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Part |I: August 3, 2016

e Convex sets and star bodies

e Minkowski's convex body Theorem

e Minkowski's theorems on linear forms
e Gauge functions

o Minkowsk's theorems on successive minima

Part |: August 1, 2016

e Subgroups of R™: discrete, closed, dense

e Topological groups

e Lattices

e Fundamental parallelepiped, covolume, determinant
e Packing, covering, tiling

e Sublattices

e Subgroup of Homg(R", R) associated with a subgroup of R™

Part Ill: August 5, 2016

Examples of lattices in number theory

e Minima of quadratic forms

e Sum of two squares

e Sum of four squares

e Primes of the form 2 + ny?

e Discriminant of a number field

e Units of a number field: Dirichlet's Theorem

e Geometry of numbers and transcendence



Subgroups of R Topological groups

Topological group: group G with a topology for which the

maps

GxG — G G - G

Theorem 1 (Kronecker). (z,y) — xy and -

Let 6 be an irrational number. Then Z + 76 is dense in R.

1

are continuous (G x G is endowed with the product topology).
Lemma 2.

Examples:
A subgroup of R is either discrete or dense.

R, Z, C, R/Z, R*, R, U={zeC"~ =1}
Lemma 3. / " {z | 2l =1}
The closed subgroups of R are R and the discrete subgroups )
generated by one element (including {0} ). Isomorphisms:
R~RY, U~R/Z, RI~R*/{£l}, C*~RIxU.
Character of a group G: continuous homomorphism G — U.
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Subgroups of R/Z Billiard problem
ﬁ‘ =4 3 /\ |
-

From Lemma 2, we deduce:

Corollary 4.
A subgroup of R/Z is either finite or dense.

The orbit is either periodic or dense in the torus, depending on
whether the tangent of the angle is rational or not.



The problem of the reflected ray
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HarDY, G.H. & WRIGHT, E.M, An Introduction to the
Theory of Numbers. Fifth edition. The Clarendon Press,
Oxford University Press, New York, 1979. See Chap. XXIII.

Kronecker's Theorem

Theorem 7 (Kronecker).

Let 6 be an irrational real number. For any x € R and any
N > 0 there exist n and k in Z withn > N and

3
|lr — k —nl| < —
n

HarDY, G.H. & WRIGHT, E.M, An Introduction to the
Theory of Numbers. Fifth edition. The Clarendon Press,
Oxford University Press, New York, 1979. See §23.2, Th. 440.
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Subgroups of R*

From Theorem 1, we deduce:

Corollary 5.

Let I' be a finitely generated subgroup of R;. Then the

following conditions are equivalent.
(i) T is dense in R .
(i) T' has rank > 2 over Z.

Corollary 6.

Let ' be a finitely generated subgroup of R*. Then the

following conditions are equivalent.
(i) T is dense in R*.

(ii) I' has rank > 2 over Z and contains a negative real

number.

Dirichlet's Theorem

In the homogeneous case (z = 0), a stronger result is

available.

Theorem 8 (Dirichlet).

Let 6 be a real number. For any ) € R with () > 1 there exist

pandqinZ with1 < q < @ and

g6 — p| <

1
Q
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Discrete subgroups of R” Auxiliary result

Lemma 9. o o _ _ Lemma 11.
A subgroup G' of R lsnd/screte.* in R™ if and only if ther._e exists Let G be a discrete subgroup of R™ of real rank r. Let
an open subset U of R™ containing 0 such that G O U is e1,...,e. be R-linearly independent elements in G. Then
discrete. G' = Zey + - -- + Ze, is a subgroup of finite index in G.
Theorem 10. Define
Let g1, ...,g¢ be R-linearly independent elements in R". Then
the subgroup Zg, + - - - + Zge of R™ is discrete. P={me + - +me, | 0<2;<1(i=1,...,7)}
Conversely, if G is a discrete subgroup of R"™, then there exist o _
R-linearly independent elements g1, ..., g, in G such that Then G N P is a finite set. For each z € G there exists
G="2Zg + -+ Zg. 7' € G’ suchthatx — 2’ € GNP.
13/33 14 /33
Submodules of finitely generated free Z—modules Theorem of the adapted basis

Theorem 13.

