A joint CIMPA-ICTP research school on
Lattices and applications to cryptography and coding


CIMPA August $1^{\text {st }}-12^{\text {th }}, 2016$

## Lattices and geometry of numbers II

## Michel Waldschmidt

Université Pierre et Marie Curie (Paris 6) France
http://www.imj-prg.fr/~michel.waldschmidt/
Update: 05/08/2016

## Blichfeldt's Theorem

## Theorem 1.

Let $L$ be a lattice in $\mathbb{R}^{n}$ of determinant $\Delta$ and $B$ a measurable subset of $\mathbb{R}^{n}$. Assume $\mu(B)>\Delta$. Then there exist $x \neq y$ in $B$ such that $x-y \in L$.

## Part II: August 3, 2016

- Convex sets and star bodies
- Minkowski's convex body Theorem
- Minkowski's theorems on linear forms
- Gauge functions
- Minkowsk's theorems on successive minima


## Convex Bodies

A set $B \subset \mathbb{R}^{n}$ is convex if, for $x$ and $y$ in $B$ and for $0 \leq \theta \leq 1, \theta x+(1-\theta) y$ is in $B$.

A star subset of $\mathbb{R}^{n}$ is a subset $B$ such that, for any $x \in B$ and any $\theta$ with $0 \leq \theta \leq 1, \theta x$ is in $B$. Hence a convex subset of $\mathbb{R}^{n}$ containing 0 is a star subset.

The characteristic function of a convex bounded subset of $\mathbb{R}^{n}$ is Riemann integrable.

If a convex subset $B$ of $\mathbb{R}^{n}$ is not contained in a hyperplane, then its interior is not empty and is a convex open set.

A convex body is a nonempty bounded open convex subset of $\mathbb{R}^{n}$.

A subset $B$ of $\mathbb{R}^{n}$ is symmetric if $x \in B$ implies $-x \in B$.

## Minkowski's convex body Theorem

## Theorem 2.

Let $L$ be a lattice in $\mathbb{R}^{n}$ of determinant $\Delta$ and let $B$ be a measurable subset of $\mathbb{R}^{n}$, convex and symmetric with respect to the origin, of measure $\mu(B)$, such that $\mu(B)>2^{n} \Delta$. Then $B \cap L \neq\{0\}$.

## Corollary 3.

With the notations of Corollary 2 , if $B$ is also compact in $\mathbb{R}^{n}$, then the weaker inequality $\mu(B) \geq 2^{n} \Delta$ suffices to reach the conclusion.

Remark The example of $L=\mathbb{Z}^{n}$ with $\Delta=1$ and $B=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ;\left|x_{i}\right|<1\right\}$ with measure $\mu(B)=2^{n}$, shows that Corollaries 2 and 3 are sharp.

## Homogeneous simultaneous approximation

## Corollary 6.

There exist $\underline{x}, \underline{x}^{\prime}, \underline{x}^{\prime \prime} \neq 0$ in $\mathbb{Z}^{n}$ such that

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|L_{i}(\underline{x})\right| \leq \sqrt[n]{n!|\Delta|} \\
& \prod_{i=1}^{n}\left|L_{i}\left(\underline{x}^{\prime}\right)\right| \leq n^{-n} n!|\Delta|
\end{aligned}
$$

and

$$
\sum_{i=1}^{n}\left|L_{i}\left(\underline{x}^{\prime \prime}\right)\right|^{2} \leq c_{n}|\Delta|^{2 / n}
$$

with

$$
c_{n}=\frac{4}{\pi} \Gamma\left(\frac{n}{2}+1\right)^{2 / n}
$$

## Minkowski's Linear Form Theorem

Theorem 4 (Minkowski).
Let $L_{1}, \ldots, L_{n}$ be homogeneous linear forms in $n$ variables with real coefficients and determinant $\Delta$. Let $c_{1}, \ldots, c_{n}$ be positive numbers with

$$
c_{1} \cdots c_{n} \geq|\Delta|
$$

Then there exists $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \backslash\{0\}$ such that

$$
\left|L_{i}(\underline{x})\right| \leq c_{i} \quad(i=1, \ldots, n)
$$

## Corollary 5.

There exists $\underline{x} \neq 0$ such that

$$
\max _{1<i \leq n}\left|L_{i}(\underline{x})\right| \leq \sqrt[n]{|\Delta|}
$$

