August 3, 2016

http://ricerca.mat.uniroma3.it/users/valerio/hochiminh16.html

Lattices and geometry of numbers II

Michel Waldschmidt Université Pierre et Marie Curie (Paris 6) France

http://www.imj-prg.fr/~michel.waldschmidt/

Update: 05/08/2016

Blichfeldt's Theorem

Theorem 1.

Let L be a lattice in \mathbb{R}^n of determinant Δ and B a measurable subset of \mathbb{R}^n . Assume $\mu(B) > \Delta$. Then there exist $x \neq y$ in B such that $x - y \in L$.

Part II: August 3, 2016

- Convex sets and star bodies
- Minkowski's convex body Theorem
- Minkowski's theorems on linear forms
- Gauge functions
- Minkowsk's theorems on successive minima

<□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>

Convex Bodies

A set $B \subset \mathbb{R}^n$ is *convex* if, for x and y in B and for $0 \le \theta \le 1$, $\theta x + (1 - \theta)y$ is in B.

A star subset of \mathbb{R}^n is a subset B such that, for any $x \in B$ and any θ with $0 \le \theta \le 1$, θx is in B. Hence a convex subset of \mathbb{R}^n containing 0 is a star subset.

The characteristic function of a convex bounded subset of \mathbb{R}^n is Riemann integrable.

If a convex subset B of \mathbb{R}^n is not contained in a hyperplane, then its interior is not empty and is a convex open set.

A *convex body* is a nonempty bounded open convex subset of \mathbb{R}^n .

A subset B of \mathbb{R}^n is symmetric if $x \in B$ implies $-x \in B$.

Minkowski's convex body Theorem

Theorem 2.

Let L be a lattice in \mathbb{R}^n of determinant Δ and let B be a measurable subset of \mathbb{R}^n , convex and symmetric with respect to the origin, of measure $\mu(B)$, such that $\mu(B) > 2^n \Delta$. Then $B \cap L \neq \{0\}$.

Corollary 3.

With the notations of Corollary 2, if B is also compact in \mathbb{R}^n , then the weaker inequality $\mu(B) \geq 2^n \Delta$ suffices to reach the conclusion.

Remark The example of $L = \mathbb{Z}^n$ with $\Delta = 1$ and $B = \{(x_1, \ldots, x_n) \in \mathbb{R}^n ; |x_i| < 1\}$ with measure $\mu(B) = 2^n$, shows that Corollaries 2 and 3 are sharp.

Homogeneous simultaneous approximation

Corollary 6.

There exist \underline{x} , \underline{x}' , $\underline{x}'' \neq 0$ in \mathbb{Z}^n such that

$$\sum_{i=1}^{n} |L_i(\underline{x})| \le \sqrt[n]{n! |\Delta|}.$$
$$\prod_{i=1}^{n} |L_i(\underline{x}')| \le n^{-n} n! |\Delta|.$$

and

$$\sum_{i=1}^{n} |L_i(\underline{x}'')|^2 \le c_n |\Delta|^{2/n}$$

with

$$c_n = \frac{4}{\pi} \Gamma(\frac{n}{2} + 1)^{2/n}.$$

Minkowski's Linear Form Theorem

Theorem 4 (Minkowski).

Let L_1, \ldots, L_n be homogeneous linear forms in n variables with real coefficients and determinant Δ . Let c_1, \ldots, c_n be positive numbers with

$$c_1 \cdots c_n \ge |\Delta|.$$

Then there exists $\underline{x} = (x_1, \ldots, x_n) \in \mathbb{Z}^n \setminus \{0\}$ such that

 $|L_i(\underline{x})| \le c_i \quad (i = 1, \dots, n).$

Corollary 5.

5/33

There exists $\underline{x} \neq 0$ such that

$$\max_{1 \le i \le n} |L_i(\underline{x})| \le \sqrt[n]{|\Delta|}.$$

Volume of the octahedron

$$\sum_{i=1}^{n} |L_i(\underline{x})| \le \sqrt[n]{n! |\Delta|}.$$

The volume of the octahedron $|x_1| + \cdots + |x_n| < 1$ in \mathbb{R}^n is

$$2^{n} \int_{0}^{1} \int_{0}^{1-x_{1}} \cdots \int_{0}^{1-x_{1}-\dots-x_{n-1}} \mathrm{d}x_{1} \mathrm{d}x_{2} \cdots \mathrm{d}x_{n} = \frac{2^{n}}{n!}$$

