1)/2 non zero squares in Fq and (q + 1)/2 squares (including 0). Hence the polynomial g(T )2 − T
has (q + 1)/2 zeros in Fq. Since T is not a square in Fq[T ], this polynomial is not zero, hence its degree
is ≥ (q + 1)/2. Therefore g has degree ≥ (q + 1)/4.
(c) Assume q ≡ 3 mod 4. Let f(T ) = T (q+1)/4 and let α be a square in Fq, say α = β2 with β ∈ Fq.
From βq = β we deduce

f(α)2 = α(q+1)/2 = βq+1 = β2 = α.

(d) For each α ∈ Fq which is a square, select βα ∈ Fq such that α = β2
α. We claim that there exists a

polynomial f ∈ Fq[T ] of degree ≤ (q − 1)/2 which satisfies the (q + 1)/2 conditions f(α) = βα for the
(q + 1)/2 elements α ∈ Fq which are squares. Such a polynomial computes the squares.
Proof of the claim. More generally, given a field F , d + 1 distinct elements α0, α1, . . . , αd in F and
d + 1 elements β0, β1, . . . , βd in F , there is a unique polynomial f ∈ F [T ] which satisfies f(αi) = βi for
i = 0, . . . , d. Indeed, the linear map

Fq[T ]≤d −→ Fd+1
q

f 7−→ (f(αi))0≤i≤d

is injective, hence surjective.
Reference: [5]

Solution to Exercise 15.
Since 0 is a square, any square is the sum of two squares.

If F is a finite field of characteristic 2, the Frobenius x 7→ x2 is an automorphism of F , hence any
element is a square in a unique way.

Assume F is a finite field with odd characteristic and with q elements. Consider the partition F =
Q
⋃
N where Q is the set of squares and N the set of non squares.

According to Exercise 13, the squares in F are the roots of

X(X(q−1)/2 − 1) = X(q+1)/2 −X,

hence Q has (q + 1)/2 elements while N has (q − 1)/2 elements.
Let t ∈ F . The set t − Q has (q + 1)/2 elements with (q + 1)/2 > (q − 1)/2, therefore one at least

of these elements, say t− x with x ∈ Q, is not in N – hence it is in Q. Let y = t− x. We have written
t = x+ y as a sum of two squares.

Solution to Exercise 16.
The kernel of the endomorphism x 7→ xk of the cyclic multiplicative group F× is the set of k–th roots of
unity in F . According to Exercise 6 (ii), the number of its elements is gcd(k, q − 1), hence the number
of elements in Ck is

q − 1

gcd(k, q − 1)
·
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Solution to Exercise 17. The complex conjugates of
√

2 +
√

3 are ±
√

2±
√

3. A simple computation
yields

(X −
√

2−
√

3)(X −
√

2 +
√

3)(X +
√

2−
√

3)(X +
√

2 +
√

3)

= X4 − 10X2 + 1

= (X2 − 1)2 − 8X2

= (X2 + 1)2 − 12X2

= (X2 − 5)2 − 24.

Notice also that this polynomial is g(X2) where g(Y ) = Y 2 − 10Y + 1 has discriminant 96 = 426 and

roots 5± 2
√

6. Indeed,
√

2 +
√

3 =
√

5 + 2
√

6.
If 2 is a square in Fp, then

X4 − 10X2 + 1 = (X2 − 2
√

2X − 1)(X2 + 2
√

2X − 1).

If 3 is a square in Fp, then

X4 − 10X2 + 1 = (X2 − 2
√

3X + 1)(X2 + 2
√

3X + 1).

If neither 2 not 3 are squares in Fp, then 6 is a square and

X4 − 10X2 + 1 = (X2 − (5 + 2
√

6))(X2 − (5− 2
√

6)).

Solution to Exercise 18.
In a field F with q elements, any element x satisfies xq = x, hence xq − x+ 1 6= 0. This proves that F is
not algebraically closed.

Solution to Exercise 21. For each primitive root α modulo p, we give the table of the exponentials in
basis α, namely αn for n = 0, 1, . . . , p− 2. One can view the values of n modulo p− 1, while the values
of αn are modulo p. It is plain to deduce the table of the logarithms with respect to the primitive root
α. We give explicitly this table only for p = 31 and α = 3.

1. p = 2, α = 1

2. p = 3, α = 1 or α = 2.

3. p = 5, α = 2 or α = 3.

αn :
n = 0 1 2 3
α = 2 1 2 4 3
α = 3 1 3 4 2
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4. p = 7, α = 3 or α = 5.

αn
n = 0 1 2 3 4 5
α = 3 1 3 2 6 4 5
α = 5 1 5 4 6 2 3

5. p = 11

From 25 = 32 ≡ −1 (mod 11) it follows that 2 is a primitive root modulo
11 (a generator of the cyclic group F×11):

n =
2n =

0 1 2 3 4 5 6 7 8 9
1 2 4 8 5 10 9 7 3 6

We have ϕ(10) = 4, (Z/10Z)× = {1, 3, 7, 9}, the primitive roots modulo
11 are 2, 23 = 8, 27 = 7, 29 = 6.

To get the table of exponentials 8n we take the shift of the table for 2n by
3:

n =
8n =

0 1 2 3 4 5 6 7 8 9
1 8 9 6 4 10 3 2 5 7

To get the table of exponentials 7n we reverse the order of the table for
8n (since 7 = 8−1):

n =
7n =

0 1 2 3 4 5 6 7 8 9
1 7 5 2 3 10 4 6 9 8

To get the table of exponentials 6n we reverse the order of the table for
2n (since 6 = 2−1):

n =
6n =

0 1 2 3 4 5 6 7 8 9
1 6 3 7 9 10 5 8 4 2

6. p = 13

We have ϕ(12) = 4, the primitive roots modulo 13 are 2, 25 = 6, 27 = 11,
211 = 7.

The table of 2n for n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 is

n =
2n =

0 1 2 3 4 5
1 2 4 8 3 6

6 7 8 9 10 11
12 11 9 5 10 7

The table for 6n is obtained by shifting by 5 the table for 2n:

6n : 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11.
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The table for 11n is the reverse of the table for 6n:

11n : 1, 11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6.

The table for 7n is the reverse of the table for 2n:

7n : 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2.

7. p = 31

Since ϕ(30) = 8, there are 8 primitive roots modulo 31.

From 25 ≡ 1 (mod 31), it follows that 2 has order 5 in F×31, hence is not a
primitive root modulo 31.

A primitive root modulo 31 is 3. The table of 3n for n = 1, 2, . . . , 30 is
given by

n =
3n =

0 1 2 3 4 5 6 7 8 9
1 3 9 27 19 26 16 17 20 29

n =
3n =

10 11 12 13 14 15 16 17 18 19
25 13 8 24 10 30 28 22 4 12

n =
3n =

20 21 22 23 24 25 26 27 28 29
5 15 14 11 2 6 18 23 7 21

The primitive roots modulo 31 are

3, 37 = 17, 311 = 13, 313 = 24, 317 = 22, 319 = 12, 323 = 11, 329 = 21.

One checks indeed that the numbers

3× 21 = 63, 17× 11 = 187, 13× 12 = 156, 24× 22 = 528

are congruent to 1 modulo 31.

The table for 17n is the shift by 7 of the table for 3n, the table for 13n is
the shift by 4 of the table for 17n, the table for 24n is the shift by 2 of the
table for 13n, and we get the other tables by reversing the order.

The table of the discrete logarithms with respect to 3 modulo 31 is the
following (the first row is 3n modulo 31, the second row is n modulo 30):

1 2 3 4 5 6 7 8 9 10
0 24 1 18 20 25 28 12 2 14

11 12 13 14 15 16 17 18 19 20
23 19 11 22 21 6 7 26 4 8

21 22 23 24 25 26 27 28 29 30
29 17 27 13 10 5 3 16 9 15
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Solution to Exercise 28.
(a) Let n = ms + r with 0 ≤ r < m be the Euclidean division of n by m in Z, with quotient s and
remainder r. From

Xn − 1 = (Xms − 1)Xr +Xr − 1

we deduce that
Xn − 1 = (Xm − 1)S +Xr − 1

is the Euclidean division of Xn − 1 by Xm − 1 in Z[X], with quotient

S(X) =
Xms − 1

Xm − 1
Xr = Xm(s−1)+r +Xm(s−2)+r + · · ·+Xm+r +Xr

and remainder Xr − 1.
(b) For n = ms+ r, we deduce from (a) that

gcd(Xn − 1, Xm − 1) = gcd(Xm − 1, Xr − 1).

The result follows by induction on max{n,m}.
(c) From (a) we deduce that the remainder of the Euclidean division of an − 1 by am − 1 is ar − 1, and
from (b) that the gcd of an − 1 and am − 1 is ad − 1 where d = gcd(n,m). The result easily follows.

Solution to Exercise 32.
(a) (See Example 66).
(b) (See Example 67).
(c) (See Example 82).
(d) According to Example 82, we have

F4 = F2[Y ]/(Y 2 + Y + 1),

hence F4 = F2(j) where j2 = j + 1. Over F4 = F2(j), the polynomial X2 +X + j is irreducible.

Solution to Exercise 33.
(a) Irreducible polynomials over F2:

degree 1: X, X + 1
degree 2: X2 +X + 1 (see see Example 66)
degree 3: X3 +X + 1 and X3 +X2 + 1 (see Example 67)
degree 4: X4 +X + 1, X4 +X3 + 1, Φ5 (see Example 82)
degree 5: there are six of them: write P (0) 6= 0, P (1) 6= 0 and omit

(X2 +X + 1)(X3 +X + 1) = X5 +X4 + 1 and (X2 +X + 1)(X3 +X2 + 1) = X5 +X + 1.

