A joint CIMPA-ICTP research school on
Lattices and applications to cryptography and coding
 CIMPA

Lattices and geometry of numbers III

Michel Waldschmidt

Université Pierre et Marie Curie (Paris 6) France

```
http://www.imj-prg.fr/~michel.waldschmidt/
```

> Update: 05/08/2016

Minima of quadratic forms

Theorem 1 (Minkowski).

Given a positive definite quadratic form Q in n variables with real coefficients and determinant D, we have

$$
\min \left\{Q(x) \mid x \in \mathbb{Z}^{n} \backslash\{0\}\right\} \leq \frac{4}{\pi} \Gamma\left(1+\frac{n}{2}\right)^{2 / n} D^{1 / n}
$$

The coefficient

$$
\frac{4}{\pi} \Gamma\left(1+\frac{n}{2}\right)^{2 / n} \quad \text { is } \quad 4 V_{n}^{-2 / n} \quad \text { with } \quad V_{n}=\frac{\pi^{n / 2}}{\Gamma\left(1+\frac{n}{2}\right)}
$$

Examples of lattices in number theory

- Minima of quadratic forms
- Sum of two squares
- Sum of four squares
- Primes of the form $x^{2}+n y^{2}$
- Discriminant of a number field
- Units of a number field: Dirichlet's Theorem
- Geometry of numbers and transcendence

Sums of two squares

Theorem 2 (Fermat).
A prime $p \equiv 1(\bmod 4)$ is a sum of two squares.
Proof.
Assume G is a sublattice of \mathbb{Z}^{2} of determinant p such that for all $\left(x_{1}, x_{2}\right) \in G$ we have $x_{1}^{2}+x_{2}^{2} \equiv 0(\bmod p)$.
The disc $x_{1}^{2}+x_{2}^{2}<2 p$ has area $4 \pi p^{2}>4 p=4 \operatorname{det} G$.
By Minkowski's Theorem for lattices, there is a point $\left(x_{1}, x_{2}\right) \neq\{0,0\}$ of G in this disc. We have

$$
0<x_{1}^{2}+x_{2}^{2}<2 p \quad \text { and } \quad x_{1}^{2}+x_{2}^{2} \equiv 0 \quad(\bmod p)
$$

hence $x_{1}^{2}+x_{2}^{2}=p$.

A suitable lattice

For $u \in \mathbb{Z}$, consider the lattice $G_{u}=\mathbb{Z}(p, 0)+\mathbb{Z}(u, 1)$. The determinant is p. For $\left(x_{1}, x_{2}\right) \in G_{u}$ we have

$$
x_{1}^{2}+x_{2}^{2} \equiv\left(u^{2}+1\right) x_{2}^{2} \quad(\bmod p) .
$$

Since $p \equiv 1(\bmod 4),-1$ is a quadratic residue modulo 4 . Hence there exists $u \in \mathbb{Z}$ with $u^{2}+1 \equiv 0(\bmod p)$.

Sums of four squares: Lagrange's Theorem

Lagrange's Theorem follows from the following special case:
Any odd prime number is a sum of four squares.
Proof.
Assume G is a sublattice of \mathbb{Z}^{4} of determinant p^{2} such that for all $\underline{x} \in G$ we have $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \equiv 0(\bmod p)$.
The sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}<2 p$ has volume $2 \pi^{2} p^{2}>4 p^{2}=2^{4} \operatorname{det} G$.
By Minkowski's Theorem for lattices, there is a point $\underline{x} \neq 0$ of G in the disc. We have $0<x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}<2 p$ and $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \equiv 0(\bmod p)$, hence $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=p$.

Sums of four squares - Euler identity

Theorem 3 (Lagrange).

Any positive integer is a sum of four squares.
It suffices to prove the result for an odd prime number p, thanks to Euler identity.

$$
\begin{aligned}
& \left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)= \\
& \quad\left(a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}\right)^{2}+\left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right)^{2} \\
& +\left(a_{1} b_{3}-a_{2} b_{4}+a_{3} b_{1}+a_{4} b_{2}\right)^{2}+\left(a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}\right)^{2}
\end{aligned}
$$

R. C. Vaughan, The Geometry of numbers.
http://www.personal.psu.edu/rcv4/677C03.pdf

A suitable lattice

For u and v in \mathbb{Z}, consider the lattice
$G_{u v}=\mathbb{Z}(0,0, p, 0)+\mathbb{Z}(0,0,0, p)+\mathbb{Z}(1,0, u,-v)+\mathbb{Z}(0,1, v, u)$.
The determinant is p^{2}. For $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in G_{u v}$ we have

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \equiv\left(u^{2}+v^{2}+1\right)\left(x_{1}^{2}+x_{2}^{2}\right) \quad(\bmod p) .
$$

It remains to select u and v in \mathbb{Z} such that

$$
u^{2}+v^{2}+1 \equiv 0 \quad(\bmod p)
$$

(exercise).
Jay R. Goldman. The Queen of Mathematics: A Historically Motivated Guide to Number Theory. A K Peters/CRC Press, 1998. Chap. 22: Geometry of numbers. https://www2.math.ethz.ch/education/bachelor/ seminars/hs2014/beweise-aus-dem-buch/

Primes of the form $x^{2}+n y^{2}$

Theorem 4 (Fermat).

An odd prime number p can be written $x^{2}+2 y^{2}$ if and only if $p \equiv 1$ or $3 \bmod 8$.
A prime number p can be written $x^{2}+3 y^{2}$ if and only if $p \equiv 1$ $\bmod 3$.

Theorem 5 (Gauss).

A prime number p can be written $x^{2}+27 y^{2}$ if and only if $p \equiv 1 \bmod 3$ and 2 is a cubic residue $\bmod p$.