Hint: for $n \ge 1$,

$$\int_0^{1-t} \mathrm{d}x_1 \int_0^{1-x_1} \mathrm{d}x_2 \cdots \int_0^{1-x_{n-1}} \mathrm{d}x_n = \frac{1}{n!} (1-t)^n.$$

Arithmetico-geometric inequality

$$\prod_{i=1}^{n} |L_i(\underline{x}')| \le n^{-n} n! |\Delta|.$$

For x_1, \ldots, x_n in \mathbb{R} ,

$$(x_1 \cdots x_n)^{1/n} \le \frac{x_1 + \cdots + x_n}{n}$$

Proof using the logarithmic function: convexity. Proof by induction (Cauchy)

$$n=2, n \Rightarrow n-1, n \Rightarrow 2n.$$

◆□▶ ◆冊▶ ◆目▶ ◆目▶ 目 少へで 9/33

Volume of the unit sphere

$$V_1 = 2, \quad V_2 = \pi, \quad V_3 = \frac{4}{3}\pi, \quad V_4 = \frac{\pi^2}{2},$$

 $V_n = \frac{2\pi}{n}V_{n-2}.$

$$V_n = \begin{cases} \frac{\pi^{n/2}}{\left(\frac{n}{2}\right)!} & \text{for } n \text{ even.} \\ \\ \frac{\pi^{\frac{n-1}{2}}2^{n+1}\left(\frac{n+1}{2}\right)!}{(n+1)!} & \text{for } n \text{ odd.} \end{cases}$$

Volume of the unit sphere

$$\sum_{i=1}^{n} |L_i(\underline{x}'')|^2 \le c_n |\Delta|^{2/n}$$

The volume V_n of the unit sphere

$$\{x \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 < 1\}$$

in \mathbb{R}^n is

$$\frac{\pi^{n/2}}{\Gamma(1+\frac{n}{2})}$$
 with $\Gamma(x+1) = x\Gamma(x)$ and $\Gamma(1/2) = \sqrt{\pi}.$

< □ > < ⑦ > < 言 > < 言 > 言 の Q (~ 10/33

Minkowski's Linear Forms Theorem for \mathbb{Z}^n .

Here is a consequence of Minkowski's Linear Forms Theorem for the lattice \mathbb{Z}^n .

Theorem 7.

Suppose that ϑ_{ij} $(1 \le i, j \le n)$ are real numbers with determinant ± 1 . Suppose that A_1, \ldots, A_n are positive numbers with $A_1 \cdots A_n = 1$. Then there exists an integer point $\underline{x} = (x_1, \ldots, x_n) \ne 0$ such that

$$|\vartheta_{i1}x_1 + \dots + \vartheta_{in}x_n| < A_i \qquad (1 \le i \le n-1)$$

and

$$|\vartheta_{n1}x_1 + \dots + \vartheta_{nn}x_n| \le A_n.$$

Simultaneous approximation

Corollary 8.

Let ϑ_{ij} $(1 \le i \le n, 1 \le j \le m)$ be mn real numbers. Let Q > 1 be a real number. There exist rational integers $q_1, \ldots, q_m, p_1, \ldots, p_n$ with

$$1 \le \max\{|q_1|, \ldots, |q_m|\} < Q^{n/m}$$

and

$$\max_{1 \le i \le n} |\vartheta_{i1}q_1 + \dots + \vartheta_{im}q_m - p_i| \le \frac{1}{Q}$$

Characterization of gauge functions

A gauge function $f:\mathbb{R}^n\to [0,\infty)$ attached to a convex body satisfies

$$\begin{split} f(x) &> 0 \quad \text{for} \quad x \neq 0, \qquad f(0) = 0, \\ f(\lambda x) &= \lambda f(x) \quad \text{for} \quad x \in \mathbb{R}, \ \lambda \geq 0, \\ f(x+y) &\leq f(x) + f(y). \end{split}$$

Conversely, if f satisfies these conditions, then f is continuous and is the Gauge function associated to the convex body $B = \{x \mid f(x) < 1\}.$

A convex body is symmetric if and only if its Gauge function satisfies f(-x) = f(x).

