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Part I: August 1, 2016

• Subgroups of Rn: discrete, closed, dense

• Topological groups

• Lattices

• Fundamental parallelepiped, covolume, determinant

• Packing, covering, tiling

• Sublattices

• Subgroup of HomR(Rn,R) associated with a subgroup of Rn
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Part II: August 3, 2016

• Convex sets and star bodies

• Minkowski’s convex body Theorem

• Minkowski’s theorems on linear forms

• Gauge functions

• Minkowsk’s theorems on successive minima
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Part III: August 5, 2016

Examples of lattices in number theory

• Minima of quadratic forms

• Sum of two squares

• Sum of four squares

• Primes of the form x2 + ny2

• Discriminant of a number field

• Units of a number field: Dirichlet’s Theorem

• Geometry of numbers and transcendence

4 / 33



Subgroups of R

Theorem 1 (Kronecker).

Let ✓ be an irrational number. Then Z+ Z✓ is dense in R.

Lemma 2.

A subgroup of R is either discrete or dense.

Lemma 3.

The closed subgroups of R are R and the discrete subgroups
generated by one element (including {0}).
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Topological groups

Topological group: group G with a topology for which the
maps

G⇥G ! G
(x, y) 7! xy

and
G ! G
x 7! x�1

are continuous (G⇥G is endowed with the product topology).

Examples:

R, Z, C, R/Z, R⇥, R⇥
+, U = {z 2 C⇥

| |z| = 1}.

Isomorphisms:

R ' R⇥
+, U ' R/Z, R⇥

+ ' R⇥/{±1}, C⇥
' R⇥

+ ⇥ U.

Character of a group G: continuous homomorphism G ! U.
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Subgroups of R/Z

From Lemma 2, we deduce:

Corollary 4.

A subgroup of R/Z is either finite or dense.
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Billiard problem

The orbit is either periodic or dense in the torus, depending on
whether the tangent of the angle is rational or not.
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The problem of the reflected ray

Hardy, G.H. & Wright, E.M, An Introduction to the
Theory of Numbers. Fifth edition. The Clarendon Press,
Oxford University Press, New York, 1979. See Chap. XXIII.
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Subgroups of R⇥

From Theorem 1, we deduce:

Corollary 5.

Let � be a finitely generated subgroup of R⇥
+. Then the

following conditions are equivalent.
(i) � is dense in R⇥

+.
(ii) � has rank � 2 over Z.

Corollary 6.

Let � be a finitely generated subgroup of R⇥. Then the
following conditions are equivalent.
(i) � is dense in R⇥.
(ii) � has rank � 2 over Z and contains a negative real
number.

10 / 33

Kronecker’s Theorem

Theorem 7 (Kronecker).

Let ✓ be an irrational real number. For any x 2 R and any
N > 0 there exist n and k in Z with n > N and

|x� k � n✓| <
3

n
·

Hardy, G.H. & Wright, E.M, An Introduction to the
Theory of Numbers. Fifth edition. The Clarendon Press,
Oxford University Press, New York, 1979. See §23.2, Th. 440.
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Dirichlet’s Theorem

In the homogeneous case (x = 0), a stronger result is
available.

Theorem 8 (Dirichlet).

Let ✓ be a real number. For any Q 2 R with Q > 1 there exist
p and q in Z with 1  q < Q and

|q✓ � p| 
1

Q
·
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Discrete subgroups of Rn

Lemma 9.

A subgroup G of Rn is discrete in Rn if and only if there exists
an open subset U of Rn containing 0 such that G \ U is
discrete.

Theorem 10.

Let g1, . . . , g` be R–linearly independent elements in Rn. Then
the subgroup Zg1 + · · ·+ Zg` of Rn is discrete.
Conversely, if G is a discrete subgroup of Rn, then there exist
R–linearly independent elements g1, . . . , g` in G such that
G = Zg1 + · · ·+ Zg`.
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Auxiliary result

Lemma 11.

Let G be a discrete subgroup of Rn of real rank r. Let
e1, . . . , er be R–linearly independent elements in G. Then
G0 = Ze1 + · · ·+ Zer is a subgroup of finite index in G.

Define

P = {x1e1 + · · ·+ xrer | 0  xi  1 (i = 1, . . . , r)}.

Then G \ P is a finite set. For each x 2 G there exists
x0

2 G0 such that x� x0
2 G \ P .
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Submodules of finitely generated free Z–modules

Proposition 12.

If G is a free finitely generated Z–module and G0 a submodule
of G, then G0 is free and finitely generated.
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Theorem of the adapted basis

Theorem 13.

Let G be a discrete subgroup of Rn and G0 a subgroup,
G0

6= 0. There exists a basis e1, . . . , er of G over Z, an integer
m � 1 and positive integers a1, . . . , am such that
(i) (a1e1, . . . , amem) is a basis of G0 over Z,
(ii) a1 divides a2, a2 divides a3, . . . and am�1 divides am.