## Volume of the octahedron

$$
\sum_{i=1}^{n}\left|L_{i}(\underline{x})\right| \leq \sqrt[n]{n!|\Delta|}
$$



The volume of the octahedron $\left|x_{1}\right|+\cdots+\left|x_{n}\right|<1$ in $\mathbb{R}^{n}$ is

$$
2^{n} \int_{0}^{1} \int_{0}^{1-x_{1}} \cdots \int_{0}^{1-x_{1}-\cdots-x_{n-1}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}=\frac{2^{n}}{n!}
$$

Hint: for $n \geq 1$,

$$
\int_{0}^{1-t} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} \cdots \int_{0}^{1-x_{n-1}} \mathrm{~d} x_{n}=\frac{1}{n!}(1-t)^{n}
$$

Arithmetico－geometric inequality

$$
\prod_{i=1}^{n}\left|L_{i}\left(\underline{x}^{\prime}\right)\right| \leq n^{-n} n!|\Delta|
$$

For $x_{1}, \ldots, x_{n}$ in $\mathbb{R}$ ，

$$
\left(x_{1} \cdots x_{n}\right)^{1 / n} \leq \frac{x_{1}+\cdots+x_{n}}{n}
$$

Proof using the logarithmic function：convexity．
Proof by induction（Cauchy）

$$
n=2, \quad n \Rightarrow n-1, \quad n \Rightarrow 2 n
$$

Volume of the unit sphere

$$
\begin{gathered}
V_{1}=2, \quad V_{2}=\pi, \quad V_{3}=\frac{4}{3} \pi, \quad V_{4}=\frac{\pi^{2}}{2} \\
V_{n}=\frac{2 \pi}{n} V_{n-2} . \\
V_{n}= \begin{cases}\frac{\pi^{n / 2}}{\left(\frac{n}{2}\right)!} & \text { for } n \text { even } \\
\frac{\pi^{\frac{n-1}{2}} 2^{n+1}\left(\frac{n+1}{2}\right)!}{(n+1)!} & \text { for } n \text { odd }\end{cases}
\end{gathered}
$$

Volume of the unit sphere

$$
\sum_{i=1}^{n}\left|L_{i}\left(\underline{x}^{\prime \prime}\right)\right|^{2} \leq c_{n}|\Delta|^{2 / n}
$$

The volume $V_{n}$ of the unit sphere

$$
\left\{x \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2}<1\right\}
$$

in $\mathbb{R}^{n}$ is

$$
\frac{\pi^{n / 2}}{\Gamma\left(1+\frac{n}{2}\right)}
$$

with $\Gamma(x+1)=x \Gamma(x)$ and $\Gamma(1 / 2)=\sqrt{\pi}$ ．

## Minkowski＇s Linear Forms Theorem for $\mathbb{Z}^{n}$ ．

Here is a consequence of Minkowski＇s Linear Forms Theorem for the lattice $\mathbb{Z}^{n}$ ．

## Theorem 7.

Suppose that $\vartheta_{i j}(1 \leq i, j \leq n)$ are real numbers with determinant $\pm 1$ ．Suppose that $A_{1}, \ldots, A_{n}$ are positive numbers with $A_{1} \cdots A_{n}=1$ ．Then there exists an integer point $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \neq 0$ such that

$$
\left|\vartheta_{i 1} x_{1}+\cdots+\vartheta_{i n} x_{n}\right|<A_{i} \quad(1 \leq i \leq n-1)
$$

and

$$
\left|\vartheta_{n 1} x_{1}+\cdots+\vartheta_{n n} x_{n}\right| \leq A_{n}
$$

## Simultaneous approximation

## Corollary 8.

Let $\vartheta_{i j}(1 \leq i \leq n, 1 \leq j \leq m)$ be $m n$ real numbers. Let $Q>1$ be a real number. There exist rational integers $q_{1}, \ldots, q_{m}, p_{1}, \ldots, p_{n}$ with

$$
1 \leq \max \left\{\left|q_{1}\right|, \ldots,\left|q_{m}\right|\right\}<Q^{n / m}
$$

and

$$
\max _{1 \leq i \leq n}\left|\vartheta_{i 1} q_{1}+\cdots+\vartheta_{i m} q_{m}-p_{i}\right| \leq \frac{1}{Q}
$$

Gauge function associated to a convex body
Let $B$ be a convex body. Let $\partial B$ be the boundary of $B$ and $\bar{B}=B \cup \partial B$ the closure of $B$.
The gauge function associated to $B$ is the map $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ defined by $f(0)=0$ and, for $x \neq 0$,

$$
f(x)=\inf \{\lambda>0 \mid x \in \lambda B\}
$$

Hence $x=f(x) x^{\prime}$ with $x^{\prime} \in \partial B$ and

$$
\begin{aligned}
& f(x)<1 \Longleftrightarrow x \in B \\
& f(x)=1 \Longleftrightarrow x \in \partial B \\
& f(x) \leq 1 \Longleftrightarrow x \in \bar{B}
\end{aligned}
$$

We will write $f(x)=\|x\|_{B}$.