Remain:
X2 + aX4 + bX3 + cX2 + (a+ b+ c+ 1)X + 1

with a, b, c in F2 omitting (1, 0, 0) and (0, 0, 0).
(b) Write F4 = {0, 1, j, j2}. The four irreducible polynomials of degree 1 over F4 are X, X − 1, X − j,
X − j2. For the 6 irreducible polynomials of degree 2 over F4, see Exercise 84.
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Solution to Exercise 35.
a) Let s : G→ G/N be the canonical surjective morphism of groups with kernel N . The restriction of s
to H has kernel H ∩N and image s(H) = (H +N)/N , hence

s(H) =
H +N

N
' H

H ∩N
·

Since s(H) is a subgroup of G/N , its order, which is the index of H ∩N in H, divides the order of G/N ,
which is the index of N in G.

If H ∩N = {1}, then the index of H ∩N in H is the order of H.
(b) We apply (a) with G the Galois group of the extension L/E1 ∩E2, which is a finite abelian group, H
the Galois group of L/E1 and N the Galois group of L/E2. The order of H is [L : E1] while the index
of N in G is [E2 : E1 ∩E2]. The conclusion follows from the remark that [E2 : E1 ∩E2] divides [E2 : K]:

L
H / \ N
E1 G| E2

\ /
E1 ∩ E2

|
K

c) Let Ea = F (α + β) ∩ F (α) and Eb = F (α + β) ∩ F (β). We apply (b) with L = F (α, β), K = F ,
E1 = F (α) or F (β), E2 = F (α+ β):

F (α, β)
/ \

Ea F (α+ β)
\ /

F

F (α, β)
/ \

F (α+ β) Eb
\ /

F

The first diagram shows that [F (α, β) : F (α + β)] divides [Ea : F ] = a, while the second diagram
shows that [F (α, β) : F (α + β)] divides [Eb : F ] = b, hence [F (α, β) : F (α + β)] = 1 and therefore
F (α, β) = F (α+ β).

Solution to Exercise 38.
Let r = [E : F ].
(a) If α = βq−β with β ∈ E, then from Tr(βq) = Tr(β) we deduce TrE/F (α) = TrE/F (βq)−TrE/F (β) = 0.

Conversely, assume TrE/F (α) = 0. Let β be a root of the polynomial Xq −X − α in an extension of
E (the number of roots of this polynomial is q). Then α = βq − β and

TrE/F (α) =α+ αq + · · ·+ αq
r−1

=(βq − β) + (βq − β)q + · · ·+ (βq − β)q
r−1

=(βq − β) + (βq
2

− βq) + · · ·+ (βq
r

− βq
r−1

) = βq
r

− β,
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hence βq
r

= β, which means that β is in E.
Here is another proof using the normal basis Theorem 34. Let γ ∈ E be such that γ, γq, γq

2

, . . . , γq
r−1

is
a basis of E as an F–vector space. Any α ∈ E can be written in a unique way

α = a0γ + a1γ
q + a2γ

q2 + · · ·+ ar−1γ
qr−1

,

with aj ∈ F (0 ≤ j < r). We have TrE/F (α) = (a0 + a1 + · · ·+ ar−1)TrE/F (γ). Since the trace is not the
zero map, we deduce TrE/F (γ) 6= 0.

Assume TrE/F (α) = 0: hence a0 + a1 + · · · + ar−1 = 0. We are looking for an element β ∈ E such
that α = βq − β; write

β = b0γ + b1γ
q + b2γ

q2 + · · ·+ br−1γ
qr−1

with bj ∈ F (0 ≤ j < r). From

βq − β = (br−1 − b0)γ + (b0 − b1)γq + (b1 − b2)γq
2

+ · · ·+ (br−2 − br−1)γq
r−1

,

it follows that the equation α = βq − β is equivalent to a linear system in b0, b1, b2, . . . , br−1:

b0 − b1 = a1, b1 − b2 = a2, . . . , br−2 − br−1 = ar−1, br−1 − b0 = a0.

Thanks to the assumption a0 + a1 + · · · + ar−1 = 0, this system has q solutions: given b0 ∈ F , the
corresponding solution (b0, b1, b2, . . . , br−1) ∈ F r is given by

bi = b0 − a1 − a2 − · · · − ai (i = 1, 2, . . . , r − 1).

(b) If α = βq−1 with β ∈ E×, then from βq
r

= β we deduce NE/F (α) = α(qr−1)/(q−1) = βq
r−1 = 1.

Conversely, assume NE/F (α) = 1. Let β be a root of the polynomial Xq−1 − α in an extension of E
(the number of roots is q − 1). Then α = βq−1 and

NE/F (α) = α(qr−1)/(q−1) = βq
r−1 = 1,

hence βq
r

= β and therefore β ∈ E.
Here is a variant of this proof. Assume α(qr−1)/(q−1) = 1. Let ζ be a generator of the cyclic group E×.
Write α = ζm, with 0 ≤ m ≤ qr − 1. Since ζ is of order qr − 1 and since ζm(qr−1)/(q−1) = 1, we deduce
that qr−1 divides m(qr−1)/(q−1), hence q−1 divides m. Therefore the q−1 roots β of the polynomial
Xq−1 − α belong to E.

Solution to Exercise 39.
(a) One readily checks that ur and tr are Fp linear, that ker(ur) = Fp and that im(tr) ⊂ Fp. The kernel

of tr has at most pr−1 elements (namely the roots of the polynomial X + Xp + · · · + Xpr−1

), hence the
image of tr is Fp, and this polynomial has pr−1 roots in Fq.

If α = ur(β) with β ∈ Fq, then

αp
j

= βp
j

− βp
j−1

for all j ≥ 1 and therefore

tr(α) = (βp − β) + (βp
2

− βp) + · · ·+ (βp
r

− βp
r−1

) = βp
r

− β = 0,
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from which one deduces im(ur) = ker(ur).
(b) The polynomial ∏

a∈Fp

(X +Xp + · · ·+Xpr−1

− a)

has degree pr, its derivative is 1 and its zeroes are the pr elements of Fq.
(c) Write q = pr so that Fp(γ) = Fq.
(i) If tr(γ) = 0, then γ ∈ im(ur) and the polynomial Xp −X − γ has a root α in Fq. In this case the p
roots of Xp −X − γ, namely α+ a, a ∈ Fp, are in Fq.
(ii) Assume tr(γ) 6= 0. Hence γ 6∈ im(ur) and the polynomial Xp −X − γ has no root in Fq. Let α be a
root in Ω. For ` ≥ 0 we have

αp
`

− α = γ + γp + · · ·+ γp
`−1

,

hence
αq − α = a

with a = TrFq/Fp(γ) ∈ Fp. From α 6∈ Fq we deduce αq 6= α, hence a 6= 0. It follows that the p elements

αq
j

= α+ ja (j = 0, 1, . . . , p− 1)

are pairwise distinct, hence [Fq(α) : Fq] = p.

Solution to Exercise 40.
Let q be the number of elements in F and n the degree of the extension E/F . Hence the field E has qn

elements. We have
NE/F (α) = α(qn−1)/(q−1).

If NE/F (α) has order < q − 1 in F×, then there exists an integer ` with 1 ≤ ` < q − 1 such that

NE/F (α)` = 1, hence α(qn−1)`/(q−1) = 1. Since

0 <
(qn − 1)`

q − 1
< qn − 1,

it follows that α has order < qn − 1 in E×.

Solution to Exercise 41.
(a) See Example 73.
(b) This is a special case of Exercise 40. Indeed, The norm over Fq of a+ ib ∈ Fq(i) is

a2 + b2 = (a+ ib)(a− ib) = (a+ ib)p+1,

hence if a+ ib is a primitive root in Fp2 then a2 + b2 is a primitive root in Fp.
Conversely, assume that a2 + b2 has order p− 1 in the multiplicative group F×p . If (a+ ib)m = 1, then

(a − ib)m = 1 and (a2 + b2)m = 1, therefore p − 1 divides m, which means that the order of a + ib is a
multiple of p− 1.

Also, we have
(a2 + b2)(p−1)/2 = (a+ ib)(p−1)(p+1)/2 = −1,

hence the order of a+ ib does not divide (p2 − 1)/2.
(c) Assume now that p is a Mersenne prime. Using the fact that p + 1 is a power of 2, we deduce that
the only multiple of p− 1 which divides p2 − 1 but does not divide (p2 − 1)/2 is p2 − 1 itself.
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Solution to Exercise 42.
(See also exercise 113).
(a) If a prime number p divides 2n + 1, then p is odd and 2 has order n+ 1 modulo p.
(b) We have 54 ≡ −24 mod 641 and 5 ≡ −2−7 mod 641, hence −24 ≡ 2−28 mod 641. Therefore
232 ≡ −1 mod 641.

Solution to Exercise 46.
(a) Recall that Euler totient function ϕ is a multiplicative arithmetic function: ϕ(ab) = ϕ(a)ϕ(b) when
gcd(a, b) = 1. For n = pr11 · · · prss where p1, . . . , ps are distinct odd primes and ri ≥ 1, we have

ϕ(n) = pr1−1
1 (p1 − 1) · · · prs−1

s (ps − 1),

while for the radical R of n we have

R = p1 · · · ps and ϕ(R) = (p1 − 1) · · · (ps − 1),

hence
Rϕ(n) = nϕ(R).

If ζ is a primitive root of unity of order n and if d divides n, then ζn/d is a primitive root of unity of
order d. If, further, dϕ(n) = nϕ(d), then the polynomial Φd(X

n/d) is monic, of degree ϕ(n) and vanishes
at the primitive n–th roots of unity; hence it is Φn(X). This completes the proof of (a).
(b) If ζ is a primitive root of unity of order pm1, then ζp is a primitive root of unity of order m1. Since
m1 and p are relatively prime, if ζ is a primitive root of unity of order m1, then ζp is also a primitive
root of unity of order m1. Now the polynomial Φm1

(Xp) has a simple zero at all primitive roots of unity
of order m and at all primitive roots of unity of order m1 and has the same degree as Φm(X)Φm1

(X),
namely pϕ(m1) = ϕ(m) + ϕ(m1); hence these two polynomials are the same.
(c) Denote by R1 the radical of m1. The radical of m is pR1. Using (a) and (b) we deduce

Φprm1
(X) = ΦpR1

(Xpr−1m1/R1) =
ΦR1(Xprm1/R1)

ΦR1
(Xpr−1m1/R1)

=
Φm1(Xpr )

Φm1
(Xpr−1)

·

(d) follows from (c).
(e) If n is odd, the map ζ 7→ −ζ is a bijective map from the set of primitive n-th roots of unity to the set
of primitive 2n-th roots of unity. Hence Φ2n(X) = Φn(−X) for n odd ≥ 3.

