August 5, 2016

http://ricerca.mat.uniroma3.it/users/valerio/hochiminh16.html

Lattices and geometry of numbers III

Michel Waldschmidt Université Pierre et Marie Curie (Paris 6) France

http://www.imj-prg.fr/~michel.waldschmidt/

□ Update: 05/08/2016 1/20

Minima of quadratic forms

Theorem 1 (Minkowski).

Given a positive definite quadratic form Q in n variables with real coefficients and determinant D, we have

$$\min\left\{Q(x) \mid x \in \mathbb{Z}^n \setminus \{0\}\right\} \le \frac{4}{\pi} \Gamma(1 + \frac{n}{2})^{2/n} D^{1/n}.$$

The coefficient

$$\frac{4}{\pi}\Gamma(1+\frac{n}{2})^{2/n} \quad \text{is} \quad 4V_n^{-2/n} \quad \text{with} \quad V_n = \frac{\pi^{n/2}}{\Gamma(1+\frac{n}{2})}$$

Part III: August 5, 2016

Examples of lattices in number theory

- Minima of quadratic forms
- \bullet Sum of two squares
- Sum of four squares
- \bullet Primes of the form x^2+ny^2
- Discriminant of a number field
- Units of a number field: Dirichlet's Theorem
- Geometry of numbers and transcendence

Sums of two squares

Theorem 2 (Fermat).

A prime $p \equiv 1 \pmod{4}$ is a sum of two squares.

Proof.

Assume G is a sublattice of \mathbb{Z}^2 of determinant p such that for all $(x_1, x_2) \in G$ we have $x_1^2 + x_2^2 \equiv 0 \pmod{p}$. The disc $x_1^2 + x_2^2 < 2p$ has area $4\pi p^2 > 4p = 4 \det G$. By Minkowski's Theorem for lattices, there is a point $(x_1, x_2) \neq \{0, 0\}$ of G in this disc. We have

 $0 < x_1^2 + x_2^2 < 2p \quad \text{and} \quad x_1^2 + x_2^2 \equiv 0 \pmod{p},$

hence $x_1^2 + x_2^2 = p$.

A suitable lattice

For $u \in \mathbb{Z}$, consider the lattice $G_u = \mathbb{Z}(p,0) + \mathbb{Z}(u,1)$. The determinant is p. For $(x_1, x_2) \in G_u$ we have

 $x_1^2 + x_2^2 \equiv (u^2 + 1)x_2^2 \pmod{p}.$

Since $p \equiv 1 \pmod{4}$, -1 is a quadratic residue modulo 4. Hence there exists $u \in \mathbb{Z}$ with $u^2 + 1 \equiv 0 \pmod{p}$.

> ◆□ ▶ < 酉 ▶ < 亘 ▶ < 亘 ▶ 夏 少 Q () 5/20

Sums of four squares: Lagrange's Theorem

Lagrange's Theorem follows from the following special case: Any odd prime number is a sum of four squares.

Proof.

Assume *G* is a sublattice of \mathbb{Z}^4 of determinant p^2 such that for all $\underline{x} \in G$ we have $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 0 \pmod{p}$. The sphere $x_1^2 + x_2^2 + x_3^2 + x_4^2 < 2p$ has volume $2\pi^2 p^2 > 4p^2 = 2^4 \det G$. By Minkowski's Theorem for lattices, there is a point $\underline{x} \neq 0$ of *G* in the disc. We have $0 < x_1^2 + x_2^2 + x_3^2 + x_4^2 < 2p$ and $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 0 \pmod{p}$, hence $x_1^2 + x_2^2 + x_3^2 + x_4^2 = p$. thanks to Euler identity.

 $(a_1^2 + a_2^2 + a_3^2 + a_4^2)(b_1^2 + b_2^2 + b_3^2 + b_4^2) =$ $(a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4)^2 + (a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)^2$ $+ (a_1b_3 - a_2b_4 + a_3b_1 + a_4b_2)^2 + (a_1b_4 + a_2b_3 - a_3b_2 + a_4b_1)^2.$

R. C. VAUGHAN, *The Geometry of numbers*. http://www.personal.psu.edu/rcv4/677C03.pdf

Sums of four squares - Euler identity

Any positive integer is a sum of four squares.