Gauge function associated to a convex body

Let B be a convex body. Let ∂B be the boundary of B and $\overline{B} = B \cup \partial B$ the closure of B. The gauge function associated to B is the map $f: \mathbb{R}^n \to [0,\infty)$ defined by f(0) = 0 and, for $x \neq 0$,

 $f(x) = \inf\{\lambda > 0 \mid x \in \lambda B\}.$

Hence
$$x = f(x)x'$$
 with $x' \in \partial B$ and

 $f(x) < 1 \iff x \in B$ $f(x) = 1 \iff x \in \partial B$ $f(x) \le 1 \iff x \in \overline{B}$

We will write $f(x) = ||x||_B$.

◆□ → < 畳 → < 差 → < 差 → 差 少 へ ペ 14/33

Minkowski's first convex body Theorems for \mathbb{Z}^n

Let B be a symmetric convex body in \mathbb{R}^n . Define

 $\lambda_1 = \min_{0 \neq x \in \mathbb{Z}^n} f(x).$

Hence λ_1 is the least real number such that $(\lambda_1 \overline{B}) \cap \mathbb{Z}^n \neq \{0\}$.

Theorem 9 (Minkowski).

For a symmetric convex body B of volume $\mu(B),$ we have

 $\lambda_1^n \mu(B) \le 2^n.$

Minkowski's first convex body Theorems for the Euclidean ball

Denote by $\|\cdot\|$ the Euclidean norm and by V_n the volume of the unit Euclidean ball in \mathbb{R}^n . Let L a lattice of determinant Δ . Define

$$\lambda_1 = \min_{0 \neq x \in L} \|x\|.$$

Theorem 10 (Minkowski).

We have

$$\lambda_1^n V_n \le 2^n \Delta.$$

↓ □ ▶ ↓ ⑦ ▶ ↓ ≧ ▶ ↓ ≧ ▶ ↓ ≧ → Q (~
17/33

Hermite's constant

The values of γ_n is known for $n \leq 8$ and for n = 24:

d	2	3	4	5	6	7	8	24
γd	$2/\sqrt{3}$	$2^{1/3}$	$\sqrt{2}$	$8^{1/5}$	$(64/3)^{1/6}$	$64^{1/7}$	2	4
Approximation	1.1547	1.2599	1.4142	1.5157	1.6654	1.8114	2	4

PHONG Q. NGUYEN. Hermite's Constant and Lattice Algorithms. Chapter 2 pp. 19–69 of The LLL Algorithm Survey and Applications, Phong Q. Nguyen and Brigitte Vallée, Editors. Ser. Information Security and Cryptography, Springer Verlag (2010).

Hermite's constant

Recall that for $n \geq 2$,

$$\gamma_n = \sup_L \frac{\lambda_1(L)^2}{(v(L))^{2/n}},$$

where L ranges over the set of lattices L in \mathbb{R}^n of covolume v(L) and first minimum $\lambda_1(L)$ with respect to the Euclidean ball in \mathbb{R}^n .

L. Lagrange proved $\gamma_2 = 2/\sqrt{3}$ (hexagonal lattice - Eisenstein integers).

Hermite proved $\gamma_n \leq \gamma_2^{n-1}$ for $n \geq 2$.

Minkowski's convex body Theorem and Hermite's constant

Minkowski deduced from his convex body theorem the upper bound

$$\gamma_n \le \left(\frac{4}{V_n}\right)^{2/n}$$

Using known estimates for

$$V_n = \frac{\pi^{n/2}}{\Gamma(1 + \frac{n}{2})}$$

 $\gamma_n \le 1 + \frac{n}{4}$.

 $one \ deduces$

Successive minima

Let B be a symmetric convex body in \mathbb{R}^n . The successive minima of B relative to a lattice Λ are the real numbers

 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$

such that, for r = 1, ..., n, λ_r is the least real number such that $\lambda_r \overline{B}$ contains at least r linearly independent elements of Λ .

Examples with $\Lambda = \mathbb{Z}^n$. The rectangle in \mathbb{R}^2 with center (0,0), length 4, width 1 has $\lambda_1 = 1/2$ and $\lambda_2 = 2$. Its volume is 4.

The closed disc in \mathbb{R}^2 with center (0,0) and radius 1/2 has $\lambda_1 = \lambda_2 = 1$. Its volume is $\pi^2/4$.