Let G be a discrete subgroup of R™ and G' a subgroup,

G’ # 0. There exists a basis eq, ..., e, of G over Z, an integer
Proposition 12. m > 1 and positive integers ay, . .., a,, such that
If G is a free finitely generated Z—module and G' a submodule (’) (alel., e U Cn) "5_‘? basis of G over Z, o
of G, then G' is free and finitely generated. (ii) ay divides ay, as divides as, ... and a,,—1 divides a,.

Remark: the a; are called the invariant factors. This result is a
special case of a theorem on the structure of modules over a
principal ring (here: Z).

15/33 16 /33



Theorem of the adapted basis (matrix form)

Let n and p be positive integers, A a n X p matrix with
coefficients in Z of rank m > 1. Then there exist a unique
sequence of positive integers aq, ao, ..., Q,,, such that

o divides ay, ap divides as, ... and «,,_; divides oy,
and there exist regular matrices P € GL,,(Z) and

Q) € GL,(Z) such that

aq
Qg
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Lattices in R"

Let G be a lattice in R” and e = (ey, ..., e,) a basis of G.
The fundamental parallelepiped associated to e is

Po={me1+ -+ xne, | (x1,...,2,) €[0,1)"}.
Proposition 14.

Pe is a fundamental domain for the action of G on R™ by
translation.

This means:

(i) 0 € Pe.

(ii) Pe is mesurable (the characteristic function is Riemann
integrable)

(iii) R™ is the disjoint union of the sets P, + ¢ for g € G.

19/33

Definition of a lattice in R"

Given a subgroup G of R", the following conditions are
equivalent.

(i) There exists a basis (e, ..., e,) of the R—vector space R"
such that G = Zey + - - - + Ze,,.

(ii) G is a discrete subgroup of R™ of rank n.

(iii) G is a discrete subgroup of R™ such that R"/G is
compact.

(iv) G is a discrete subgroup of R™ which contains n elements
linearly independent over R.

Lattice = discrete subgroup of R™ of maximal rank.

Determinant, covolume

Let G be a lattice in R". To a basis e = {ey,...,e,} of G we
associate the parallelepiped

Po=A{zie1 4+ - +axpe, | 0<z;, <1 (1<i<n)}

A change of bases of (G is obtained with a matrix of
determinant +1 with integer coefficients, hence

e The determinant of e in the canonical basis of R™ depends
only on GG, not on the choice of the basis e. It is called the
determinant of G and denoted by det(G).

e The Lebesgue measure p(P,) of P, does not depend on e:
this number is called the covolume of the lattice G and is
denoted by v(G).

We have det(G) = v(G).

18/33
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Packing, covering, tiling

Let K;, © € I be a family of subsets of R", where each Kj is
the closure of a non empty open set U;.

The family (K;);e;s is called a packing of R" if the U; are
pairwise disjoint.

The family (K;);cs is called a covering of R™ if the union of
the K; is R".

The family (K;);er is called a tiling of R™ if it is both a
packing and a covering.

[P is a fundamentaiparallelotope of a lattice G with closure
P, then the family (P + g),ec is a tiling of R™.

21/33

Lattices and matrices

Let A be a regular n x n matrix with real coefficients and
vector columns aq,...,a,. The set

AZn:{a1$l+"'+an$n | x:(xh?xn)ezn}

is a lattice in R™.

Let A; and A, be two non singular n X n matrices. Let
Gl = AlZ” and GQ = AQZ” Then GQ C G1 if and only if
there exists a regular n x n matrix with integer coefficients
such that Ay = A P.
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Necessary conditions for covering and packing

Let G be a lattice in R" of determinant d(G) and let K be
the closure of a non empty open set in R”.

If the G—translates of K are a covering of R", then
u(K) > d(G).

If the G—translates of K are a packing of R", then
p(K) < d(@).

CorpPEL, W.A. Number Theory. An introduction to
mathematics, Springer Verlag, 2009 . Part B, The Geometry
of Numbers, pp. 327-362
http://www.springer.com/gp/book/9780387894850
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Unimodular matrices

For a n x n matrix U with coefficients in Z, the following
conditions are equivalent:

(i) There exists a n x n matrix V with coefficients in Z such
that UV =VU = [,.

(i) det U = £1.

Such a matrix is called unimodular. The group of unimodular
matrices is denoted GL,,(Z).

If e1,...,e, is a basis of the lattice G and if fi,..., f, are
elements in R", then fi,..., f,, is a basis G if and only if
there exists a unimodular matrix (p;;)1<i j<n such that
fi:p1i€1+"'+pm€n (2:1,,n)

The two lattices G = A1Z"™ and Gy = AyZ™ are the same if
and only if A;' A, is unimodular.

