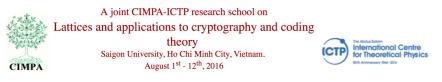
August 1, 2016



http://ricerca.mat.uniroma3.it/users/valerio/hochiminh16.html

Lattices and geometry of numbers

Michel Waldschmidt Université Pierre et Marie Curie (Paris 6) France

http://www.imj-prg.fr/~michel.waldschmidt/

Update: 04/08/2016

Part II: August 3, 2016

- Convex sets and star bodies
- Minkowski's convex body Theorem
- Minkowski's theorems on linear forms
- Gauge functions
- Minkowsk's theorems on successive minima

Part I: August 1, 2016

- Subgroups of \mathbb{R}^n : discrete, closed, dense
- Topological groups
- Lattices
- Fundamental parallelepiped, covolume, determinant
- Packing, covering, tiling
- Sublattices
- \bullet Subgroup of $\operatorname{Hom}_{\mathbb R}(\mathbb R^n,\mathbb R)$ associated with a subgroup of $\mathbb R^n$

<□> <□> <□> <□> < ≧> < ≧> < ≧> < ≧> < ≥ < 2/33

Part III: August 5, 2016

Examples of lattices in number theory

- Minima of quadratic forms
- Sum of two squares
- Sum of four squares
- Primes of the form $x^2 + ny^2$
- Discriminant of a number field
- Units of a number field: Dirichlet's Theorem
- Geometry of numbers and transcendence

Subgroups of $\ensuremath{\mathbb{R}}$

Theorem 1 (Kronecker).

Let θ be an irrational number. Then $\mathbb{Z} + \mathbb{Z}\theta$ is dense in \mathbb{R} .

Lemma 2. A subgroup of \mathbb{R} is either discrete or dense.

Lemma 3.

The closed subgroups of \mathbb{R} are \mathbb{R} and the discrete subgroups generated by one element (including $\{0\}$).

5/33

Subgroups of \mathbb{R}/\mathbb{Z}

From Lemma 2, we deduce:

Corollary 4. A subgroup of \mathbb{R}/\mathbb{Z} is either finite or dense.

Topological groups

Topological group: group G with a topology for which the maps

are continuous ($G \times G$ is endowed with the product topology).

Examples:

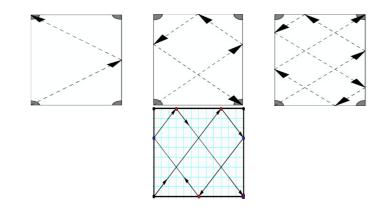
$$\mathbb{R}, \ \mathbb{Z}, \ \mathbb{C}, \ \mathbb{R}/\mathbb{Z}, \ \mathbb{R}^{\times}, \ \mathbb{R}_{+}^{\times}, \ \mathbb{U} = \{z \in \mathbb{C}^{\times} \ | \ |z| = 1\}.$$

Isomorphisms:

 $\mathbb{R}\simeq \mathbb{R}_+^\times, \quad \mathbb{U}\simeq \mathbb{R}/\mathbb{Z}, \quad \mathbb{R}_+^\times\simeq \mathbb{R}^\times/\{\pm 1\}, \quad \mathbb{C}^\times\simeq \mathbb{R}_+^\times\times \mathbb{U}.$

```
Character of a group G: continuous homomorphism G \to \mathbb{U}.
```

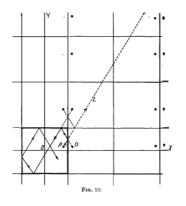
Billiard problem



The orbit is either periodic or dense in the torus, depending on whether the tangent of the angle is rational or not.

6/33

The problem of the reflected ray



HARDY, G.H. & WRIGHT, E.M, An Introduction to the Theory of Numbers. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979. See Chap. XXIII.

Kronecker's Theorem

Theorem 7 (Kronecker).

Let θ be an irrational real number. For any $x \in \mathbb{R}$ and any N > 0 there exist n and k in \mathbb{Z} with n > N and

$$|x-k-n\theta| < \frac{3}{n} \cdot$$

HARDY, G.H. & WRIGHT, E.M, An Introduction to the Theory of Numbers. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979. See §23.2, Th. 440.