Assume now n is even. The relation Φ2n(X) = Φn(X2) follows from (c) (and also from (a)). Notice
that the map ζ 7→ ζ2 from µ2n to µn is a surjective homomorphism of kernel {±1}.
(f) We have Φ1(1) = 0. Assume now n ≥ 2. From

Xn−1 +Xn−2 + · · ·+X + 1 =
∏

d|n,d≥2

Φd(X)

we deduce ∏
d|n,d≥2

Φd(1) = n.

The von Mangoldt function is defined for n ≥ 1 as

Λ(n) =

{
log p if n = pr with p prime and r ≥ 1;

0 otherwise.
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It satisfies, for n ≥ 2, ∑
d|n,d≥2

Λ(d) = log n,

which means ∏
d|n,d≥2

eΛ(d) = n.

Since Φp(1) = p = eΛ(p) when p is prime, it follows by induction that

Φn(1) = eΛ(n)

for all n ≥ 2.
(g) We have Φ1(−1) = −2, Φ2(−1) = 0. Assume now n ≥ 3.

Assume first that n is odd. Using the formula

Xn − 1 = (X − 1)
∏

d|n,d≥3

Φd(X),

we deduce by induction Φn(−1) = 1.

Assume n is even, say n = 2rm where r ≥ 1 while m is odd. Then Φn(X) = Φ2m(X2r−1

). Hence
Φn(−1) = Φ2m(1) = eΛ(2m) = eΛ(n/2).

Solution to Exercise 50. Write the decomposition of n into prime factors

n = pa11 · · · p
ak
k .

We have
ϕ(n)

n
=

p1

p1 − 1
· · · pk

pk − 1
·

Set

λ = 1− log 4

log 5
,

so that
pi

pi − 1
≤ 5

4
≤ pλi for i ≥ 3.

Thus
ϕ(n)

n
≤ 3(p3 · · · pk)λ ≤ 2.341(p1 · · · pk)λ ≤ 2.341nλ,

so that
n ≤

(
3.341ϕ(n)

)1/(1−λ) ≤ 2.685ϕ(n)1.161

for all n ≥ 1.
Remark. It is known that for any ε > 0, there exists an integer n0 > 0 such that, for n ≥ n0,

n ≤ (eγ + ε)ϕ(n) log logϕ(n)

where γ is Euler’s constant. Equivalently,

ϕ(n) ≥ (e−γ − ε) n

log log n

for sufficiently large n.
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Solution to Exercise 54.
(a) Assume p does not divide m. We prove the relation in characteristic p:

Φprm(X) = Φm(X)ϕ(pr)

by induction on prm. We have
Xprm − 1 = (Xm − 1)p

r

. (131)

Writing a divisor of prm as pkd with d dividing m and 0 ≤ k ≤ r, using the induction hypothesis and
the equality

r∑
k=0

ϕ(pk) = pr,

we see that the left hand side of (131) is

∏
d|prm

Φd(X) =

r∏
k=0

∏
d|m

Φpkd(X)

= Φprm(X)

(
r−1∏
k=0

Φmpk(X)

) ∏
d|m,d 6=m

r∏
k=0

Φpkd(X)


= Φprm(X)

(
r−1∏
k=0

Φm(X)ϕ(pk)

) ∏
d|m,d 6=m

r∏
k=0

(Φd(X))ϕ(pr)


= Φprm(X)Φm(X)p

r−1 ∏
d|m,d 6=m

(Φd(X))p
r

while the right hand side of (131) is ∏
d|m

(Φd(X))p
r

.

This completes the proof of (a)
(b) If m = m1p

k with k ≥ 1 and gcd(m1, p) = 1, then

Φm(X) = Φm1pk(X) = Φm1
(X)p

k−pk−1

,

Φprm(X) = Φm1pr+k(X) = Φm1(X)p
r+k−pr+k−1

,

hence
Φprm(X) = Φm(X)p

r

.

Solution to Exercise 58.
(a) From (56) it follows that the number N2(n) of irreducible polynomials of degree n over F2 satisfies
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the following relations.

21 = N2(1), hence N2(1) = 2.

22 = 4 = N2(1) + 2N2(2), hence N2(2) = 1.

23 = 8 = N2(1) + 3N2(3), hence N2(3) = 2.

24 = 16 = N2(1) + 2N2(2) + 4N2(4), hence N2(4) = 3.

25 = 32 = N2(1) + 5N2(5), hence N2(5) = 6.

26 = 64 = N2(1) + 2N2(2) + 3N2(3) + 6N2(6), hence N2(6) = 9.

(b) and (c) The upper bound

Nq(n) ≤ 1

n
(qn − q)

for n > 1 can be checked as follows. On the one hand, each irreducible polynomial of degree n over Fq
has n roots in Fqn . On the other hand, since n > 1, the number of elements in Fqn having degree n over
Fq is ≤ qn − q; each of these elements has n conjugates over Fq. Therefore the number of roots in Fqn
of the irreducible polynomials of degree n over Fq is ≤ qn − q. It follows that the number of irreducible
polynomials of degree n over Fq is ≤ (qn − q)/n.

On the other hand from (56) we deduce

qn − nNq(n) =
∑

d|n,d<n

dNq(d) ≤
∑

d|n,d<n

qd ≤
∑

0≤k≤n/2

qk =
qbn/2c+1 − 1

q − 1
< qbn/2c+1.

Hence

Nq(n) >
qn − qbn/2c+1

n
·

(See also [9], Theorem 19.10).
(d) As soon as

qn ≥ 4qn/2,

more than half of the elements α in Fq satisfy Fq = Fp(α).
(e) There are qn monic polynomials of degree n in Fq[X]. Since

lim
qn→∞

nNq(n)

qn
= 1,

the number Nq(n) of monic irreducible polynomials of degree n in Fq[X] is asymptotically qn/n.

Solution to Exercise 62.
From Corollary 61 it follows that the polynomial Xq − 1 = (X − 1)Φq(X) splits completely in the finite
field Fp if and only if p is congruent to 1 modulo q, in which case p is a square modulo q. Using the
Legendre reciprocity law and the assumption that at least one of p, q, is congruent to 1 modulo 4, we
deduce that q is a square modulo p, hence that X2 − q splits in Fp.
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Solution to Exercise 64.
(a) Over a field of characteristic 2, Φ8(X) = X4 + 1 = (X + 1)4 splits into linear factors.

Let Fq be a finite field of odd characteristic. Over Fq, the cyclotomic polynomial Φ8 splits into
irreducible factors, all of the same degree d, which is the order of q modulo 8. The number q2 − 1 =
(q − 1)(q + 1) is a multiple of 8 (each of q − 1 and q + 1 is even, one of them is divisible by 4). Hence
q2 ≡ 1 mod 8, which proves that the order d of q mod 8 is 1 or 2.

Notice that d = 1 if and only if q ≡ 1 mod 8. Indeed, F×q contains a subgroup of order 8 if and only
8 divides q − 1. Hence d = 2 for q congruent to 3, 5 or 7 modulo 8.

For q = pr with p an odd prime, over Fq the polynomial Φ8 splits into 4 linear factors if either p ≡ 1
mod 8 or r is even, and into 2 irreducible quadratic factor if p is congruent to 3, 5 or 7 modulo 8 and r
is odd.
(b) Over F2 we have Φ12(X) = (X2 +X + 1)2, the square of an irreducible quadratic polynomial. Hence
over F2r the polynomial Φ12 splits into 4 linear factors if r is even, into 2 irreducible quadratic factor if
r is odd.

Over F3 we have Φ12(X) = (X2 + 1)2. Hence over F3r the polynomial Φ12 splits into 4 linear factors
if r is even, into 2 irreducible quadratic factor if r is odd.

For p ≥ 5, the product (q − 1)(q + 1) is divisible by 12. Since 5, 7, 11 have order 2 modulo 12, the
polynomial Φ12 splits into 4 linear factors in Fq when q ≡ 1 mod 12 and is a product of 2 irreducible
quadratic factors otherwise.

Solution to Exercise 68.
The field F8 is a cubic extension of F2 (see Example 67). Let ζ be a root of the polynomial X3 +X + 1 ∈
F2[X], so that F8 = F2(ζ) and

F8 = {a+ bζ + cζ2 | (a, b, c) ∈ F3
2}.

The group F×8 is cyclic of order 7, there are 6 generators (primitive roots in F8), namely

{ζ, ζ2, ζ + ζ2, 1 + ζ, 1 + ζ2, 1 + ζ + ζ2}.

The table of exponentials in F×8 with respect to ζ is

n = 0 1 2 3 4 5 6
ζn = 1 ζ ζ2 1 + ζ ζ + ζ2 1 + ζ + ζ2 1 + ζ2

and this gives the table of discrete logarithms with respect to ζ, since n = Indζ(ζ
n). In the same way we

deduce the following table for Indζnγ:

γ = 1 ζ ζ2 1 + ζ 1 + ζ2 ζ + ζ2 1 + ζ + ζ2

n = 1 0 1 2 3 6 4 5
n = 2 0 4 1 5 3 2 6
n = 3 0 5 3 1 2 6 4
n = 4 0 2 4 6 5 1 3
n = 5 0 3 6 2 4 5 1
n = 6 0 6 5 4 1 3 2

Given m ∈ {1, 2, 3, 4, 5, 6} and γ ∈ F×8 with γ 6= 1, there is a unique n modulo 7 such that Indζnγ = m,
i.e. such that ζnm = γ.
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Solution to Exercise 70.
The field F9 is a quadratic extension of F3 (see Example 69). Since ϕ(8) = 4, there are 4 primitive roots
in F9. Let i ∈ F9 be a root of X2 + 1 and let ζ = 1 + i, so that

ζ = 1 + i, ζ2 = −i, ζ3 = 1− i, ζ4 = −1, ζ5 = −1− i, ζ6 = i, ζ7 = −1 + i.