## Minkowski's first convex body Theorems for $\mathbb{Z}^{n}$

Let $B$ be a symmetric convex body in $\mathbb{R}^{n}$. Define

$$
\lambda_{1}=\min _{0 \neq x \in \mathbb{Z}^{n}} f(x)
$$

Hence $\lambda_{1}$ is the least real number such that $\left(\lambda_{1} \bar{B}\right) \cap \mathbb{Z}^{n} \neq\{0\}$.
Theorem 9 (Minkowski).
For a symmetric convex body $B$ of volume $\mu(B)$, we have

$$
\lambda_{1}^{n} \mu(B) \leq 2^{n}
$$

A convex body is symmetric if and only if its Gauge function satisfies $f(-x)=f(x)$.

Minkowski's first convex body Theorems for the

## Euclidean ball

Denote by $\|\cdot\|$ the Euclidean norm and by $V_{n}$ the volume of the unit Euclidean ball in $\mathbb{R}^{n}$.
Let $L$ a lattice of determinant $\Delta$. Define

$$
\lambda_{1}=\min _{0 \neq x \in L}\|x\| .
$$

## Theorem 10 (Minkowski).

We have

$$
\lambda_{1}^{n} V_{n} \leq 2^{n} \Delta
$$

## Hermite's constant

The values of $\gamma_{n}$ is known for $n \leq 8$ and for $n=24$ :

| d | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma_{d}$ | $2 / \sqrt{3}$ | $2^{1 / 3}$ | $\sqrt{2}$ | $8^{1 / 5}$ | $(64 / 3)^{1 / 6}$ | $64^{1 / 7}$ | 2 | 4 |
| Approximation | 1.1547 | 1.2599 | 1.4142 | 1.5157 | 1.6654 | 1.8114 | 2 | 4 |

Phong Q. Nguyen. Hermite's Constant and Lattice Algorithms. Chapter 2 pp. 19-69 of The LLL Algorithm Survey and Applications, Phong Q. Nguyen and Brigitte Vallée, Editors. Ser. Information Security and Cryptography, Springer Verlag (2010).

## Hermite's constant

Recall that for $n \geq 2$,

$$
\gamma_{n}=\sup _{L} \frac{\lambda_{1}(L)^{2}}{(v(L))^{2 / n}}
$$

where $L$ ranges over the set of lattices $L$ in $\mathbb{R}^{n}$ of covolume $v(L)$ and first minimum $\lambda_{1}(L)$ with respect to the Euclidean ball in $\mathbb{R}^{n}$.
L. Lagrange proved $\gamma_{2}=2 / \sqrt{3}$ (hexagonal lattice - Eisenstein integers).

Hermite proved $\gamma_{n} \leq \gamma_{2}^{n-1}$ for $n \geq 2$.

## Minkowski's convex body Theorem and Hermite's constant

Minkowski deduced from his convex body theorem the upper bound

$$
\gamma_{n} \leq\left(\frac{4}{V_{n}}\right)^{2 / n}
$$

Using known estimates for

$$
V_{n}=\frac{\pi^{n / 2}}{\Gamma\left(1+\frac{n}{2}\right)}
$$

one deduces

$$
\gamma_{n} \leq 1+\frac{n}{4}
$$

## Successive minima

Let $B$ be a symmetric convex body in $\mathbb{R}^{n}$. The successive minima of $B$ relative to a lattice $\Lambda$ are the real numbers

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

such that, for $r=1, \ldots, n, \lambda_{r}$ is the least real number such that $\lambda_{r} \bar{B}$ contains at least $r$ linearly independent elements of $\Lambda$.

Examples with $\Lambda=\mathbb{Z}^{n}$.
The rectangle in $\mathbb{R}^{2}$ with center $(0,0)$, length 4 , width 1 has $\lambda_{1}=1 / 2$ and $\lambda_{2}=2$. Its volume is 4 .

The closed disc in $\mathbb{R}^{2}$ with center $(0,0)$ and radius $1 / 2$ has $\lambda_{1}=\lambda_{2}=1$. Its volume is $\pi^{2} / 4$.