Subgroups of \mathbb{R}^{\times}

From Theorem 1, we deduce:

Corollary 5.

Let Γ be a finitely generated subgroup of \mathbb{R}^{\times}_{+} . Then the following conditions are equivalent. (i) Γ is dense in \mathbb{R}^{\times}_{+} . (ii) Γ has rank > 2 over \mathbb{Z} .

Corollary 6.

Let Γ be a finitely generated subgroup of \mathbb{R}^{\times} . Then the following conditions are equivalent. (i) Γ is dense in \mathbb{R}^{\times} . (ii) Γ has rank > 2 over \mathbb{Z} and contains a negative real number.

> 10/33

Dirichlet's Theorem

In the homogeneous case (x = 0), a stronger result is available.

Theorem 8 (Dirichlet).

Let θ be a real number. For any $Q \in \mathbb{R}$ with Q > 1 there exist p and q in \mathbb{Z} with $1 \leq q < Q$ and

$$q\theta - p| \le \frac{1}{Q}.$$

9/33

Discrete subgroups of \mathbb{R}^n

Lemma 9.

A subgroup G of \mathbb{R}^n is discrete in \mathbb{R}^n if and only if there exists an open subset \mathcal{U} of \mathbb{R}^n containing 0 such that $G \cap \mathcal{U}$ is discrete.

Theorem 10.

Let g_1, \ldots, g_ℓ be \mathbb{R} -linearly independent elements in \mathbb{R}^n . Then the subgroup $\mathbb{Z}g_1 + \cdots + \mathbb{Z}g_\ell$ of \mathbb{R}^n is discrete. Conversely, if G is a discrete subgroup of \mathbb{R}^n , then there exist \mathbb{R} -linearly independent elements g_1, \ldots, g_ℓ in G such that $G = \mathbb{Z}g_1 + \cdots + \mathbb{Z}g_\ell$.

Submodules of finitely generated free \mathbb{Z} -modules

Proposition 12.

If G is a free finitely generated \mathbb{Z} -module and G' a submodule of G, then G' is free and finitely generated.

Auxiliary result

Lemma 11.

Let G be a discrete subgroup of \mathbb{R}^n of real rank r. Let e_1, \ldots, e_r be \mathbb{R} -linearly independent elements in G. Then $G' = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r$ is a subgroup of finite index in G.

Define

$$\overline{P} = \{ x_1 e_1 + \dots + x_r e_r \mid 0 \le x_i \le 1 \ (i = 1, \dots, r) \}.$$

Then $G \cap \overline{P}$ is a finite set. For each $x \in G$ there exists $x' \in G'$ such that $x - x' \in G \cap \overline{P}$.

< □ > < @ > < 클 > < 클 > 클 → 이익 (~ 14/33

Theorem of the adapted basis

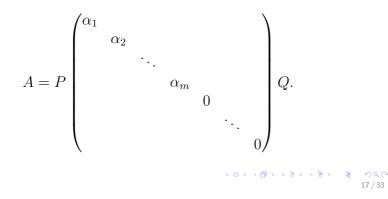
Theorem 13.

Let G be a discrete subgroup of \mathbb{R}^n and G' a subgroup, $G' \neq 0$. There exists a basis e_1, \ldots, e_r of G over \mathbb{Z} , an integer $m \geq 1$ and positive integers a_1, \ldots, a_m such that (i) (a_1e_1, \ldots, a_me_m) is a basis of G' over \mathbb{Z} , (ii) a_1 divides a_2 , a_2 divides a_3 , ... and a_{m-1} divides a_m .

Remark: the a_i are called the *invariant factors*. This result is a special case of a theorem on the structure of modules over a principal ring (here: \mathbb{Z}).