It suffices to prove the result for an odd prime number p,

Theorem 3 (Lagrange).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A suitable lattice

For u and v in \mathbb{Z} , consider the lattice $G_{uv} = \mathbb{Z}(0, 0, p, 0) + \mathbb{Z}(0, 0, 0, p) + \mathbb{Z}(1, 0, u, -v) + \mathbb{Z}(0, 1, v, u).$ The determinant is p^2 . For $(x_1, x_2, x_3, x_4) \in G_{uv}$ we have

 $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv (u^2 + v^2 + 1)(x_1^2 + x_2^2) \pmod{p}.$

It remains to select u and v in \mathbb{Z} such that

$$u^2 + v^2 + 1 \equiv 0 \pmod{p}$$

(exercise).

JAY R. GOLDMAN. The Queen of Mathematics: A Historically Motivated Guide to Number Theory. A K Peters/CRC Press, 1998. Chap. 22: Geometry of numbers. https://www2.math.ethz.ch/education/bachelor/ seminars/hs2014/beweise-aus-dem-buch/

Primes of the form $x^2 + ny^2$

Theorem 4 (Fermat).

An odd prime number p can be written $x^2 + 2y^2$ if and only if $p \equiv 1$ or $3 \mod 8$. A prime number p can be written $x^2 + 3y^2$ if and only if $p \equiv 1 \mod 3$.

Theorem 5 (Gauss).

A prime number p can be written $x^2 + 27y^2$ if and only if $p \equiv 1 \mod 3$ and 2 is a cubic residue $\mod p$.

Reference: David A. Cox. Primes of the form $x^2 + ny^2$. John Wiley (1989).

Discriminant of a number field

Let k be a number field of degree $n \ge 2$.

Consider an integral basis $\omega_1, \ldots, \omega_n$ of \mathbb{Z}_k . Let $\omega_i^{(1)}, \ldots, \omega_i^{(n)}$ be the *n* complex conjugates of ω_i $(i = 1, \cdots, n)$.

The discriminant d_k of k is the square of the determinant of the $n \times n$ matrix $(\omega_i^{(j)})$.

The value of d_k depends only on k (not on the basis of \mathbb{Z}_k), it is a nonzero rational integer.

Further, if k is totally real, then it is a positive integer.

Canonical embedding of a number field

Let k be a number field of degree n. Let r_1 be the number of real embeddings and $2r_2$ the number of complex embeddings. The canonical embedding of k is the injective map

$$\underline{\sigma} = (\sigma_1, \dots, \sigma_{r_1+r_2}) : k \longrightarrow \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}.$$

The image $\underline{\sigma}(\mathbb{Z}_k)$ of the ring of integers of k under $\underline{\sigma}$ is a lattice in $\mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$.

Hence the ring of integers is a free \mathbb{Z} -module of rank n.

Lower bound for the discriminant

Here is the solution by Minkowski of a Conjecture of Kronecker.

Theorem 6.

The discriminant of a number field $\neq \mathbb{Q}$ is > 1, hence is divisible by at least one prime.

Proof.

For simplicity assume k is totally real. By Minkowski's linear form theorem for the product of linear forms, there exists a nonzero integer point \underline{x} such that

$$\left|\prod_{j=1}^n \sum_{i=1}^n x_i \omega_i^{(j)}\right| \le \frac{n! \sqrt{d_k}}{n^n} \cdot$$

The left hand side is a nonzero integer. Hence

C.L. Siegel

Let $P \in \mathbb{Z}[X]$ be a monic irreducible polynomial of degree n and discriminant Δ having n real zeroes. Then

 $\Delta \ge \left(\frac{n^n}{n!}\right)^2.$

SIEGEL, CARL LUDWIG. Lectures on the geometry of numbers. Springer-Verlag, Berlin, 1989. See Lecture 3, §2.