## An example of Korkine and Zolotarev

Example of a lattice for which the successive minima of the
Euclidean ball do not give a basis: for $n \geq 5$,
$\mathbb{Z}^{n}+\mathbb{Z}\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)=\mathbb{Z} e_{1}+\cdots+\mathbb{Z} e_{n}+\mathbb{Z}\left(\frac{e_{1}+\cdots+e_{n}}{2}\right) \subset \mathbb{R}^{n}$.

This corresponds to the lattice $\mathbb{Z}^{n}$ and the convex body

$$
\begin{aligned}
& \left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right. \\
& \left.\quad\left(x_{1}+\frac{x_{n}}{2}\right)^{2}+\cdots+\left(x_{n-1}+\frac{x_{n}}{2}\right)^{2}+\left(\frac{x_{n}}{2}\right)^{2}<1\right\}
\end{aligned}
$$

An example in dimension 4
Consider the sublattice $L$ of $\mathbb{Z}^{n}$ which consists of
$\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with $x_{1}+x_{2}+x_{3}+x_{4}$ even. A basis is given by the row vectors of the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Hence the determinant of $L$ is 2 , the minima are all $\sqrt{2}$. The row vectors of the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

are also shortest vectors but span a sublattice of index 2 , ののC

## Bound for the index

Let $K$ be a convex body and $L$ a lattice in $\mathbb{R}^{n}$. Let $\omega_{1}, \ldots, \omega_{n}$ be linearly independent elements in $L$ such that

$$
\left\|\omega_{i}\right\|_{K}=\lambda_{i} \quad(i=1, \ldots, n)
$$

Let $\Omega=\mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{n}$. Then $(L: \Omega) \leq n!$.

A basis almost given by the successive minima

Given a symmetric convex body $K$ in $\mathbb{R}^{n}$ with gauge function $\|\cdot\|_{K}$ and a lattice $L$ with successive minima $\lambda_{1}, \ldots, \lambda_{n}$, there exists a basis $\left(v_{1}, \ldots, v_{n}\right)$ of $L$ with

$$
\left\|v_{i}\right\|_{K} \leq \max \left\{1, \frac{i}{2}\right\} \lambda_{i} \quad(i=1, \ldots, n)
$$

## Dual lattice

Denote by $x \cdot y$ the standard inner product in $\mathbb{R}^{n}$ :

$$
x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

Let $L$ be a lattice in $\mathbb{R}^{n}$. The dual lattice of $L$ is

$$
L^{\star}=\left\{y \in \mathbb{R}^{n} \mid x \cdot y \in \mathbb{Z} \text { for all } x \in L\right\}
$$

If $L_{1} \subset L_{2}$, then $L_{2}^{\star} \subset L_{1}^{\star}$.
For $L=A \mathbb{Z}^{n}$, we have $L^{\star}=\left({ }^{t} A\right)^{-1} \mathbb{Z}^{n}$.
Hence the dual lattice is a lattice with covolume satisfying

$$
v(L) v\left(L^{\star}\right)=1
$$

Example: the lattice $\mathbb{Z}^{n}$ is selfdual.

Minkowski's second convex body Theorem for $\mathbb{Z}^{n}$

## Theorem 11 (Minkowski).

The successive minima $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of a symmetric convex body $B$ relative to $\mathbb{Z}^{n}$ satisfy

$$
\frac{2^{n}}{n!} \leq \lambda_{1} \lambda_{2} \cdots \lambda_{n} \mu(B) \leq 2^{n}
$$

The cube $\left|x_{i}\right| \leq 1$ in $\mathbb{R}^{n}$ has $\lambda_{1}=\cdots=\lambda_{n}=1$, its volume is $2^{n}$.

The octahedron $\left|x_{1}\right|+\cdots+\left|x_{n}\right| \leq 1$ in $\mathbb{R}^{n}$ has $\lambda_{1}=\cdots=\lambda_{n}=1$, its volume is $2^{n} / n!$.

The lower bound for $\lambda_{1} \lambda_{2} \cdots \lambda_{n}$ is easy, the proof of the upper bound is deep.