Reference: David A. Cox. Primes of the form $x^{2}+n y^{2}$. John Wiley (1989).

Discriminant of a number field

Let k be a number field of degree $n \geq 2$.
Consider an integral basis $\omega_{1}, \ldots, \omega_{n}$ of \mathbb{Z}_{k}. Let $\omega_{i}^{(1)}, \ldots, \omega_{i}^{(n)}$ be the n complex conjugates of $\omega_{i}(i=1, \cdots, n)$.

The discriminant d_{k} of k is the square of the determinant of the $n \times n$ matrix $\left(\omega_{i}^{(j)}\right)$.

The value of d_{k} depends only on k (not on the basis of \mathbb{Z}_{k}), it is a nonzero rational integer.

Further, if k is totally real, then it is a positive integer.

Canonical embedding of a number field

Let k be a number field of degree n. Let r_{1} be the number of real embeddings and $2 r_{2}$ the number of complex embeddings.
The canonical embedding of k is the injective map

$$
\underline{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{r_{1}+r_{2}}\right): k \longrightarrow \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}
$$

The image $\underline{\sigma}\left(\mathbb{Z}_{k}\right)$ of the ring of integers of k under $\underline{\sigma}$ is a lattice in $\mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$.

Hence the ring of integers is a free \mathbb{Z}-module of rank n.

Lower bound for the discriminant

Here is the solution by Minkowski of a Conjecture of Kronecker.

Theorem 6.

The discriminant of a number field $\neq \mathbb{Q}$ is >1, hence is divisible by at least one prime.
Proof.
For simplicity assume k is totally real. By Minkowski's linear form theorem for the product of linear forms, there exists a nonzero integer point \underline{x} such that

$$
\left|\prod_{j=1}^{n} \sum_{i=1}^{n} x_{i} \omega_{i}^{(j)}\right| \leq \frac{n!\sqrt{d_{k}}}{n^{n}}
$$

The left hand side is a nonzero integer. Hence

$$
d_{k} \geq\left(n^{n} / n!\right)^{2}>1 . \quad \text { のac }
$$

C.L. Siegel

Let $P \in \mathbb{Z}[X]$ be a monic irreducible polynomial of degree n and discriminant Δ having n real zeroes. Then

$$
\Delta \geq\left(\frac{n^{n}}{n!}\right)^{2}
$$

Siegel, Carl Ludwig. Lectures on the geometry of numbers. Springer-Verlag, Berlin, 1989. See Lecture 3, $\S 2$.

Logarithmic embedding of a number field

The logarithmic embedding is the map $\lambda: k^{\times} \longrightarrow \mathbb{R}^{r_{1}+r_{2}}$ obtained by composing the restriction of $\underline{\sigma}$ to k^{\times}with the map

$$
\left(z_{j}\right)_{1 \leq j \leq r_{1}+r_{2}} \longmapsto\left(\log \left|z_{j}\right|\right)_{1 \leq j \leq r_{1}+r_{2}}
$$

from $\left(\mathbb{R}^{\times}\right)^{r_{1}} \times\left(\mathbb{C}^{\times}\right)^{r_{2}}$ to $\mathbb{R}^{r_{1}+r_{2}}$.

In other words

$$
\lambda(\alpha)=\left(\log \left|\sigma_{j}(\alpha)\right|\right)_{1 \leq j \leq r_{1}+r_{2}}
$$

Geometry of numbers and transcendence

Thue-Siegel's Lemma - Dirichlet's box principle. Siegel, C.L. Über einige Anwendungen diophantischer Approximationen. Abh. der Preuß Akad. der Wissenschaften.
Phys.-math. K1. 1929, Nr. 1 (=Ges. Abh., I, 209-266).
K. Mahler: proof by geometry of numbers.
E. Bombieri- J. Vaaler On Siegel's Lemma. Invent. math. 73, 11-32 (1983)

Siegel＇s lemma（1929）

Let $a_{m n}$ be rational numbers，not all 0 ，bounded by B ．The system of linear equations

$$
\left\{\begin{array}{cc}
a_{11} x_{1}+\cdots+a_{1 N} x_{N}= & 0 \\
& \vdots \\
a_{M 1} x_{1}+\cdots+a_{M N} x_{N}= & 0
\end{array}\right.
$$

where $N>M$ ，has a solution x_{1}, \ldots, x_{N} ，where the x_{i} are rational integers，not all 0 ，bounded by

$$
1+(N B)^{M /(N-M)} .
$$

Bombieri－Vaaler

integers $\underline{x}_{\ell}=\left(x_{1 \ell}, \ldots, x_{N \ell}\right)$ with

$$
\prod_{\ell=1}^{N-M} \max _{1 \leq n \leq N}\left|x_{n \ell}\right| \leq\left(D^{-1} \sqrt{\left|\operatorname{det}\left(A^{t} A\right)\right|}\right)
$$

Bombieri－Vaaler

Let

$$
\sum_{n=1}^{N} a_{m n} x_{n}=0 \quad(m=1, \ldots, M)
$$

be a linear system of M linearly independent equations in $N>M$ unknowns with rational integer coefficients $a_{m n}$ ．
There is a nontrivial solution in integers x_{n} with

$$
\max _{1 \leq n \leq N}\left|x_{n}\right| \leq\left(D^{-1} \sqrt{\left|\operatorname{det}\left(A^{t} A\right)\right|}\right)^{1 /(N-M)}
$$

where A denotes the $M \times N$ matrix $\left(a_{m n}\right),{ }^{t} A$ the transpose and where D is the greatest common divisor of the determinants of all $M \times M$ minors of A ．

Auxiliary functions in transcendence

Zero estimate

Interpolation determinants

Arakelov theory，slopes inequalities