The roots in F9 of the polynomial X2 +X − 1 ∈ F3[X] are ζ and ζ3. Let η = −1 + i, so that η = ζ7 and
η3 = ζ5 = −1− i. The roots in F9 of the polynomial X2 −X − 1 ∈ F3[X] are η and η3. The 4 primitive
roots in F9 are ζ, ζ3, η, η3.

The table of discrete logarithms in F9 is the following

γ = 1 −1 i −i 1 + i −1 + i 1− i −1− i
Indζγ = 0 4 6 2 1 7 3 5
Indζ3γ = 0 4 2 6 3 5 1 7
Indηγ = 0 4 2 6 7 1 5 3
Indη3γ = 0 4 6 2 5 3 7 1

Solution to Exercise 71.
From

35 = 243 = 22× 11 + 1

we deduce that the class of 3 has order 5 modulo 11. Hence Φ11, which has degree ϕ(11) = 10, splits into
two irreducible polynomials of degree 5 over F3:

Φ11(X) = f(X)g(X)

where

f(X) = X5 +X4 −X3 +X2 − 1 and g(X) = X5f(1/X) = X5 −X3 +X2 −X − 1.

Solution to Exercise 72.
The group (Z/23Z)× is cyclic of order 22, the elements have order 1, 2, 11 or 22. Clearly 2 is not of order
1 nor 2. Compute 211 modulo 23:

26 = 64 ≡ −5 (mod 23), 29 ≡ −40 (mod 23), 210 ≡ 12 (mod 23),

hence 211 ≡ 1 (mod 23) and 2 has order 11 modulo 23. It follows that Φ23, which has degree ϕ(23) = 22,
is the product of two polynomials of degree 11 over F2.

Solution to Exercise 75.
(Compare with 64).
(a) The polynomial Φ8(X) = X4 +1 has no root in Q and is not the product of two degree 2 polynomials.
Hence it is irreducible over Q.
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We have seen in Exercise 64 that over F2, X4 + 1 = (X + 1)4 splits into linear factors, while over
Fp with p an odd prime, Φ8 splits into 4 linear factors if p ≡ 1 mod 8 and into 2 quadratic factors if
p ≡ 3, 5, 7 mod 8. Hence X4 + 1 is always reducible over Fp.

The same for Φ12(X) = X4 −X2 + 1.
(b) If a polynomial of degree > 1 were irreducible modulo p for each p, then its values at the integers
would be only ±1, which is not possible.

Solution to Exercise 76.
Let p be a prime divisor of n = x4 + y4. If p4 does not divide n, then p does not divide xy, hence in Fp
there is an element t such that t4 = −1. This t has order 8 in F×p , hence 8 divides p− 1.

Solution to Exercise 78.
The group (Z/15Z)× is a product C2×C4 of a cyclic group of order 2 by a cyclic group of order 4, hence
there are 4 elements of order 4 (namely the classes of 2, 7, 8, 13) and 3 elements of order 2 (namely the
classes of 4, 11 and 14).

Since the group (Z/15Z)× is not cyclic, Φ15 is always reducible over Fq.
If gcd(15, q) = 1, then Φ15 decomposes over Fq into a product of

• 8 factors of degree 1 if q ≡ 1 (mod 15),
• 4 factors of degree 2 if q ≡ 4, 11, 14 (mod 15),
• 2 factors of degree 4 if q ≡ 2, 7, 8, 13 (mod 15).

In characteristic 3, Φ15(X) = Φ5(X)2. Recall Example 77. Since 3 has order 4 modulo 5, if q = 3r,
then over Fq, the polynomial Φ5

• splits into 4 linear factors if r ≡ 0 (mod 4) (hence Φ15 splits completely),
• splits into 2 factors of degree 2 if r ≡ 2 (mod 4) (hence Φ15 splits into 4 quadratic factors),
• is irreducible if r ≡ 1 or 3 (mod 4) (hence Φ15 splits into 2 factors of degree 4).

In characteristic 5, Φ15(X) = Φ3(X)4. Assume q = 5r. If r is odd, then over Fq, the polynomial Φ3

is irreducible and Φ15 splits into 4 quadratic factors, while if r is even, then over Fq, the polynomial Φ3

splits into two linear factors and Φ15 splits completely into 8 linear factors.

Solution to Exercise 79.
(a) The kernel of the homomorphism of multiplicative groups f : F×q2 −→ F×q2 which maps x to xq−1 is

F×q , it has q − 1 elements; the image of f is the set of roots of Xq+1 − 1, it has q + 1 elements.
(b) Since the image of f has q+ 1 elements, there exists γ ∈ Fq2 in the image of f , say γ := αq−1, which
is not in Fq. The two elements 1 and αq−1 are lineary independent over Fq, which means (since α 6= 0)
that (α, αq) are linearly independent over Fq.

Solution to Exercise 84.
Write F4 = {0, 1, j, j2} with j2 + j + 1 = 0. There 16 elements in F16, two of degree 1 over F2 (the
elements of F2), two of degree 2 (the elements of F4 \ F2) and 12 of degree 4 (the elements of F16 \ F4).
In the cyclic group F×16 of order 15 there are ϕ(15) = 6 elements of order 15, ϕ(5) = 4 elements of order
5 (namely the roots of Φ5), 2 elements of order 3, namely j and j2.

The 12 elements of F16 of degree 4 over F2 have degree 2 over F4. Among them, there are 8 elements
of order 15 and 4 elements of order 5 in the group F×16. The 4 elements of order 5 are the roots of Φ5

which is irreducible over F2 and which splits into 2 quadratic factors over F4. The 6 irreducible quadratic
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polynomials of F4[X] come in pairs of conjugate polynomials over F2 (notice that Frob2 permutes j and
j2):

X2 + jX + 1, X2 + j2 + 1

X2 +X + j, X2 +X + j2,

X2 + jX + j, X2 + j2X + j2.

Notice that
(A+ jB)(A+ j2B) = A2 +AB +B2,

hence

(X2 + jX + 1)(X2 + j2 + 1) = X4 +X3 +X2 +X + 1 = Φ5(X),

(X2 +X + j)(X2 +X + j2) = X4 +X + 1,

(X2 + jX + j)(X2 + j2X + j2) = X4 +X3 + 1.

These products are the three irreducible polynomials of degree 4 over F2.

Let α be a root of X2 +X + j. The other is α4.
Taking the conjugate over F2, we deduce that the roots of X2 + X + j2 are α2 and α6. The roots

of X2 + j2X + j2 are α−1 and α−4. Again, taking the conjugate over F2, we deduce that the roots of
X2 + jX + j are α−2 and α−6

The 4 elements of order 5 are α3, α12 (they are conjugate) and α6, α9 (they are conjugate).
We have

α2 = α+ j, α3 = α+ j + jα, α6 = jα,

hence α3 and α12 are the roots of X2 + j2X + 1, while α6, α9 are the roots of X2 + jX + 1.

Solution to Exercise 85.
(a) The divisors of 6 are 1, 2, 3 and 6, Hence F26 has four subfields, F2, F22 = F4, F23 = F8 and F64 = F26 .
(b) Since 63 = 32 · 7, the divisors of 63 are 1, 3, 7, 9, 21 and 63, and the decomposition of X64 −X into
irreducible polynomials over Z is

X64 −X = XΦ1(X)Φ3(X)Φ7(X)Φ9(X)Φ21(X)Φ63(X).

The degrees are respectively 1, 1, 2, 6, 6, 12, 36, the total of which is 64. Over F2, there is one irreducible
polynomial of degree 2, there are two irreducible polynomials of degree 3 and nine of order 6 (cf Exercise
58).

The zeroes of X4 −X = XΦ1(X)Φ3(X) are the elements of F4, the polynomial Φ3 is irreducible of
degree 2 over F2.

The zeroes of X8−X = XΦ1(X)Φ7(X) are the elements of F8, the polynomial Φ7 splits over F2 into
a product of two polynomials of degree 3:

X6 +X5 +X4 +X3 +X2 +X + 1 = (X3 +X2 + 1)(X3 +X + 1).

There are 54 zeroes of Φ9(X)Φ21(X)Φ63(X) in F64, each has degree 6 over F2, hence is a primitive element
of F64 over F2. Therefore this polynomial splits into 9 irreducible polynomials over F2, each of degree 6.
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The roots of Φ9 are the 6 primitive roots of order 9, the roots of Φ21 are the 12 primitive roots of order
21, the roots of Φ63 are the 36 primitive roots of order 63, namely the generators of the cyclic group F×63.

Finally X64 −X has
- two factors of degree 1, namely X and X + 1;
- one factors of degree 2, namely X2 +X + 1 which is Φ3;
- two factors of degree 3, namely X3 +X2 + 1 and X3 +X + 1, which are the two factors of Φ7;
- nine factors of degree 6, one of which is Φ9(X) = X6 +X3 + 1, two of which are the two factors of Φ21,
and the six others are the factors of Φ63.

The nonempty minimal subsets of Z/63Z which are stable under multiplication by 2 are

{0}
{21, 42}
{9, 18, 36}
{27, 45, 54}

and 9 subsets having 6 elements each.
(c) Altogether in F64 there are 32 elements of trace 0 and 32 elements of trace 1. Since [F64 : F8] = 2 is
even, the 8 elements α ∈ F8, have TrF64/F2

(α) = 0. The two elements in F4 not in F2 have trace 1. Hence
in F64 \ (F8 ∪ F4) there are 32− 8 = 24 elements of trace 0 and 32− 2 = 30 elements of trace 1.

The roots of X6 + X3 + 1 have trace 0. Among the 12 roots of Φ21, six have trace 0 and six have
trace 1. Two of the six factors of Φ63 have trace 0 and four have trace 1.