Remark: the ai are called the invariant factors. This result is a
special case of a theorem on the structure of modules over a
principal ring (here: Z).
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Theorem of the adapted basis (matrix form)

Let n and p be positive integers, A a n⇥ p matrix with
coe�cients in Z of rank m � 1. Then there exist a unique
sequence of positive integers ↵1,↵2, . . . ,↵m, such that
↵1 divides ↵2, ↵2 divides ↵3, . . . and ↵m�1 divides ↵m,
and there exist regular matrices P 2 GLn(Z) and
Q 2 GLp(Z) such that

A = P

0

BBBBBBBBB@

↵1

↵2
. . .

↵m

0
. . .

0

1

CCCCCCCCCA

Q.
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Definition of a lattice in Rn

Given a subgroup G of Rn, the following conditions are
equivalent.
(i) There exists a basis (e1, . . . , en) of the R–vector space Rn

such that G = Ze1 + · · ·+ Zen.
(ii) G is a discrete subgroup of Rn of rank n.
(iii) G is a discrete subgroup of Rn such that Rn/G is
compact.
(iv) G is a discrete subgroup of Rn which contains n elements
linearly independent over R.

Lattice = discrete subgroup of Rn of maximal rank.
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Lattices in Rn

Let G be a lattice in Rn and e = (e1, . . . , en) a basis of G.
The fundamental parallelepiped associated to e is

Pe = {x1e1 + · · ·+ xnen | (x1, . . . , xn) 2 [0, 1)n}.

Proposition 14.

Pe is a fundamental domain for the action of G on Rn by
translation.

This means:
(i) 0 2 Pe.
(ii) Pe is mesurable (the characteristic function is Riemann
integrable)
(iii) Rn is the disjoint union of the sets Pe + g for g 2 G.
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Determinant, covolume

Let G be a lattice in Rn. To a basis e = {e1, . . . , en} of G we
associate the parallelepiped

Pe = {x1e1 + · · ·+ xnen | 0  xi < 1 (1  i  n)}

A change of bases of G is obtained with a matrix of
determinant ±1 with integer coe�cients, hence
• The determinant of e in the canonical basis of Rn depends
only on G, not on the choice of the basis e. It is called the
determinant of G and denoted by det(G).
• The Lebesgue measure µ(Pe) of Pe does not depend on e:
this number is called the covolume of the lattice G and is
denoted by v(G).
We have det(G) = v(G).
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Packing, covering, tiling

Let Ki, i 2 I be a family of subsets of Rn, where each Ki is
the closure of a non empty open set Ui.

The family (Ki)i2I is called a packing of Rn if the Ui are
pairwise disjoint.

The family (Ki)i2I is called a covering of Rn if the union of
the Ki is Rn.

The family (Ki)i2I is called a tiling of Rn if it is both a
packing and a covering.

If P is a fundamental parallelotope of a lattice G with closure
P , then the family (P + g)g2G is a tiling of Rn.
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Necessary conditions for covering and packing

Let G be a lattice in Rn of determinant d(G) and let K be
the closure of a non empty open set in Rn.

If the G–translates of K are a covering of Rn, then
µ(K) � d(G).

If the G–translates of K are a packing of Rn, then
µ(K)  d(G).

Coppel, W.A. Number Theory. An introduction to
mathematics, Springer Verlag, 2009 . Part B, The Geometry
of Numbers, pp. 327-362
http://www.springer.com/gp/book/9780387894850
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Lattices and matrices

Let A be a regular n⇥ n matrix with real coe�cients and
vector columns a1, . . . , an. The set

AZn = {a1x1 + · · ·+ anxn | x = (x1, . . . , xn) 2 Zn
}

is a lattice in Rn.

Let A1 and A2 be two non singular n⇥ n matrices. Let
G1 = A1Zn and G2 = A2Zn. Then G2 ⇢ G1 if and only if
there exists a regular n⇥ n matrix with integer coe�cients
such that A2 = A1P .
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Unimodular matrices

For a n⇥ n matrix U with coe�cients in Z, the following
conditions are equivalent:
(i) There exists a n⇥ n matrix V with coe�cients in Z such
that UV = V U = In.
(ii) detU = ±1.
Such a matrix is called unimodular. The group of unimodular
matrices is denoted GLn(Z).

If e1, . . . , en is a basis of the lattice G and if f1, . . . , fn are
elements in Rn, then f1, . . . , fn is a basis G if and only if
there exists a unimodular matrix (pij)1i,jn such that
fi = p1ie1 + · · ·+ pnien (i = 1, . . . , n).