24 /33



Sublattices

A sublattice of a lattice G is a subset G’ of G which is also a
lattice in R™. It is a subgroup of finite index in G.

There is a basis ey, ..., e, of G and positive integers
ai,...,ay such that ajeq, ..., aye, is a basis of G'.

(G:G)=ay - a,.

Further,
v(G") = (G : G (G).

25/33

Discrete subgroups of R”

Corollary 16.

Let eq,...,e. be R-linearly independent elements in R™ and
ti,...,t,. be real numbers. Define § = tieq + ---+t.e,.. Then
the subgroup Zey + - - - + Ze, + 7.0 is discrete in R™ if and
only if the numbers tq, ..., t, are all rational.

Corollary 17.

Let tq,...,t, be real numbers. The following conditions are
equivalent.
(i) For any € > 0, there exist integers py,...,pn,q with g >0

such that

0< gllaél\qti —pil <e.

(ii) One at least of the numbers ty, ..., t, is irrational.
(iii) 0 is an accumulation point of " + Z(t1, . . ., t,).

27 /33

Supplement
Given vy, ..., vy in Z", does there exist vyy1, ..., v, such that
V1, ...,y is a basis of Z" over Z7

Proposition 15.

Let G be a discrete subgroup of R™ and G' a subgroup. The
following conditions are equivalent.

(i) There exists a subgroup G" of G such that G = G' & G".
(ii) The quotient group G/G" is torsion—free.

(i) G is saturated: G' = G N (G’ @ R).

(iv) The integers a; in the Theorem of the adapted basis are
all equal to 1.

Closed subgroups of R”

Theorem 18.

Let G be a closed subgroup of R™ of real rank r. There exists
a maximal vector subspace V' of R™ contained in G. If W is a
vector subspace of R" withV & W =R", then' =W NG is
a discrete subgroup of R" and

G=Vaol.
Hence G ~ R" x Z'".
Lemma 19.
A closed subgroup of R™ which is not discrete contains a real
line.

26 /33
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Kronecker's Theorem Dense subgroups of R"

Proposition 21.

Let G be a finitely generated subgroup of R"™. The following
conditions are equivalent.

Theorem 20 (Kronecker). (i) G is dense in R™.
Let 0y,...,0, be real numbers. The subgroup (ii) For any vector subspace V' of R"™ distinct from R", we have
7"+ Z(bh,...,0,) = rankz(G/G NV) > dimg(R"/V).

01,...,8n 0, L S1,...,8,) € Z"
{(s1 4 5001, 50+ o) | (50,1 5n) € } (iii) For any hyperplane H of R", we have

of R" is dense in R™ if and only if the n + 1 numbers

1,04, ...,0, are Q-linearly independent. rankz(G/G N H) 2 2.

(iv) For any non-zero linear form ¢ : R™ — R, we have

p(G) L Z.
(v) For any non—trivial character x : R™ — U, we have

X(G) # {1}
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Dense subgroups of R" (continued) Subgroup of Homg(R", R) associated with a
subgroup of R"

(vi) Let g1, ..., g, be a set of generators of G as a Z—-module.

Write the coordinates of g; in the canonical basis of R": When G is a subgroup of R", we set

95 = (g1, 9nj) (1< j<0). G* = {p € Homg(R",R) | »(G) C Z}.
For any (s1,...,s¢) in Z'\ {0}, the matrix When G is a subgroup of Homg(R", R), we set
g1 Gl G ={xeR" | p(x)€Zforall p € G}.
Ini 0 Gnontl Proposition 22.
51 00t Sntl Let G be a subgroup of R™. Let G be the topological closure

of G in R™. Then
has rank n + 1. G (G,
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Subgroup of Homg(R", R) associated with a
subgroup of R"

Lemma 23.
If G is a subgroup of R", then G* is a closed subgroup of

Homg(R"™,R) and (G)* = G*.

Lemma 24.

Let G be a closed subgroup of R". Let ey, ..., e, be a basis of

R™ such that
G:R€1+"‘+R€T+Z€T+1—|—"'+Z€g.
Let fi1,..., f, be the dual basis of e, ...,¢e,. Then

G =ZLfr1+ -+ ZLfe+Rfp+ -+ Rfy.

33/33