Solution to Exercise 86.
Write q = pr. If q − 1 is a prime number, then q − 1 is a Mersenne prime, the characteristic p is 2 and r
is prime. Since [Fq : F2] = r is prime, any element in Fq \F2 is a generator of the extension Fq/F2. Since
F×q is a cyclic group of prime order, any element in Fq \ F2 is a generator of the cyclic group F×q .

Conversely, assume that any element α in Fq such that Fq = Fp(α) is a generator of the cyclic group
F×q . Since ϕ(p − 1) < p, we have r ≥ 2. The number of generators of the cyclic group F×q is ϕ(N) with
N = q − 1. Using the notation and the results of Exercise 58, we deduce that the number of elements
in Fq of degree r over Fp is rNp(r) and satisfies rNp(r) > N/2. By assumption rNp(r) = ϕ(N), hence
ϕ(N) > N/2. Therefore N is odd and consequently the characteristic p is 2.

If N = 2r − 1 is not prime, then
ϕ(N) ≤ N − b

√
Nc.

Indeed, N has a prime factor ≤
√
N , hence there are at least b

√
Nc integers in [1, N ] which are not prime

to N .
On the other hand, according to Exercise 58, the number of elements in F2r of degree r over F2 is

rN2(r) and satisfies
rN2(r) ≥ 2r − 2 · 2r/2.

Recall the assumption rN2(r) = ϕ(N). We do not yet deduce the desired contradiction, but we can
improve one at least of these inequalities.

If r is odd, the solution of Exercise 58 provides a refinement of this last inequality, namely

rN2(r) ≥ 2r − 2 · 2r/3.
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If r is even, r = 2k, then N = (2k − 1)(2k + 1) has at least one prime divisor ≤
√

2k + 1 (notice that for
k ≥ 3 one at least of the two numbers 2k − 1, 2k + 1 is composite). In this case

ϕ(N) ≤ N − b 4
√
N + 1c.

These estimates are sufficient to complete the proof.

Solution to Exercise 94.

1. Given 2n card, label them starting from 0 to 2n − 1; write the labels in
binary form. Ask n questions, for the k–th one, display the cards having
a label with 1 for the k–th binary digit. The sequence of yes and no gives
you the binary expansion of the answer, with the digit 1 for yes and 0 for
no.

2. In order to detect a wrong answer, ask one more question using the parity
bit. The number of questions is n+ 1.

3. In order to correct a wrong answer, use an error correcting code.
• For n = 1 and 2 cards, ask 3 questions using the repetition code (display
the same card 3 times). The corresponding error correcting code is the
repetition [3, 1] code (Example 89).
• For n = 2 and 4 cards, ask 5 questions: repeat twice the two questions
which give the solution when there is no wrong answer, and for the last
one use the parity bit. The corresponding error correcting code is the [5, 2]
code of Example 91.
• For n = 3 and 8 cards, ask 6 questions: questions 1,2,3 are the ones which
give the solution when there is no wrong answer, the next 3 questions are
the parity bits between questions (1 and 2), (2 and 3), (1 and 3). The
corresponding error correcting code is the [6, 3] code of Example 92.

.
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• For n = 4 and 16 cards, ask 7 questions only using Hamming [7, 4] code
(Example 93).

The optimality is proved by counting the number of Hamming balls of radius 1 and the number of
points in each such ball.

Solution to Exercise 95.

1. The idea is to use the repetition [3, 1] code (Example 89).

With three people, one solution is that the team bets that the three colours
are not the same. When they see twice the same colour on the heads of
the two other people, they bet that their own hat is not of that colour. If
they see two different colours, they abstain.

There are 8 possible distributions of the colours, two of them where the
hats have all the same colours (white–white–white or black–black–black);
in this case they all bet the wrong colour and the team looses. In the
remaining 6 cases, the team wins. Hence the probability of winning is
3/4 = 75%.

This is the best probability for this game, but there are other equivalent
strategies: they select two distributions of colours which have no common
element, like white–black–white and black–white–black, and they bet that
these two distributions do not correspond to the correct answer.
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2. With seven people, use the Hamming [7, 4] code in place of the repetition
[3, 1] code. Replace the two colours by 0 and 1, so that the distribution
of colours corresponds to an element in F7

2. The team bets that the dis-
tribution of colours is not an element of the Hamming code. When one
member of the team sees the 6 other colours, he or she looks at the two
possible elements in F7

2 which correspond to the distribution of hats. If
one of them lies in the Hamming code, he or she writes the colour cor-
responding to the other element. Otherwise, the two possible answers
correspond to elements which lie in two different Hamming balls of radius
1, this person does not know which is the center of the Hamming ball con-
taining the right solution and in this case he or she abstains. The team
looses in 16 cases, there are 27 = 128 possible distributions, so he wins in
27−24 = 128−16 = 112 cases, the probability of winning is 7/8 = 87.5%,
and this is optimal.

The optimality is proved by counting the number of Hamming balls of radius 1 and the number of
points in each such ball.

Solution to Exercise 98.
(a) For n = 4 and q odd, the polynomial QI associated with the subset I = {0, 1, 3} of Z/4Z is (X −
1)(X2 + 1) = X3 −X2 +X − 1, the dimension of the codeis 1. This code is the line Fq(1,−1, 1,−1).
(b) For r a divisor of n, say n = mr,and I = Cr the additive subgroup of Z/nZ of order r, we have
QI(X) = Xr − 1. Since the roots of QI are ζkm for k = 0, 1, . . . , r− 1, the associated code C ⊂ Fnq is the
set of (a0, a1, . . . , an−1) such that

a0 + a1ζ
km + a2ζ

2km + · · ·+ an−1ζ
(n−1)km = 0 for k = 0, 1, . . . , r − 1.

Since ζn = 1, these equations can be written

r−1∑
j=0

(
m−1∑
i=0

aj+ir

)
ζjkm = 0 for k = 0, 1, . . . , r − 1.

Since the determinant
(
ζjkm

)
0≤j,k≤r−1

does not vanish, these equations are equivalent to

m−1∑
i=0

aj+ir = 0 for j = 0, 1, . . . , r − 1.

(c) Let m = n/`. The set E` of elements of order ` in the additive group Z/nZ has ϕ(`) = `−1 elements.
The associated code has dimension n− `+ 1, it is the intersection of the `− 1 hyperplanes

m−1∑
i=0

ai` =

m−1∑
i=0

a1+i` = · · · =
m−1∑
i=0

a`−1+i`

in Fnq .
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Solution to Exercise 105.
(a) Let A1, A2, . . . , At be t mutually orthogonal latin squares of order n. Without loss of generality we
may assume that the symbols are 1, 2, . . . , n and that the first row of each Ai is 1, 2, . . . , n. Let xi the
first element in the second row of Ai. Since 1 is already in the first column and Ai is orthogonal, no xi
can be 1. Since Ai and Aj are mutually orthogonal and have the same first row, we also have xi 6= xj
for i 6= j. Hence t ≤ n− 1.
(b) For s = 1, 2, . . . , q − 1 and 0 ≤ i, j1, j2 ≤ q − 1, the conditions

xixs + xj1 = xixs + xj2

imply xj1 = xj2 , hence j1 = j2.
For s = 1, 2, . . . , q − 1 and 0 ≤ i1, i2, j ≤ q − 1, since xs 6= 0, the conditions

xi1xs + xj = xi2xs + xj

imply xi1 = xi2 , hence i1 = i2. Hence As is a latin square.
For 1 ≤ s1, s2 ≤ q − 1 and 0 ≤ i1, i2, j1, j2 ≤ q − 1 with (i1, j1) 6= (i2, j2), the conditions

xi1xs1 + xj1 = xi2xs1 + xj2 and xi1xs2 + xj1 = xi2xs2 + xj2

imply s1 = s2.
(c) Taking q = 3 and replacing the symbols {x0, x1, x2} respectively with {1, 2, 3}, one deduces the
following couple of mutually orthogonal latin squares of order 3:

A =

1 2 3
2 3 1
3 1 2

 , B =

1 2 3
3 1 2
2 3 1

 , so that (A,B) =

(1, 1) (2, 2) (3, 3)
(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)

 .

Taking q = 4 and replacing the symbols {x0, x1, x2, x3} respectively with {1, 2, 3, 4}, one deduces the
following 3 mutually orthogonal latin squares of order 4:

(A,B,C) =


(1, 1, 1) (2, 2, 2) (3, 3, 3) (4, 4, 4)
(2, 3, 4) (1, 4, 3) (4, 1, 2) (3, 2, 1)
(3, 4, 3) (4, 3, 4) (1, 2, 1) (2, 1, 2)
(4, 2, 2) (3, 1, 1) (2, 4, 4) (1, 3, 3)

 .

Solution to Exercise 106.
(a) The divisors of 12 are 1, 2, 3, 4, 6 and 12, hence,

X12 − 1 = Φ1(X)Φ2(X)Φ3(X)Φ4(X)Φ6(X)Φ12(X)

with
Φ1(X) = X − 1, Φ2(X) = X + 1, Φ3(X) = X2 +X + 1,

Φ4(X) = Φ2(X2) = X2 + 1, Φ6(X) = Φ3(−X) = X2 −X + 1,

and
Φ12 = Φ6(X2) = X4 −X2 + 1.
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(b) According to Theorem 59, the polynomial Φn(X) splits in the finite field with q elements into a
product of irreducible polynomials, all of the same degree d, where d is the order of q modulo n. We have

5 ≡ 1 mod 1, 5 ≡ 1 mod 2, 5 ≡ 1 mod 4,

5 6≡ 1 mod 3, 5 6≡ 1 mod 6, 5 6≡ 1 mod 12,

52 ≡ 1 mod 3, 52 ≡ 1 mod 6, 52 ≡ 1 mod 12,

which means that 5 has order 1 modulo 1, 2 and 4, order 2 modulo 3, 6 and 12. Therefore, in F5[X], the
polynomial Φ4(X) is product of two linear polynomials:

X2 + 1 = (X + 2)(X + 3) in F5[X],

Φ3(X), Φ6(X) are irreducible and Φ12(X) is product of two irreducible quadratic factors:

X4 −X2 + 1 = (X2 + 2X − 1)(X2 + 3X − 1).