## Duality in simultaneous Diophantine approximation

Let $\theta_{1}, \ldots, \theta_{m}$ be real numbers.
The dual of the lattice in $\mathbb{R}^{m+1}$

$$
\begin{aligned}
\Lambda & =\{0\} \times \mathbb{Z}^{m}+\mathbb{Z}\left(1, \theta_{1}, \ldots, \theta_{m}\right) \\
& =\left\{\left(q, q \theta_{1}-p_{1}, \ldots, q \theta_{m}-p_{m}\right) \mid\left(q, p_{1}, \ldots, p_{m}\right) \in \mathbb{Z}^{m+1}\right\}
\end{aligned}
$$

is the lattice

$$
\begin{aligned}
\Lambda^{\star} & =\mathbb{Z}(1,0, \ldots, 0)+\mathbb{Z}\left(\theta_{1}, 1,0, \ldots, 0\right)+\cdots+\mathbb{Z}\left(\theta_{m}, 0, \ldots, 0,1\right) \\
& =\left\{\left(a_{0}+a_{1} \theta_{1}+\cdots+a_{m} \theta_{m}, a_{1}, \ldots, a_{m}\right) \mid\right.
\end{aligned}
$$

$$
\left.\left(a_{0}, a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m+1}\right\}
$$

## Dual convex body

Let $K$ be a symmetric convex body in $\mathbb{R}^{n}$. The dual (or polar) convex body is

$$
K^{\star}=\left\{y \in \mathbb{R}^{n} \mid x \cdot y \leq 1 \text { for all } x \in K\right\} .
$$

If $K_{1} \subset K_{2}$, then $K_{2}^{\star} \subset K_{1}^{\star}$.
Examples:

- The Euclidean ball $B: x_{1}^{2}+\cdots+x_{n}^{2} \leq 1$ is selfdual.
- The dual of $[-1,1]^{2}$ in $\mathbb{R}^{2}$ is the polytope $|x|+|y| \leq 1$.
- More generally, the dual of $\prod_{i=1}^{n}\left[-a_{i}, a_{i}\right]$ with $a_{i}>0$ is

$$
\left\{x \in \mathbb{R}^{n} \mid a_{1} x_{1}+\cdots+a_{n} x_{n} \leq 1\right\} .
$$

The Gauge functions associated to a convex body and its dual are related by

$$
\|x\|_{K^{\star}}=\sup _{y \neq 0} \frac{x \cdot y}{\|y\|_{K}} .
$$

## Transference

Let $K$ be a convex body and $L$ a lattice in $\mathbb{R}^{n}$. Denote by $\lambda_{1}, \ldots, \lambda_{n}$ the successive minima of $K$ relative to $L$, and by $\lambda_{1}^{\star}, \ldots, \lambda_{n}^{\star}$ the successive minima of the dual convex body $K^{\star}$ relative to the dual lattice $L^{\star}$. Then

$$
\lambda_{i} \lambda_{n-i+1}^{\star} \leq n!\quad(i=1, \ldots, n) .
$$

## Transference

Let $K$ be a convex body and $L$ a lattice in $\mathbb{R}^{n}$. Denote by $\lambda_{1}, \ldots, \lambda_{n}$ the successive minima of $K$ relative to $L$, and by $\lambda_{1}^{\star}, \ldots, \lambda_{n}^{\star}$ the successive minima of the dual convex body $K^{\star}$ relative to the dual lattice $L^{\star}$. Then

$$
1 \leq \lambda_{i} \lambda_{n-i+1}^{\star} \quad(i=1, \ldots, n) .
$$

のac
$30 / 33$

## Duality in simultaneous Diophantine approximation

Let $\theta_{1}, \ldots, \theta_{m}$ be real numbers. Let $Q>1$ be a real number. The transference Theorem relates the minima $\lambda_{1}, \ldots, \lambda_{m+1}$ of the convex body

$$
\left\{\left(x_{0}, x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m} \quad| | x_{0}\left|\leq Q^{m}, \max _{1 \leq i \leq m}\right| x_{i} \mid \leq Q^{-1}\right\}
$$

with respect to the lattice

$$
\left\{\left(q, q \theta_{1}-p_{1}, \ldots, q \theta_{m}-p_{m}\right) \mid\left(q, p_{1}, \ldots, p_{m}\right) \in \mathbb{Z}^{m+1}\right\}
$$

and the minima $\lambda_{1}^{\star}, \ldots, \lambda_{m+1}^{\star}$ of the convex body

$$
\left\{\left(y_{0}, y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}| | y_{0}\left|\leq Q^{-m}, \max _{1 \leq i \leq m}\right| y_{i} \mid \leq Q\right\}
$$

with respect to the lattice


## Further topics

The Grassmann algebra (exterior product)

Mahler's Theory of compound sets

Parametric geometry of numbers
(WM. Schmidt, L. Summerer, D. Roy)