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ シ へ @ 13/20

Dirichlet's units Theorem

The image $\lambda(\mathbb{Z}_k^{\times})$ of the group of units of k is a subgroup of the additive group $\mathbb{R}^{r_1+r_2}$, it is contained in the hyperplane H of equation

 $x_1 + \dots + x_{r_1} + 2x_{r_1+1} + \dots + 2x_{r_1+r_2} = 0,$

and $\lambda(\mathbb{Z}_k^{\times})$ is discrete in H. From these properties, one easily deduces that as a $\mathbb{Z}-\text{module}, \mathbb{Z}_k^{\times}$ is finitely generated of rank $\leq r$, where $r=r_1+r_2-1$ is the dimension of H as a $\mathbb{R}-\text{vector space}.$

Theorem 7 (Dirichlet's units Theorem).

The image of the group of units $\lambda(\mathbb{Z}_k^{\times})$ is a lattice in H. As a consequence, the group of units of an algebraic number field k is a finitely generated group of rank r.

Logarithmic embedding of a number field

The *logarithmic embedding* is the map $\lambda : k^{\times} \longrightarrow \mathbb{R}^{r_1+r_2}$ obtained by composing the restriction of $\underline{\sigma}$ to k^{\times} with the map

 $(z_j)_{1 \le j \le r_1 + r_2} \longmapsto (\log |z_j|)_{1 \le j \le r_1 + r_2}$

from $(\mathbb{R}^{\times})^{r_1} \times (\mathbb{C}^{\times})^{r_2}$ to $\mathbb{R}^{r_1+r_2}$.

In other words

$$\lambda(\alpha) = (\log |\sigma_j(\alpha)|)_{1 \le j \le r_1 + r_2}$$

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Geometry of numbers and transcendence

Thue-Siegel's Lemma - Dirichlet's box principle. SIEGEL, C.L. Über einige Anwendungen diophantischer Approximationen. Abh. der Preuß Akad. der Wissenschaften. Phys.-math. K1. 1929, Nr. 1 (=Ges. Abh., **I**, 209-266).

K. Mahler: proof by geometry of numbers.

E. BOMBIERI- J. VAALER *On Siegel's Lemma*. Invent. math. **73**, 11-32 (1983)

Siegel's lemma (1929)

Let a_{mn} be rational numbers, not all 0, bounded by B. The system of linear equations

$$\begin{cases} a_{11}x_1 + \dots + a_{1N}x_N &= 0 \\ \vdots \\ a_{M1}x_1 + \dots + a_{MN}x_N &= 0 \end{cases}$$

where N > M, has a solution x_1, \ldots, x_N , where the x_i are rational integers, not all 0, bounded by

$$1 + (NB)^{M/(N-M)}.$$

Bombieri–Vaaler

There are N - M linearly independent integral solutions in integers $\underline{x}_{\ell} = (x_{1\ell}, \dots, x_{N\ell})$ with

$$\prod_{\ell=1}^{N-M} \max_{1 \le n \le N} |x_{n\ell}| \le \left(D^{-1} \sqrt{|\det(A^t A)|} \right).$$

Bombieri–Vaaler

Let

$$\sum_{n=1}^{N} a_{mn} x_n = 0 \qquad (m = 1, \dots, M)$$

be a linear system of M linearly independent equations in N > M unknowns with rational integer coefficients a_{mn} . There is a nontrivial solution in integers x_n with

$$\max_{1 \le n \le N} |x_n| \le \left(D^{-1} \sqrt{|\det(A^t A)|} \right)^{1/(N-M)},$$

where A denotes the $M \times N$ matrix (a_{mn}) , ^tA the transpose and where D is the greatest common divisor of the determinants of all $M \times M$ minors of A.

↓ □ ▶ ↓ ● ▶ ↓ ■ ▶ ↓ ■ 夕 ○ ○
18/20

Auxiliary functions in transcendence

Zero estimate

Interpolation determinants

Arakelov theory, slopes inequalities