Hence, in F5[X], the polynomial X12 − 1 is a product of six linear polynomials and three irreducible
quadratic polynomials.
(c) Let K be the splitting field over F5 of X12 − 1. The root of any of the three irreducible quadratic
factors in F5 of X12 − 1 generates over F5 the unique quadratic extension of F5 contained in K. Hence,
[K : F5] = 2 and K has 25 elements.

(d) Over F2, the polynomial X2 +X + 1 is irreducible and

X12 − 1 = (X3 − 1)4 = (X − 1)4(X2 +X + 1)4

is the product of four linear polynomials and four irreducible quadratic polynomials.
Over F3, the polynomial X2 + 1 is irreducible and

X12 − 1 = (X4 − 1)3 = (X − 1)3(X + 1)3(X2 + 1)3

is the product of six linear polynomials and three irreducible quadratic polynomials.
Assume now p ≥ 5. Since p does not divide 12, the polynomial X12− 1 has no multiple factor. There

are always two degree 1 factors, namely Φ1(X) = X − 1 and Φ2(X) = X + 1. For each of the other
factors Φd(X) with d a divisor of 12 and d > 2 (hence, d = 3, 4, 6 or 12), if m is the order of p modulo
d, then Φd splits over Fp into a product of polynomials, all of degree m. Since ϕ(3) = ϕ(4) = ϕ(6) = 2
and ϕ(12) = 4, for d = 3, 4 or 6 the polynomial Φd modulo p is either irreducible of degree 2 or product
of two linear factors, while ϕ(12) is either product of two irreducible quadratic factors or product of four
linear factors3.

Here is the result: the first row gives the 4 possible classes of p modulo 12, the next rows deduces
the classes of p modulo 3, 4, 6 and the order of p modulo the divisors of 12, hence the degrees of the

3As a matter of fact, Φ12 is irreducible over Q but reducible over Fp for all primes p - see
Exercise 64
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irreducible factors.

p modulo 12 1 5 −5 −1
p modulo 3 1 −1 1 −1
p modulo 4 1 1 −1 −1
p modulo 6 1 −1 1 −1

order of p modulo 12 1 2 2 2
order of p modulo 3 1 2 1 2
order of p modulo 4 1 1 2 2
order of p modulo 6 1 2 1 2

Since Φ12 has degree 4 and Φ3, Φ4, Φ6 degree 2, it follows that X12 − 1 is product of
• twelve linear factors (it splits completely over Fp) if p ≡ 1 mod 12,
• four linear factors and four irreducible quadratic factors if p ≡ 5 mod 12,
• six linear factors and three irreducible quadratic factors if p ≡ 7 mod 12,
• two linear factors and five irreducible quadratic factors if p ≡ 11 mod 12.

Solution to Exercise 107.
(a) The order of 2 and of 3 modulo 5 is 4 = ϕ(5), hence the cyclotomic polynomial

Φ5(X) = X4 +X3 +X2 +X + 1

is irreducible over F2 and over F3. (See Example 77).
The order of 2 modulo 7 is 3, hence Φ7 splits into a product of two irreducible polynomials of degree

3 over F2.
The order of 3 modulo 7 is 6 = ϕ(7), hence Φ7 is irreducible over F3.
The order of 2 modulo 11 is 10 = ϕ(11), hence Φ11 is irreducible over F2.
The order of 3 modulo 11 is 5, hence Φ11 splits into a product of two irreducible polynomials of degree

5 over F2.
(b) The order of 2 modulo 15 is 4, the degree of Φ15 is ϕ(15) = 8, hence Φ15 splits into a product of two
irreducible polynomials of degree 4 over F2:

Φ15(X) = (X4 +X3 + 1)(X4 +X + 1).

(See Example 82).
(c) The polynomial X4 +X + 1 is irreducible over F2, over F4 = {0, 1, j, j2} with 1 + j + j2 = 0 it splits
into two irreducible quadratic factors

X4 +X + 1 = (X2 +X + j)(X2 +X + j2).

(See Exercise 84). Since [F8 : F2] = 3 and gcd(2, 3) = 1, it follows that X4 +X + 1 is irreducible over F8.
(d) The polynomials Φ1(X) = X − 1 and Φ2(X) = X + 1 are irreducible over any field. The polynomial
Φ4(X) = X2 + 1 splits into (X + 1)2 in characteristic 2.

Let Φn be a cyclotomic polynomial which is irreducible over Fq where q ∈ {1, 2, 4, 8, 16}. Then
the class of q modulo n is a generator of (Z/nZ)×, in particular this group is cyclic, hence (exercise 7)
n ∈ {2, 4, ps, p2s} where p is an odd prime and s ≥ 1. Since Φ2ps(X) = Φps(−X) (see Exercise 46), it
only remains to use the fact that for n = ps with p odd prime and s ≥ 1,
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• Φn is irreducible over F2 if and only if 2 is a generator of the cyclic group (Z/nZ)×,
• Φn is irreducible over F4 if and only if 4 is a generator of the cyclic group (Z/nZ)×,
• Φn is irreducible over F8 if and only if 8 is a generator of the cyclic group (Z/nZ)×,
• Φn is irreducible over F16 if and only if 16 is a generator of the cyclic group (Z/nZ)×.

The polynomial Φ3(X) = 1 + X + X2 is irreducible over F2 and F8, it splits into linear factors over
F4 hence also over F16.

The polynomial Φ5 is irreducible over F2 hence over F8 (it has degree 4 prime to [F8 : F2] = 3), it is
reducible over F4 (since 4 has order 2 modulo 5), hence also over F16.

The polynomial Φ7 is reducible over F2 (since 2 has order 3 modulo 7), hence also over F4, F8 and
F16.

The polynomial Φ11 is irreducible over F2. . .
n = ps, ϕ(n) = ps−1(p−1), (Z/psZ)× is a product of a cyclic group of order ps−1 and a cyclic group of

order p−1. If Φn is irreducible over F2, then the class of 2 modulo p has order p−1, hence 2(p−1)/2 ≡ −1

(mod p) which means that the Legendre symbol
(

2
p

)
is −1, which means p ≡ 3 or 5 (mod 8).

It follows that for p ≡ 1 or −1 (mod 8), Φp is reducible in characteristic 2.
Let ζ be a primitive p-th root of unity in characteristic 2.
If p ≡ 5 (mod 8), then p ≡ 1 (mod 4), Φp is reducible over F4.
If p ≡ 3 (mod 8), then Φp is irreducible over F4.
Over F8, the condition is 3 divides (p− 1)/2, hence p ≡ 1 (mod 6).
Over F16, the condition is 4 divides (p − 1)/2, hence p ≡ 1 (mod 8). Hence Φn is always reducible

over F16.

Solution to Exercise 108.
Denote by Nq(n) the number of squarefree monic polynomials in Fq[X] of degree n. Clearly Nq(0) = 1
and Nq(1) = q.

Any monic polynomial in Fq[X] of degree n can be written in a unique way A2B, where A is a monic
polynomial of degree, say, d, with 0 ≤ d ≤ n/2 and B is a monic squarefree polynomial of degree n− 2d.
This yields a partition of the set of monic polynomials of degree n, which implies

qn =
∑

0≤d≤n/2

qdNq(n− 2d)

= Nq(n) + qNq(n− 2) + q2Nq(n− 4) + · · ·+

{
qn/2Nq(0) if n is even,

q(n−1)/2Nq(1) if n is odd.

The formula Nq(n) = qn − qn−1 for n ≥ 2 follows by induction on n (telescoping sum).

Solution to Exercise 109.
Since 728 = 36 − 1, the order of 3 modulo 728 is 6. We also check

728 = 23 · 7 · 13 and therefore ϕ(728) = 25 · 32 = 48 · 6.

Hence, over the field F3, the cyclotomic polynomial Φ728 splits into a product of 48 irreducible factors,
each of which has degree 6.
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Solution to Exercise 110.
The polynomial X3 +X + 1 is irreducible over F5. Let α be a root of this polynomial in F53 . One checks

α5 = −α2 + α+ 1, α15 = α2 − α− 2, α30 = α2 + 1,

α31 = −1, (2α)31 = −2, (2α)62 = −1.

It follows that 2α has order 124 = 53 − 1, hence is a generator of the cyclic group F×53 .

Solution to Exercise 111.
(a) If ζ ∈ K satisfies ζq−1 = −1, then ζq = −ζ and (ζ2)q = (ζq)2 = ζ2, hence ζ2 ∈ F×q .
(b) Assume first p = 2. Then

X2q−1 −X = X(Xq−1 − 1)2

splits into 2q − 1 linear factors (degree 1) in Fq.
Next assume q is odd. According to (a), the polynomial Xq−1 + 1 has no root in Fq, but it splits into

linear factors in Fq2 . Hence we have

X2q−1 −X = X(Xq−1 − 1)(Xq−1 + 1),

where X(Xq−1−1) is a product of q linear factors in Fq, while Xq−1 +1 is a product of (q−1)/2 quadratic
factors in Fq.

Solution to Exercise 112. Let p be the characteristic of F and q = pr the number of elements of F .
Denote by σn the map x 7→ xn from F to F .

If n ≡ p` (mod (q − 1)) for some ` with 0 ≤ ` ≤ r − 1, then for x ∈ F× we have σn(x) = Frob`p(x),

hence σn = Frob`p, which is an automorphism of F .
Conversely, assume σn is an automorphism of F . Hence σ is an element of the Galois group of F over

Fp, which means that there exist ` with 0 ≤ ` ≤ r − 1 such that σ = Frob`p. Let m be the class of n
modulo (q − 1): hence 0 ≤ m ≤ q − 2 and m − n is a multiple of q − 1. Therefore σn = σm, where σm
is the map x 7→ xm from F to F . From xp

`

= xm for all x ∈ F we deduce that the polynomial Xq −X
divides Xp` −Xm. However p` < q and m < q, hence m = p`.

Therefore the set of n such that σn is an automorphism of F is the set of integers congruent to a
power of p modulo q − 1.