Theorem of the adapted basis (matrix form)

Let n and p be positive integers, $A ext{ a } n \times p$ matrix with coefficients in \mathbb{Z} of rank $m \geq 1$. Then there exist a unique sequence of positive integers $\alpha_1, \alpha_2, \ldots, \alpha_m$, such that α_1 divides α_2, α_2 divides α_3, \ldots and α_{m-1} divides α_m , and there exist regular matrices $P \in \operatorname{GL}_n(\mathbb{Z})$ and $Q \in \operatorname{GL}_p(\mathbb{Z})$ such that



Lattices in \mathbb{R}^n

Let G be a lattice in \mathbb{R}^n and $\mathbf{e} = (e_1, \dots, e_n)$ a basis of G. The **fundamental parallelepiped** associated to \mathbf{e} is

 $\mathcal{P}_{\mathbf{e}} = \{ x_1 e_1 + \dots + x_n e_n \mid (x_1, \dots, x_n) \in [0, 1)^n \}.$

Proposition 14.

 $\mathcal{P}_{\mathbf{e}}$ is a fundamental domain for the action of G on \mathbb{R}^n by translation.

This means:

(i) $0 \in \mathcal{P}_{\mathbf{e}}$.

(ii) $\mathcal{P}_{\mathbf{e}}$ is mesurable (the characteristic function is Riemann integrable)

(iii) \mathbb{R}^n is the disjoint union of the sets $\mathcal{P}_{\mathbf{e}} + g$ for $g \in G$.

Given a subgroup G of ℝⁿ, the following conditions are equivalent.
(i) There exists a basis (e₁,..., e_n) of the ℝ-vector space ℝⁿ such that G = ℤe₁ + ··· + ℤe_n.
(ii) G is a discrete subgroup of ℝⁿ of rank n.
(iii) G is a discrete subgroup of ℝⁿ such that ℝⁿ/G is compact.

(iv) G is a discrete subgroup of \mathbb{R}^n which contains n elements linearly independent over \mathbb{R} .

Lattice = discrete subgroup of \mathbb{R}^n of maximal rank.

Determinant, covolume

Let G be a lattice in \mathbb{R}^n . To a basis $\mathbf{e} = \{e_1, \ldots, e_n\}$ of G we associate the parallelepiped

 $P_{\mathbf{e}} = \{ x_1 e_1 + \dots + x_n e_n \mid 0 \le x_i < 1 \ (1 \le i \le n) \}$

A change of bases of G is obtained with a matrix of determinant ± 1 with integer coefficients, hence

• The determinant of e in the canonical basis of \mathbb{R}^n depends only on G, not on the choice of the basis e. It is called the determinant of G and denoted by det(G).

• The Lebesgue measure $\mu(P_e)$ of P_e does not depend on e: this number is called the *covolume* of the lattice G and is denoted by v(G). We have $\det(G) = v(G)$.

Packing, covering, tiling

Let K_i , $i \in I$ be a family of subsets of \mathbb{R}^n , where each K_i is the closure of a non empty open set U_i .

The family $(K_i)_{i \in I}$ is called *a packing* of \mathbb{R}^n if the U_i are pairwise disjoint.

The family $(K_i)_{i \in I}$ is called *a covering* of \mathbb{R}^n if the union of the K_i is \mathbb{R}^n .

The family $(K_i)_{i \in I}$ is called a *tiling* of \mathbb{R}^n if it is both a packing and a covering.

If P is a fundamental parallelotope of a lattice G with closure \overline{P} , then the family $(\overline{P} + g)_{g \in G}$ is a tiling of \mathbb{R}^n .

Lattices and matrices

Let A be a regular $n \times n$ matrix with real coefficients and vector columns a_1, \ldots, a_n . The set

$$A\mathbb{Z}^{n} = \{a_{1}x_{1} + \dots + a_{n}x_{n} \mid x = (x_{1}, \dots, x_{n}) \in \mathbb{Z}^{n}\}$$

is a lattice in \mathbb{R}^n .

Let A_1 and A_2 be two non singular $n \times n$ matrices. Let $G_1 = A_1 \mathbb{Z}^n$ and $G_2 = A_2 \mathbb{Z}^n$. Then $G_2 \subset G_1$ if and only if there exists a regular $n \times n$ matrix with integer coefficients such that $A_2 = A_1 P$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のQペ 23/33

Necessary conditions for covering and packing

Let G be a lattice in \mathbb{R}^n of determinant d(G) and let K be the closure of a non empty open set in \mathbb{R}^n .

