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Examples of lattices in number theory

• Minima of quadratic forms

• Sum of two squares

• Sum of four squares

• Primes of the form x2
+ ny2

• Discriminant of a number field

• Units of a number field: Dirichlet’s Theorem

• Geometry of numbers and transcendence
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Minima of quadratic forms

Theorem 1 (Minkowski).

Given a positive definite quadratic form Q in n variables with
real coe�cients and determinant D, we have

min

�
Q(x) | x 2 Zn

\ {0}

 


4

⇡
�(1 +

n

2

)

2/nD1/n.

The coe�cient

4
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�(1 +

n

2
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2/n is 4V �2/n
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⇡n/2

�(1 +

n
2 )
·
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Sums of two squares

Theorem 2 (Fermat).

A prime p ⌘ 1 (mod 4) is a sum of two squares.

Proof.
Assume G is a sublattice of Z2 of determinant p such that for
all (x1, x2) 2 G we have x2

1 + x2
2 ⌘ 0 (mod p).

The disc x2
1 + x2

2 < 2p has area 4⇡p2 > 4p = 4detG.
By Minkowski’s Theorem for lattices, there is a point
(x1, x2) 6= {0, 0} of G in this disc. We have

0 < x2
1 + x2

2 < 2p and x2
1 + x2

2 ⌘ 0 (mod p),

hence x2
1 + x2

2 = p.
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A suitable lattice

For u 2 Z, consider the lattice Gu = Z(p, 0) + Z(u, 1). The
determinant is p. For (x1, x2) 2 Gu we have

x2
1 + x2

2 ⌘ (u2
+ 1)x2

2 (mod p).

Since p ⌘ 1 (mod 4), �1 is a quadratic residue modulo 4.
Hence there exists u 2 Z with u2

+ 1 ⌘ 0 (mod p).
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Sums of four squares - Euler identity

Theorem 3 (Lagrange).

Any positive integer is a sum of four squares.

It su�ces to prove the result for an odd prime number p,
thanks to Euler identity.

(a21 + a22 + a23 + a24)(b
2
1 + b22 + b23 + b24) =

(a1b1 � a2b2 � a3b3 � a4b4)
2
+ (a1b2 + a2b1 + a3b4 � a4b3)

2

+(a1b3 � a2b4 + a3b1 + a4b2)
2
+ (a1b4 + a2b3 � a3b2 + a4b1)

2.

R. C. Vaughan, The Geometry of numbers.
http://www.personal.psu.edu/rcv4/677C03.pdf
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Sums of four squares: Lagrange’s Theorem

Lagrange’s Theorem follows from the following special case:
Any odd prime number is a sum of four squares.

Proof.
Assume G is a sublattice of Z4 of determinant p2 such that for
all x 2 G we have x2

1 + x2
2 + x2

3 + x2
4 ⌘ 0 (mod p).

The sphere x2
1 + x2

2 + x2
3 + x2

4 < 2p has volume
2⇡2p2 > 4p2 = 2

4
detG.

By Minkowski’s Theorem for lattices, there is a point x 6= 0 of
G in the disc. We have 0 < x2

1 + x2
2 + x2

3 + x2
4 < 2p and

x2
1 + x2

2 + x2
3 + x2

4 ⌘ 0 (mod p), hence x2
1 + x2

2 + x2
3 + x2

4 = p.
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A suitable lattice

For u and v in Z, consider the lattice
Guv = Z(0, 0, p, 0)+Z(0, 0, 0, p)+Z(1, 0, u,�v)+Z(0, 1, v, u).
The determinant is p2. For (x1, x2, x3, x4) 2 Guv we have

x2
1 + x2

2 + x2
3 + x2

4 ⌘ (u2
+ v2 + 1)(x2

1 + x2
2) (mod p).

It remains to select u and v in Z such that

u2
+ v2 + 1 ⌘ 0 (mod p)

(exercise).

Jay R. Goldman. The Queen of Mathematics: A
Historically Motivated Guide to Number Theory. A K
Peters/CRC Press, 1998. Chap. 22: Geometry of numbers.
https://www2.math.ethz.ch/education/bachelor/

seminars/hs2014/beweise-aus-dem-buch/
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Primes of the form x2 + ny2

Theorem 4 (Fermat).

An odd prime number p can be written x2
+ 2y2 if and only if

p ⌘ 1 or 3 mod 8.
A prime number p can be written x2

+ 3y2 if and only if p ⌘ 1

mod 3.

Theorem 5 (Gauss).

A prime number p can be written x2
+ 27y2 if and only if

p ⌘ 1 mod 3 and 2 is a cubic residue mod p.