Solution to Exercise 113.
(a) Since q divides 2p − 1, it follows that q is odd and that the order of the class of 2 in (Z/qZ)× is p,
hence p divides q − 1.
(b) Since q divides 22n + 1, it follows that q is odd and that the order of the class of 2 in (Z/qZ)× is
2n+1, hence 2n+1 divides q − 1.
(See also exercise 42).
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Solution to Exercise 114.
Since ap ≡ a mod p, if f(X) = (Xp −X)g(X) + ph(X), then, for all a ∈ Z, the number p divides f(a).

Conversely, assume that for any a ∈ Z, the number p divides f(a). Divide the polynomial f by Xp−X
in Z[X]:

f(X) = (Xp −X)g(X) + r(X),

with g and r in Z[X], and r either zero, or else of degree < p. Then r(a) ≡ 0 mod p for all a ∈ Z, hence,
the image of r in Fp[X] is zero. This means that there exists h ∈ Z[X] such that r = ph.

One can also argue as follows: when K is a field of characteristic p, we have

Xp −X =
∏
α∈Fp

(X − α),

hence, for F ∈ K[X], the condition
(i)’ For all a ∈ Fp, F (a) = 0
is equivalent to
(ii)’ There exists a polynomial G ∈ Fp[X] such that F (X) = (Xp −X)G(X).
The statement of the exercise is a reformulation of this equivalence (take K = Fp, and F , G are the
reductions modulo p of f and g).

Solution to Exercise 115.

We show that the kernel of f has p elements, which are the classes modulo p2 of the integers ≡ 1
(mod p2), while the image of f has p− 1 elements, which are the roots of Xp−1 − 1 in (Z/p2Z)×.

For p = 2, we have (Z/4Z)× = {1,−1}, the kernel of the homomorphism f : x 7→ x2 of this group
is (Z/4Z)× and has two elements, the image of f is {1}, which is the set of roots of X − 1 and has one
elements,

Assume now that p is odd. Since p2Z ⊂ pZ, the canonical surjective homomorphism Z → Z/pZ
factors as Z→ Z/p2Z→ Z/pZ:

Z −→ Z/pZ
↓ ↗ ϕ

Z/p2Z

Let φ : (Z/p2Z)× → (Z/pZ)× be the restriction of ϕ to (Z/p2Z)×. Since (1 + pt)p ≡ 1 (mod p2), any
x ∈ kerφ satisfies xp = 1 and there are p such elements, namely the classes modulo p2 of

1, 1 + p, . . . , 1 + (p− 1)p.

It follows that ker f has p elements; therefore, since (Z/p2Z)× has p(p − 1) elements, Imf has p − 1
elements. Further, any element y = xp in the image of f satisfies yp−1 = 1, hence Imf is the set of roots
of Xp−1 − 1.

Solution to Exercise 116.
(a) Let f ∈ Fq[X] be the minimal polynomial of A over Fq. The degree of f is at most n. The subring
Fq[A] of Matn×n(Fq) generated by A is Fq[X]/(f). Let G be the subgroup of Fq[A]× generated by the
class of A modulo f . The order of G divides the order of Fq[A]×, and the order of Fq[A]× is at most
qn − 1.
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Take for instance n = q = 2. Over F2, the 2 × 2 matrix

(
0 1
1 0

)
has order 2 which does not divide

2n − 1 = 3.
(b) If A has order qn − 1, then (with the above notations) the group G = Fq[A]× has qn − 1 elements,
hence Fq[A] is a field with qn elements and A is a generator of G. Hence (i)⇒ (ii).

If Fq[A] is a field with qn elements and A is a primitive element in this field, then the characteristic
polynomial of A is a primitive polynomial. Hence (ii)⇒ (iii).

If the characteristic polynomial of A is a primitive polynomial, since it has degree n, it is the minimal
polynomial f of A; the class of X in Fq[X]/(f) is a generator of the cyclic group Fq[A]×, hence Fq[A] is
a field with qn elements and A has order qn − 1. Hence (iii)⇒ (i).

Solution to Exercise 117.
Notice first that if there is a domain A such that A× has order m, then the same is true for other domains
like A[X] - hence there is not unicity.

Also, if A× is a finite group, then it is cyclic (being a finite subgroup of the multiplicative group of
the quotient field of A).

The answer is yes for m = pr − 1, hence for m = 1, 2, 3, 4, 6, 7, 8, 10, by taking for A the field with pm

elements. Let us show that the answer is no for m = 5, 9 and 11.
Assume A× has order m with m ∈ {5, 9, 11}. Since m is odd, if follows that −1, which is a unit,

cannot have order 2; therefore −1 = 1, which means that A has characteristic 2.
The ring A contains the m–th roots of unity, hence contains F2(ζ) where ζ is a primitive m–th root

of unity. The degree d of ζ is the order of 2 modulo m, hence d = 4 for m = 5, d = 6 for m = 9 and
d = 10 for m = 11. Now A× contains F2(ζ)× which is a group having 2d > m elements. This is a
contradiction.

Solution to Exercise 118.
(a) Two conjugate elements α and σ(α) have the same order, since αm = 1 if and only if σ(α)m = 1.
(b) Let α be a root of f . Since α has order p(f) in the multiplicative group Fq(α)× we have

p(f)|`⇐⇒ α` = 1⇐⇒ f(X)|X` − 1.

(c) The n conjugates of a root α of f over Fq are its images under the iterated Frobenius x 7→ xq, which
is the generator of the cyclic Galois group of Fq(α)/Fq. From αq

n

= α, we deduce that f divides the
polynomial Xqn − X (see also Theorem 55). Since f(X) 6= X we deduce α 6= 0, hence, f divides the
polynomial Xqn−1 − 1. As we have seen in question (b), it implies that p(f) divides qn − 1. The fact
that the characteristic p does not divide p(f) is then obvious.
(d) An irreducible monic polynomial f ∈ Fq[X] is primitive if and only if any root α of f in Fp is a
generator of the cyclic group Fq(α)×.
(e) Here is the answer:
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q d f(X) p(f) primitive
2 2 X2 +X + 1 3 yes
2 3 X3 +X + 1 7 yes
2 3 X3 +X2 + 1 7 yes
2 4 X4 +X3 + 1 15 yes
2 4 X4 +X + 1 15 yes
2 4 X4 +X3 +X2 +X + 1 5 no
3 2 X2 + 1 4 no
3 2 X2 +X − 1 8 yes
3 2 X2 −X − 1 8 yes

(f) The two irreducible polynomials of period 15 over F2 are the two factors X4 +X3 + 1 and X4 +X+ 1
of Φ15. The only irreducible polynomial of period 5 over F2 is Φ5(X) = X4 +X3 +X2 +X + 1.

Solution to Exercise 119.
If ` = 2 and p is odd, the assumption that a is not a square in Fp implies that X2 − a is irreducible over
Fp.

If ` is odd and p = 2, then for any a ∈ F2 the polynomial X` − a is reducible over F2.
If p = `, since the Frobenius x 7→ xp is an automorphism of Fp, any element in Fp is a p-th power and

again the result is trivial.
Assume now that ` and p are distinct odd primes. Let ζ be an element of order p − 1 in the

multiplicative group F×p . If ` does not divide p− 1, then ζ is a `-th power (if m is the inverse of ` in the

group (Z/(p−1)Z)×, then ζ = γ` with γ = ζm); in this case any element in Fp is a `-th power. Therefore
we need to consider only the prime numbers ` which divide p − 1. In this case the `–th roots of unity
are in Fp. Let ζ ∈ Fp be a primitive `-th root of unity. Let γ be a root of the polynomial X` − a in an
extension of Fp and let E = Fp(γ). Since a is not an `–th power in Fp, we have E 6= Fp. Also,

X` − a =

`−1∏
j=0

(X − ζjγ).

For 0 ≤ j ≤ ` − 1, we have Fp(γ) = Fp(γζj), hence all γζj have the same degree d ≥ 2 over Fp, hence
this degree divides `. Given that ` is prime, we deduce d = `.

Solution to Exercise 120.
The division of (X + 1)k by f(X) = X3 +X + 1 in F2[X] is given by

X + 1 = 0f +X + 1

(X + 1)2 = 0f +X2 + 1

(X + 1)3 = f +X

(X + 1)4 = Xf +X2 +X + 1

(X + 1)5 = (X2 + 1)f +X2 +X

(X + 1)6 = (X3 +X + 1)f +X2

(X + 1)7 = (X4 +X2 +X + 1)f,
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hence the least integer k such that (X + 1)k is multiple of f is k = 7.
Let f ∈ Fp[X] of degree n with f(0) 6= 0. For 1 ≤ ` ≤ pn, write

X` − 1 = f(X)Q`(X) +R`

with R` of degree < n. There are pn polynomials of degree < n over Fp. If the R` are all distinct, one
of them is 0; then f divides the corresponding X` − 1. If two of the R` are the same, say R` = Rk with
1 ≤ ` < k ≤ pn, then Xk − X` = (Xk−` − 1)X` divides f ; since X does not divide f , we deduce that
Xk−` − 1 divides f while we have 1 ≤ k − ` ≤ pn − 1.

The only case where this proof does not yield an exponent < pn is when the only ` where R` is 0
is pn (and all the other R` are pairwise distinct). But in this case Xpn − 1 = (X − 1)p

n

divides f ,

hence f(X) = (X − 1)n, but since n ≤ pn−1 it follows that Xpn−1 − 1 divides f . (So this case never
happens).

Solution to Exercise 121.
(a) Let x be a root of Xp−1 − u in an extension of Fp. Then

xp
r

= urx

for all r ≥ 0. Since u has order m in F×p , the least r such that xp
r

= x is r = m. Since k = (p − 1)/m,
the orbit of x under the iterated of Frobp has m elements, hence (Theorem 36) x has degree m over Fp.
Since all roots of Xp−1 − u have the same degree m over Fp, in the decomposition of the polynomial
Xp−1 − u into irreducible polynomials over Fp, all factors have degree m.
(b) The multiplicative group H generated by u is the unique subgroup of F×p of order m. The morphism

F×p → H

x 7→ x(p−1)/m

is surjective, its kernel has (p− 1)/m elements, say v1, . . . , vk, which are the solutions in F×p of vki = u.
(c) Since Xm − vi ∈ Fp[X], we deduce that

Xp−1 − u =

k∏
i=1

(Xm − vi)

is the decomposition of Xp−1 − u into irreducible factors over Fp.