If the G-translates of K are a covering of $\mathbb{R}^n,$ then $\mu(K) \geq d(G).$

If the G-translates of K are a packing of $\mathbb{R}^n,$ then $\mu(K) \leq d(G).$

COPPEL, W.A. Number Theory. An introduction to mathematics, Springer Verlag, 2009 . Part B, The Geometry of Numbers, pp. 327-362 http://www.springer.com/gp/book/9780387894850

◆□ → ◆□ → ◆ 注 → ◆ 注 → ○ へ ○
22/33

Unimodular matrices

For a $n\times n$ matrix U with coefficients in $\mathbb Z,$ the following conditions are equivalent:

(i) There exists a $n \times n$ matrix V with coefficients in \mathbb{Z} such that $UV = VU = I_n$.

(ii) det $U = \pm 1$.

Such a matrix is called *unimodular*. The group of unimodular matrices is denoted $GL_n(\mathbb{Z})$.

If e_1, \ldots, e_n is a basis of the lattice G and if f_1, \ldots, f_n are elements in \mathbb{R}^n , then f_1, \ldots, f_n is a basis G if and only if there exists a unimodular matrix $(p_{ij})_{1 \leq i,j \leq n}$ such that $f_i = p_{1i}e_1 + \cdots + p_{ni}e_n$ $(i = 1, \ldots, n)$.

The two lattices $G_1 = A_1 \mathbb{Z}^n$ and $G_2 = A_2 \mathbb{Z}^n$ are the same if and only if $A_1^{-1} A_2$ is unimodular.

Sublattices

A sublattice of a lattice G is a subset G' of G which is also a lattice in \mathbb{R}^n . It is a subgroup of finite index in G.

There is a basis e_1, \ldots, e_n of G and positive integers a_1, \ldots, a_n such that a_1e_1, \ldots, a_ne_n is a basis of G'.

$$(G:G') = a_1 \cdots a_n.$$

Further.

$$v(G') = (G:G')v(G).$$

25/33

Discrete subgroups of \mathbb{R}^n

Corollary 16.

Let e_1, \ldots, e_r be \mathbb{R} -linearly independent elements in \mathbb{R}^n and t_1, \ldots, t_r be real numbers. Define $\theta = t_1 e_1 + \cdots + t_r e_r$. Then the subgroup $\mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r + \mathbb{Z}\theta$ is discrete in \mathbb{R}^n if and only if the numbers t_1, \ldots, t_r are all rational.

Corollary 17.

Let t_1, \ldots, t_n be real numbers. The following conditions are equivalent.

(i) For any $\epsilon > 0$, there exist integers p_1, \ldots, p_n, q with q > 0such that

$$0 < \max_{1 \le i \le n} |qt_i - p_i| < \epsilon.$$

(ii) One at least of the numbers t_1, \ldots, t_n is irrational. (iii) 0 is an accumulation point of $\mathbb{Z}^n + \mathbb{Z}(t_1, \ldots, t_n)$. ・ロト・(部)・(目)・(目)・(日)・(の)への

Supplement

Given v_1, \ldots, v_ℓ in \mathbb{Z}^n , does there exist $v_{\ell+1}, \ldots, v_n$ such that v_1, \ldots, v_n is a basis of \mathbb{Z}^n over \mathbb{Z} ?

Proposition 15.

Let G be a discrete subgroup of \mathbb{R}^n and G' a subgroup. The following conditions are equivalent.

(i) There exists a subgroup G'' of G such that $G = G' \oplus G''$.

(ii) The quotient group G/G' is torsion-free.

(iii) G' is saturated: $G' = G \cap (G' \otimes \mathbb{R})$.

(iv) The integers a_i in the Theorem of the adapted basis are all equal to 1.

> 26 / 33

Closed subgroups of \mathbb{R}^n

Theorem 18.

Let G be a closed subgroup of \mathbb{R}^n of real rank r. There exists a maximal vector subspace V of \mathbb{R}^n contained in G. If W is a vector subspace of \mathbb{R}^n with $V \oplus W = \mathbb{R}^n$, then $\Gamma = W \cap G$ is a discrete subgroup of \mathbb{R}^n and

$$G=V\oplus\Gamma.$$

Hence $G \simeq \mathbb{R}^r \times \mathbb{Z}^{\ell-r}$.