An example of Korkine and Zolotarev

Example of a lattice for which the successive minima of the Euclidean ball do not give a basis: for $n \ge 5$,

$$\mathbb{Z}^n + \mathbb{Z}\left(\frac{1}{2}, \dots, \frac{1}{2}\right) = \mathbb{Z}e_1 + \dots + \mathbb{Z}e_n + \mathbb{Z}\left(\frac{e_1 + \dots + e_n}{2}\right) \subset \mathbb{R}^n.$$

This corresponds to the lattice \mathbb{Z}^n and the convex body

$$\left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \ | \\ \left(x_1 + \frac{x_n}{2} \right)^2 + \dots + \left(x_{n-1} + \frac{x_n}{2} \right)^2 + \left(\frac{x_n}{2} \right)^2 < 1 \right\}.$$

An example in dimension 4

Consider the sublattice L of \mathbb{Z}^n which consists of (x_1, x_2, x_3, x_4) with $x_1 + x_2 + x_3 + x_4$ even. A basis is given by the row vectors of the matrix

(1)	-1	0	0)
1	1	0	0
1	0	1	0
$\backslash 1$	0	0	1/

Hence the determinant of L is 2, the minima are all $\sqrt{2}.$ The row vectors of the matrix

 $\begin{pmatrix}
1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{pmatrix}$

are also shortest vectors but span a sublattice of index $2_{\rm s}$.

22/33

Bound for the index

Let K be a convex body and L a lattice in \mathbb{R}^n . Let $\omega_1, \ldots, \omega_n$ be linearly independent elements in L such that

$$\|\omega_i\|_K = \lambda_i \quad (i = 1, \dots, n).$$

Let
$$\Omega = \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n$$
. Then $(L:\Omega) \leq n!$.

A basis almost given by the successive minima

Given a symmetric convex body K in \mathbb{R}^n with gauge function $\|\cdot\|_K$ and a lattice L with successive minima $\lambda_1, \ldots, \lambda_n$, there exists a basis (v_1, \ldots, v_n) of L with

$$\|v_i\|_K \le \max\left\{1, \frac{i}{2}\right\}\lambda_i \quad (i = 1, \dots, n).$$

<□> < 部> < 書> < 言> < 言> 差 のQ (* 25 / 33)

Dual lattice

Denote by $x \cdot y$ the standard inner product in \mathbb{R}^n :

 $x \cdot y = x_1 y_1 + \dots + x_n y_n.$

Let L be a lattice in \mathbb{R}^n . The *dual* lattice of L is

$$L^{\star} = \{ y \in \mathbb{R}^n \mid x \cdot y \in \mathbb{Z} \text{ for all } x \in L \}.$$

If $L_1 \subset L_2$, then $L_2^* \subset L_1^*$. For $L = A\mathbb{Z}^n$, we have $L^* = ({}^tA)^{-1}\mathbb{Z}^n$. Hence the dual lattice is a lattice with covolume satisfying

$$v(L)v(L^{\star}) = 1.$$

Example: the lattice \mathbb{Z}^n is selfdual.

27 / 33

Minkowski's second convex body Theorem for \mathbb{Z}^n

Theorem 11 (Minkowski).

The successive minima $\lambda_1, \lambda_2, \ldots, \lambda_n$ of a symmetric convex body *B* relative to \mathbb{Z}^n satisfy

$$\frac{2^n}{n!} \le \lambda_1 \lambda_2 \cdots \lambda_n \mu(B) \le 2^n.$$

The cube $|x_i| \leq 1$ in \mathbb{R}^n has $\lambda_1 = \cdots = \lambda_n = 1$, its volume is 2^n .

The octahedron $|x_1| + \cdots + |x_n| \le 1$ in \mathbb{R}^n has $\lambda_1 = \cdots = \lambda_n = 1$, its volume is $2^n/n!$.

The lower bound for $\lambda_1 \lambda_2 \cdots \lambda_n$ is easy, the proof of the upper bound is deep.