Solution to Exercise 122.
For p = 2, we have X3 − 1 = (X − 1)(X2 +X + 1).

Assume that p is odd. We show that Xp+1−1 is the product of (X−1)(X+1) by (p−1)/2 quadratic
polynomials X2 + aX + 1 where a ranges over the set of elements in Fp such that a2 − 4 is not a square
modulo p.

Indeed, let x is a root of Xp+1 − 1 in an extension of Fp. If x ∈ Fp, then xp = x, which implies

x = ±1. Assume now x 6∈ Fp. From xp = x−1 we deduce xp
2

= x−p = x, hence x is quadratic over Fp
and its irreducible polynomial over Fp is

(X − x)(X − xp) = X2 + aX + 1

with a = x+xp and the discriminant a2−4 is not a square. Conversely, if x is a root of such a polynomial,
then its norm is xp+1 = 1.
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Solution to Exercise 123.
Let (x, y) ∈ F2

8 satisfy x3y + y3 + x = 0. If x = 0 the y = 0. If y = 0 then x = 0. Assume (x, y) 6= (0, 0).
Then x 6= 0 and y 6= 0. Write F8 = F2(α) with α3 = α+ 1 (see Example 67). We can write

y = αj , x = α3jβ

with 0 ≤ j ≤ 6 and β ∈ F×8 . We deduce

α10jβ3 + α3j + α3jβ = 0.

Since α7 = 1, dividing by α3j , we get
β3 + β + 1 = 0,

hence β is a Galois conjugale to α. Since α has three conjugate, we obtain 21 points in (F×8 )2. Counting
the point (0, 0), we conclude that there are 22 solutions in F2

8.
Remark. The curve X3Y + Y 3 +X = 0 is an affine version of Klein quartic

X3Y + Y 3Z +XZ3 = 0.

Solution to Exercise 124.
Hint: use a software like Sage. See also the examples and exercise:

p r n Reference
2 1 2 30, 66
3 1 2 69
5 1 2
7 1 2
2 1 3 67
3 1 3 83
2 2 2 84
3 2 2
2 3 2

Solution to Exercise 125. (see Example 77).
If q ≡ 1 mod 5, the polynomial Φ5(X) = X4 + X3 + X2 + X + 1 splits completely in Fq into a product
of 4 degree 1 polynomials, the polynomial X5 − 1 is a product of 5 irreducible polynomials, therefore, it
has 25 = 32 divisors, 1 of degree 0 and 1 of degree 5, 5 of degree 1 and also 5 of degree 4, 10 of degree 2
and 10 of degree 3.
If q ≡ −1 mod 5, the polynomial Φ5 is a product of two irreducible degree 2 polynomials in Fq[X], X5−1
is a product of 3 polynomials, hence, it has 23 = 8 monic divisors, 1 of degree 0 and 1 of degree 5, 1 of
degree 1 and also 1 of degree 4, 2 of degree 2 and 2 of degree 3.
If q ≡ 2 or 3 mod 5, the polynomial Φ5 is irreducible in Fq[X], X5 − 1 is a product of 2 polynomials,
hence, it has 22 = 4 monic divisors, they have degree 0, 1, 4 and 5.
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Number of cyclic codes of length 5 and of a given dimension over Fq

dimension 0 1 2 3 4 5
q ≡ 1 mod 5 1 5 10 10 5 1
q ≡ −1 mod 5 1 1 2 2 1 1
q ≡ 2 or 3 mod 5 1 1 0 0 1 1

Solution to Exercise 126.
From Theorem 101 with r = 2 and t = 1, one deduces that if there is a 1–error correcting code on Fqn of
dimension r, then 1 + n(q − 1) ≤ qn−r. For q = 2 this is n ≥ nr.

For r = 1 we have n1 = 3 and the corresponding code on F23 of dimension 1 is the repetition code of
Example 89.

For r = 2 we have n2 = 5 and a binary 1–error correcting code of length 5 and dimension 2 is the
code of Example 91.

For r = 3 we have n2 = 6 and a binary 1–error correcting code of length 6 and dimension 3 is the
code of Example 92.

For r = 4 we have n2 = 7 and a binary 1–error correcting code of length 7 and dimension 4 is
Hamming’s code of Example 93.

Solution to Exercise 127.
From Theorem 101 with q = 3, r = 2 and t = 1, one deduces that if there is a 1–error correcting code on
F3n of dimension 2, then 1 + 2n ≤ 3n−2, hence, n ≥ 4.

An example of a ternary 1–error correcting [4, 2] codeis given in Exercise 128.

Solution to Exercise 128.
(a) This ternary code has length 4, dimension 2, the number of elements is 32 = 9, the elements are

(0, 0, 0, 0) (0, 1, 1,−1) (0,−1,−1, 1)
(1, 0, 1, 1) (1, 1,−1, 0) (1,−1, 0,−1)

(−1, 0,−1,−1) (−1, 1, 0, 1) (−1,−1, 1, 0)

(b) Any non–zero element in C has three non–zero coordinates, which means that the minimum weight of
a non–zero element in C is 3. Since the code is linear, its minimum distance is 3. Hence, it can detect two
errors and correct one error. The Hamming balls of radius 1 centred at the elements in C are pairwise
disjoint.

Recall that a MDS code is a linear code C of length n and dimension d for which d(C) = n + 1 − d.
Here n = 4, d = 2 and d(C) = 3, hence, this code C is MDS.
(c) The elements at Hamming distance ≤ 1 from (0, 0, 0, 0) are the elements of weight ≤ 1. There are 9
such elements, namely the center (0, 0, 0, 0) plus 2 × 4 = 8 elements having three coordinates 0 and the
other one 1 or −1:

(1, 0, 0, 0), (−1, 0, 0, 0), (0, 1, 0, 0), (0,−1, 0, 0),
(0, 0, 1, 0), (0, 0,−1, 0), (0, 0, 0, 1), (0, 0, 0,−1).

A Hamming ball B(x, 1) of center x ∈ F4
3 and radius 1 is nothing but the translate x + B(0, 1) of the

Hamming ball B(0, 1) by x, hence, the number of elements in B(x, 1) is also 9.
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(d) The 9 Hamming balls of radius 1 centred at the elements of C are pairwise disjoint, each of them
has 9 elements and the total number of elements in the space F4

3 is 81. Hence, these balls give a perfect
packing: each element in F4

3 belongs to one and only one Hamming ball centred at C and radius 1.
For instance, the unique element in the code at distance ≤ 1 from x = (1, 0,−1, 1) is (1, 0, 1, 1).

Solution to Exercise 129.
The class of 3 in (Z/7Z)× is a generator of this cyclic group of order 6 = φ(7):

(Z/7Z)× = {30 = 1, 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5}.

The condition q ≡ 3 mod 7 implies that q has order 6 in (Z/7Z)×, hence, Φ7 is irreducible in Fq[X]. The
polynomial X7 − 1 = (X − 1)Φ7 has exactly 4 monic divisors in F3[X], namely

Q0(X) = 1, Q1(X) = X − 1,

Q2(X) = Φ7(X) = X6 +X5 +X4 +X3 +X2 +X + 1, Q3(X) = X7 − 1.

Hence, there are exactly 4 cyclic codes of length 7 over Fq.
The code C0 associated to the factor Q0 = 1 has dimension 7, it is the full code F7

q with q7 elements.
A basis of C0 is any basis of F7

q, for instance, the canonical basis. The space of linear forms vanishing on
C has dimension 0 (a basis is the empty set). The minimum distance is 1. It cannot detect any error.
Since d(C) = 1 = n+ 1− d, the code C0 is MDS.

The code C1 associated to the factor Q1 = X − 1 has dimension 6, it is the hyperplane of equation
x0 + · · ·+ x6 = 0 in Fq, it has q6 elements. Let T : F7

q → F7
q denote the right shift

T (a0, a1, a2, a3, a4, a5, a6) = (a6, a0, a1, a2, a3, a4, a5).

A basis (with 6 elements, as it should) of C1 is

e0 = (1, −1, 0, 0, 0, 0, 0),
e1 = Te0 = (0, 1, −1, 0, 0, 0, 0),
e2 = T 2e0 = (0, 0, 1, −1, 0, 0, 0),
e3 = T 3e0 = (0, 0, 0, 1, −1, 0, 0),
e4 = T 4e0 = (0, 0, 0, 0, 1, −1, 0),
e5 = T 5e0 = (0, 0, 0, 0, 0, 1, −1).

Notice that T 6e0 = (−1, 0, 0, 0, 0, 0, 1) and

e0 + Te0 + T 2e0 + T 3e0 + T 4e0 + T 5e0 + T 6e0 = 0.

This is related to

1 +X +X2 +X3 +X4 +X5 +X6 = Φ7(X) =
X7 − 1

X − 1
·

The minimum distance of C1 is 2, it is a MDS code. It can detect one error (it is a parity bit check) but
cannot correct any error.

The code C2 associated to the factor Q2 has dimension 1 and q elements:

C2 = {(a, a, a, a, a, a, a) ; a ∈ Fq} ⊂ F7
q.
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It is the repetition code of length 7, which is the line given by the equations

X1 = X2 = X3 = X4 = X5 = X6 = X7

spanned by (1, 1, 1, 1, 1, 1, 1) in F7
q, there are q elements in the code. It has dimension 1, its minimum

distance is 7, hence, is MDS. It can detect 6 errors and correct 3 errors.
The code C3 associated to the factor Q3 is the trivial code of dimension 0, it contains only one element,

a basis is the empty set, a basis of the space of linear forms vanishing on C3 is x0, x1, x2, x3, x4, x5, x6.
Its minimum distance is not defined, it is not considered as a MDS code.
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