The two lattices G1 = A1Zn and G2 = A2Zn are the same if
and only if A�1

1 A2 is unimodular.
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Sublattices

A sublattice of a lattice G is a subset G0 of G which is also a
lattice in Rn. It is a subgroup of finite index in G.

There is a basis e1, . . . , en of G and positive integers
a1, . . . , an such that a1e1, . . . , anen is a basis of G0.

(G : G0) = a1 · · · an.

Further,
v(G0) = (G : G0)v(G).
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Supplement

Given v1, . . . , v` in Zn, does there exist v`+1, . . . , vn such that
v1, . . . , vn is a basis of Zn over Z?

Proposition 15.

Let G be a discrete subgroup of Rn and G0 a subgroup. The
following conditions are equivalent.
(i) There exists a subgroup G00 of G such that G = G0

�G00.
(ii) The quotient group G/G0 is torsion–free.
(iii) G0 is saturated: G0 = G \ (G0

⌦ R).
(iv) The integers ai in the Theorem of the adapted basis are
all equal to 1.
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Discrete subgroups of Rn

Corollary 16.

Let e1, . . . , er be R–linearly independent elements in Rn and
t1, . . . , tr be real numbers. Define ✓ = t1e1 + · · ·+ trer. Then
the subgroup Ze1 + · · ·+ Zer + Z✓ is discrete in Rn if and
only if the numbers t1, . . . , tr are all rational.

Corollary 17.

Let t1, . . . , tn be real numbers. The following conditions are
equivalent.
(i) For any ✏ > 0, there exist integers p1, . . . , pn, q with q > 0
such that

0 < max
1in

|qti � pi| < ✏.

(ii) One at least of the numbers t1, . . . , tn is irrational.
(iii) 0 is an accumulation point of Zn + Z(t1, . . . , tn).

27 / 33

Closed subgroups of Rn

Theorem 18.

Let G be a closed subgroup of Rn of real rank r. There exists
a maximal vector subspace V of Rn contained in G. If W is a
vector subspace of Rn with V �W = Rn, then � = W \G is
a discrete subgroup of Rn and

G = V � �.

Hence G ' Rr
⇥ Z`�r.

Lemma 19.

A closed subgroup of Rn which is not discrete contains a real
line.
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Kronecker’s Theorem

Theorem 20 (Kronecker).

Let ✓1, . . . , ✓n be real numbers. The subgroup

Zn + Z(✓1, . . . , ✓n) =
{(s1 + s0✓1, . . . , sn + s0✓n) | (s0, s1, . . . , sn) 2 Zn+1

}

of Rn is dense in Rn if and only if the n+ 1 numbers
1, ✓1, . . . , ✓n are Q–linearly independent.
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Dense subgroups of Rn

Proposition 21.

Let G be a finitely generated subgroup of Rn. The following
conditions are equivalent.
(i) G is dense in Rn.
(ii) For any vector subspace V of Rn distinct from Rn, we have

rankZ(G/G \ V ) > dimR(Rn/V ).

(iii) For any hyperplane H of Rn, we have

rankZ(G/G \H) � 2.

(iv) For any non–zero linear form ' : Rn
! R, we have

'(G) 6⇢ Z.
(v) For any non–trivial character � : Rn

! U, we have
�(G) 6= {1}.
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Dense subgroups of Rn
(continued)

(vi) Let g1, . . . , g` be a set of generators of G as a Z–module.
Write the coordinates of gj in the canonical basis of Rn:

gj = (g1,j, . . . , gn,j) (1  j  `).

For any (s1, . . . , s`) in Z`
\ {0}, the matrix

0

BBB@

g1,1 · · · g1, n+1
...

. . .
...

gn,1 · · · gn, n+1

s1 · · · sn+1

1

CCCA

has rank n+ 1.
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Subgroup of HomR(Rn,R) associated with a

subgroup of Rn

When G is a subgroup of Rn, we set

G? = {' 2 HomR(Rn,R) | '(G) ⇢ Z}.

When G is a subgroup of HomR(Rn,R), we set

G

? = {x 2 Rn
| '(x) 2 Z for all ' 2 G}.

Proposition 22.

Let G be a subgroup of Rn. Let G be the topological closure
of G in Rn. Then

G = (G?)?.
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Subgroup of HomR(Rn,R) associated with a

subgroup of Rn

Lemma 23.

If G is a subgroup of Rn, then G? is a closed subgroup of
HomR(Rn,R) and (G)? = G?.

Lemma 24.

Let G be a closed subgroup of Rn. Let e1, . . . , en be a basis of
Rn such that

G = Re1 + · · ·+ Rer + Zer+1 + · · ·+ Ze`.

Let f1, . . . , fn be the dual basis of e1, . . . , en. Then

G? = Zfr+1 + · · ·+ Zf` + Rf`+1 + · · ·+ Rfn.
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