◆□ → ◆□ → ◆ ■ → ◆ ■ → ◆ ■ → へ ○
26 / 33

Duality in simultaneous Diophantine approximation

Let $\theta_1, \ldots, \theta_m$ be real numbers. The dual of the lattice in \mathbb{R}^{m+1}

$$\Lambda = \{0\} \times \mathbb{Z}^m + \mathbb{Z}(1, \theta_1, \dots, \theta_m)$$

= $\{(q, q\theta_1 - p_1, \dots, q\theta_m - p_m) \mid (q, p_1, \dots, p_m) \in \mathbb{Z}^{m+1}\}$

is the lattice

$$\Lambda^{\star} = \mathbb{Z}(1, 0, \dots, 0) + \mathbb{Z}(\theta_1, 1, 0, \dots, 0) + \dots + \mathbb{Z}(\theta_m, 0, \dots, 0, 1)$$

= $\left\{ (a_0 + a_1\theta_1 + \dots + a_m\theta_m, a_1, \dots, a_m) \mid (a_0, a_1, \dots, a_m) \in \mathbb{Z}^{m+1} \right\}.$

◆□ → < □ → < 三 → < 三 → < 三 → ○ へ (~ 28/33

Dual convex body

Let K be a symmetric convex body in \mathbb{R}^n . The *dual* (or polar) convex body is

$$K^{\star} = \{ y \in \mathbb{R}^n \mid x \cdot y \le 1 \text{ for all } x \in K \}.$$

If $K_1 \subset K_2$, then $K_2^{\star} \subset K_1^{\star}$.

Examples:

- The Euclidean ball $B: x_1^2 + \cdots + x_n^2 \leq 1$ is selfdual.
- The dual of $[-1,1]^2$ in \mathbb{R}^2 is the polytope $|x| + |y| \le 1$.
- More generally, the dual of $\prod_{i=1}^{n} [-a_i, a_i]$ with $a_i > 0$ is

$$\{x \in \mathbb{R}^n \mid a_1 x_1 + \dots + a_n x_n \le 1\}.$$

The Gauge functions associated to a convex body and its dual are related by

$$\|x\|_{K^{\star}} = \sup_{y \neq 0} \frac{x \cdot y}{\|y\|_{K}} \cdot \sum_{\substack{q \neq 0 \\ 29/33}} \sum_{x \neq 0} \sum_{x \neq 0} \sum_{x \neq 0} \sum_{y \neq 0} \sum_{x \neq 0}$$

Transference

Let K be a convex body and L a lattice in \mathbb{R}^n . Denote by $\lambda_1, \ldots, \lambda_n$ the successive minima of K relative to L, and by $\lambda_1^*, \ldots, \lambda_n^*$ the successive minima of the dual convex body K^* relative to the dual lattice L^* . Then

$$\lambda_i \lambda_{n-i+1}^{\star} \le n! \quad (i = 1, \dots, n).$$

Transference

Let K be a convex body and L a lattice in \mathbb{R}^n . Denote by $\lambda_1, \ldots, \lambda_n$ the successive minima of K relative to L, and by $\lambda_1^*, \ldots, \lambda_n^*$ the successive minima of the dual convex body K^* relative to the dual lattice L^* . Then

$$1 \le \lambda_i \lambda_{n-i+1}^{\star} \quad (i = 1, \dots, n).$$

Duality in simultaneous Diophantine approximation

Let $\theta_1, \ldots, \theta_m$ be real numbers. Let Q > 1 be a real number. The transference Theorem relates the minima $\lambda_1, \ldots, \lambda_{m+1}$ of the convex body

$$\left\{ (x_0, x_1, \dots, x_m) \in \mathbb{R}^m \mid |x_0| \le Q^m, \max_{1 \le i \le m} |x_i| \le Q^{-1} \right\}$$

with respect to the lattice

$$\left\{ (q, q\theta_1 - p_1, \dots, q\theta_m - p_m) \mid (q, p_1, \dots, p_m) \in \mathbb{Z}^{m+1} \right\}$$

and the minima $\lambda_1^\star,\ldots,\lambda_{m+1}^\star$ of the convex body

$$\left\{ (y_0, y_1, \dots, y_m) \in \mathbb{R}^m \mid |y_0| \le Q^{-m}, \max_{1 \le i \le m} |y_i| \le Q \right\}$$

with respect to the lattice

$$\left\{ (a_0 + a_1\theta_1 + \dots + a_m\theta_m, a_1, \dots, a_m) \mid (a_0, a_1, \dots, a_m) \in \mathbb{Z}_{32/33}^{m+1} \right\}$$

Further topics

The Grassmann algebra (exterior product)

Mahler's Theory of compound sets

Parametric geometry of numbers (WM. Schmidt, L. Summerer, D. Roy)

> < □ > < 部 > < 言 > < 言 > 差 → のへの 33/33