Lemma 19.

A closed subgroup of \mathbb{R}^n which is not discrete contains a real line.

Kronecker's Theorem

Theorem 20 (Kronecker).

Let $\theta_1, \ldots, \theta_n$ be real numbers. The subgroup

 $\mathbb{Z}^n + \mathbb{Z}(\theta_1, \dots, \theta_n) =$ { $(s_1 + s_0\theta_1, \dots, s_n + s_0\theta_n) \mid (s_0, s_1, \dots, s_n) \in \mathbb{Z}^{n+1}$ }

of \mathbb{R}^n is dense in \mathbb{R}^n if and only if the n + 1 numbers $1, \theta_1, \ldots, \theta_n$ are \mathbb{Q} -linearly independent.

Dense subgroups of \mathbb{R}^n (continued)

(vi) Let g_1, \ldots, g_ℓ be a set of generators of G as a \mathbb{Z} -module. Write the coordinates of g_j in the canonical basis of \mathbb{R}^n :

$$g_j = (g_{1,j}, \dots, g_{n,j}) \quad (1 \le j \le \ell).$$

For any (s_1, \ldots, s_ℓ) in $\mathbb{Z}^\ell \setminus \{0\}$, the matrix

$$\begin{pmatrix} g_{1,1} & \cdots & g_{1,n+1} \\ \vdots & \ddots & \vdots \\ g_{n,1} & \cdots & g_{n,n+1} \\ s_1 & \cdots & s_{n+1} \end{pmatrix}$$

has rank n + 1.

Dense subgroups of \mathbb{R}^n

Proposition 21.

Let G be a finitely generated subgroup of \mathbb{R}^n . The following conditions are equivalent. (i) G is dense in \mathbb{R}^n . (ii) For any vector subspace V of \mathbb{R}^n distinct from \mathbb{R}^n , we have

 $\operatorname{rank}_{\mathbb{Z}}(G/G \cap V) > \dim_{\mathbb{R}}(\mathbb{R}^n/V).$

(iii) For any hyperplane H of \mathbb{R}^n , we have

 $\operatorname{rank}_{\mathbb{Z}}(G/G \cap H) \ge 2.$

(iv) For any non-zero linear form $\varphi : \mathbb{R}^n \to \mathbb{R}$, we have $\varphi(G) \notin \mathbb{Z}$. (v) For any non-trivial character $\chi : \mathbb{R}^n \to \mathbb{U}$, we have $\chi(G) \neq \{1\}$.

30 / 33

Subgroup of $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n,\mathbb{R})$ associated with a subgroup of \mathbb{R}^n

When G is a subgroup of \mathbb{R}^n , we set

 $G^{\star} = \{ \varphi \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R}) \mid \varphi(G) \subset \mathbb{Z} \}.$

When \mathcal{G} is a subgroup of $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n,\mathbb{R})$, we set

 $\mathcal{G}^{\star} = \{ x \in \mathbb{R}^n \mid \varphi(x) \in \mathbb{Z} \text{ for all } \varphi \in \mathcal{G} \}.$

Proposition 22.

Let G be a subgroup of \mathbb{R}^n . Let \overline{G} be the topological closure of G in \mathbb{R}^n . Then

$$\overline{G} = (G^\star)^\star.$$

Subgroup of $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n,\mathbb{R})$ associated with a subgroup of \mathbb{R}^n

Lemma 23.

If G is a subgroup of \mathbb{R}^n , then G^* is a closed subgroup of $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n,\mathbb{R})$ and $(\overline{G})^* = G^*$.

Lemma 24.

Let G be a closed subgroup of \mathbb{R}^n . Let e_1, \ldots, e_n be a basis of \mathbb{R}^n such that

$$G = \mathbb{R}e_1 + \dots + \mathbb{R}e_r + \mathbb{Z}e_{r+1} + \dots + \mathbb{Z}e_{\ell}.$$

Let f_1, \ldots, f_n be the dual basis of e_1, \ldots, e_n . Then

 $G^{\star} = \mathbb{Z}f_{r+1} + \dots + \mathbb{Z}f_{\ell} + \mathbb{R}f_{\ell+1} + \dots + \mathbb{R}f_n.$