Reference: David A. Cox. Primes of the form x2
+ ny2. John

Wiley (1989).
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Canonical embedding of a number field

Let k be a number field of degree n. Let r1 be the number of
real embeddings and 2r2 the number of complex embeddings.
The canonical embedding of k is the injective map

� = (�1, . . . , �r1+r2) : k �! Rr1
⇥ Cr2 .

The image �(Zk) of the ring of integers of k under � is a
lattice in Rr1

⇥ Cr2 .

Hence the ring of integers is a free Z–module of rank n.
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Discriminant of a number field

Let k be a number field of degree n � 2.

Consider an integral basis !1, . . . ,!n of Zk. Let !
(1)
i , . . . ,!

(n)
i

be the n complex conjugates of !i (i = 1, · · · , n).

The discriminant dk of k is the square of the determinant of
the n⇥ n matrix

�
!
(j)
i

�
.

The value of dk depends only on k (not on the basis of Zk), it
is a nonzero rational integer.

Further, if k is totally real, then it is a positive integer.
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Lower bound for the discriminant

Here is the solution by Minkowski of a Conjecture of
Kronecker.

Theorem 6.

The discriminant of a number field 6= Q is > 1, hence is
divisible by at least one prime.

Proof.
For simplicity assume k is totally real. By Minkowski’s linear
form theorem for the product of linear forms, there exists a
nonzero integer point x such that

�����

nY

j=1

nX

i=1

xi!
(j)
i

����� 
n!
p

dk
nn

·

The left hand side is a nonzero integer. Hence

dk � (nn/n!)2 > 1. 12 / 20



C.L. Siegel

Let P 2 Z[X] be a monic irreducible polynomial of degree n
and discriminant � having n real zeroes. Then

� �

✓
nn

n!

◆2

.

Siegel, Carl Ludwig. Lectures on the geometry of
numbers. Springer-Verlag, Berlin, 1989. See Lecture 3, §2.
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Logarithmic embedding of a number field

The logarithmic embedding is the map � : k⇥
�! Rr1+r2

obtained by composing the restriction of � to k⇥ with the map

(zj)1jr1+r2 7�! (log |zj|)1jr1+r2

from (R⇥
)

r1
⇥ (C⇥

)

r2 to Rr1+r2 .

In other words

�(↵) = (log |�j(↵)|)1jr1+r2 .
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Dirichlet’s units Theorem

The image �(Z⇥
k ) of the group of units of k is a subgroup of

the additive group Rr1+r2 , it is contained in the hyperplane H
of equation

x1 + · · ·+ xr1 + 2xr1+1 + · · ·+ 2xr1+r2 = 0,

and �(Z⇥
k ) is discrete in H. From these properties, one easily

deduces that as a Z–module, Z⇥
k is finitely generated of rank

 r, where r = r1 + r2 � 1 is the dimension of H as a
R–vector space.
Theorem 7 (Dirichlet’s units Theorem).

The image of the group of units �(Z⇥
k ) is a lattice in H. As a

consequence, the group of units of an algebraic number field k
is a finitely generated group of rank r.

http://www.numbertheory.org/ntw/lecture�notes.html
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Geometry of numbers and transcendence

Thue–Siegel’s Lemma - Dirichlet’s box principle.
Siegel, C.L. Über einige Anwendungen diophantischer
Approximationen. Abh. der Preuß Akad. der Wissenschaften.
Phys.-math. K1. 1929, Nr. 1 (=Ges. Abh., I, 209-266).

K. Mahler: proof by geometry of numbers.

E. Bombieri– J. Vaaler On Siegel’s Lemma. Invent.
math. 73, 11-32 (1983)
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Siegel’s lemma (1929)

Let amn be rational numbers, not all 0, bounded by B. The
system of linear equations

8
><

>:

a11x1 + · · ·+ a1NxN = 0

...
aM1x1 + · · ·+ aMNxN = 0

where N > M , has a solution x1, . . . , xN , where the xi are
rational integers, not all 0, bounded by

1 + (NB)

M/(N�M).
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Bombieri–Vaaler

Let
NX

n=1

amnxn = 0 (m = 1, . . . ,M)

be a linear system of M linearly independent equations in
N > M unknowns with rational integer coe�cients amn.
There is a nontrivial solution in integers xn with

max

1nN
|xn| 

⇣
D�1

p
| det(AtA)|

⌘1/(N�M)

,

where A denotes the M ⇥N matrix (amn),
tA the transpose

and where D is the greatest common divisor of the
determinants of all M ⇥M minors of A.
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Bombieri–Vaaler

There are N �M linearly independent integral solutions in
integers x` = (x1`, . . . , xN`) with

N�MY

`=1

max

1nN
|xn`| 

⇣
D�1

p
| det(AtA)|

⌘
.
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Auxiliary functions in transcendence

Zero estimate

Interpolation determinants

Arakelov theory, slopes inequalities
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