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Minima of quadratic forms

Theorem 1 (Minkowski).

Given a positive definite quadratic form () in n variables with
real coefficients and determinant D, we have

min {Q(z) | =€ 2"\ {0}} < %m + DD

The coefficient

4 n/2

S+ 2 is AV with V= ——
™ 2

T(1+2)
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Sums of two squares

Theorem 2 (Fermat).

A prime p =1 (mod 4) is a sum of two squares.

Proof.

Assume G is a sublattice of Z? of determinant p such that for

all (z1,72) € G we have 22 + 22 =0 (mod p).
The disc 22 + 22 < 2p has area 47p? > 4p = 4
By Minkowski's Theorem for lattices, there is a
(x1,22) # {0,0} of G in this disc. We have

O<az?+22<2p and 22 +22=0

hence 7% + 23 = p.

det G.
point

(mod p),



A suitable lattice

For u € Z, consider the lattice G, = Z(p,0) + Z(u, 1). The
determinant is p. For (z1,22) € G, we have

i+ 15 = (u*+ 13 (mod p).

Since p =1 (mod 4), —1 is a quadratic residue modulo 4.
Hence there exists u € Z with u?> +1 =0 (mod p).

Sums of four squares: Lagrange's Theorem

Lagrange's Theorem follows from the following special case:
Any odd prime number is a sum of four squares.

Proof.

Assume G is a sublattice of Z* of determinant p? such that for

all z € G we have 2? + 23 + 22 + 22 = 0 (mod p).

The sphere 27 + 23 + 22 + 23 < 2p has volume

272p? > 4p? = 24 det G

By Minkowski's Theorem for lattices, there is a point z # 0 of

G in the disc. We have 0 < 27 + 23 + 23 + x3 < 2p and

22 + 22+ 22+ 22 =0 (mod p), hence 22 + 23 + 2% + 27 = p.
L]

Sums of four squares - Euler identity

Theorem 3 (Lagrange).
Any positive integer is a sum of four squares.

It suffices to prove the result for an odd prime number p,
thanks to Euler identity.

(a2 + a3+ a3 +aj)(b3 +b5+0b3+0b3) =
(a1b1 — a2b2 — (Z3b3 — a4b4)2 + ((Ilbz + a2b1 + a3b4 — (14[93)2

+(a1b3 — a2b4 + CL3b1 + a4b2)2 + (a1b4 + agbg — CL3bQ + (Z4b1)2.

R. C. VAUGHAN, The Geometry of numbers.
http://www.personal .psu.edu/rcv4d/677C03.pdf

A suitable lattice
For w and v in Z, consider the lattice
Guww = 7(0,0,p,0)+7Z(0,0,0,p)+Z(1,0,u, —v)+7Z(0, 1,v,u).
The determinant is p*. For (1, 29, 3, 74) € Gy, We have

i+ a5+ a5+ 2] = (W +0? + 1) (2] +23)  (mod p).
It remains to select v and v in Z such that
w? +0*+1=0 (mod p)

(exercise).

JAY R. GOLDMAN. The Queen of Mathematics: A
Historically Motivated Guide to Number Theory. A K
Peters/CRC Press, 1998. Chap. 22: Geometry of numbers.
https://www2.math.ethz.ch/education/bachelor/
seminars/hs2014/beweise-aus-dem-buch/



Primes of the form z? 4 ny?

Theorem 4 (Fermat).

An odd prime number p can be written x* + 2y* if and only if
p=1or3 mod 8.

A prime number p can be written x* + 3y? if and only if p = 1
mod 3.

Theorem 5 (Gauss).

A prime number p can be written x* + 27y? if and only if
p=1 mod 3 and 2 is a cubic residue mod p.

Reference: David A. Cox. Primes of the form 22 + ny?. John
Wiley (1989).
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Discriminant of a number field

Let & be a number field of degree n > 2.

Consider an integral basis wy, . ..,w, of Z;. Let wlm, . ,wi(n)

be the n complex conjugates of w; (i =1,--- ,n).

The discriminant dj, of k is the square of the determinant of
the n x n matrix (wl(j)).

The value of dj. depends only on k (not on the basis of Zj), it
is a nonzero rational integer.

Further, if k is totally real, then it is a positive integer.
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Canonical embedding of a number field

Let & be a number field of degree n. Let r; be the number of
real embeddings and 275 the number of complex embeddings.
The canonical embedding of k is the injective map

0= (01, oy Oppiry) 1 b — R™ x C™.

The image o(Zy,) of the ring of integers of k under ¢ is a
lattice in R™ x C"2.

Hence the ring of integers is a free Z—module of rank n.

Lower bound for the discriminant

Here is the solution by Minkowski of a Conjecture of
Kronecker.

Theorem 6.
The discriminant of a number field # Q is > 1, hence is
divisible by at least one prime.

Proof.

For simplicity assume £k is totally real. By Minkowski's linear
form theorem for the product of linear forms, there exists a
nonzero integer point x such that

Hzxiwﬂ S —

j=1 i=1

The left hand side is a nonzero integer. Hence

di > (n™/n!)? > 1.
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C.L. Siegel

Let P € Z[X] be a monic irreducible polynomial of degree n
and discriminant A having n real zeroes. Then

n" 2
A>(—).
— \n!

SIEGEL, CARL LUDWIG. Lectures on the geometry of
numbers. Springer-Verlag, Berlin, 1989. See Lecture 3, §2.
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Dirichlet’s units Theorem

The image A(Z;) of the group of units of & is a subgroup of
the additive group R™ "2 it is contained in the hyperplane H
of equation

Tyt x + 200+ 20 4, = 0,
and A(Z;) is discrete in H. From these properties, one easily
deduces that as a Z-module, Z;; is finitely generated of rank
< r, where r = r{ + 19 — 1 is the dimension of H as a
R—vector space.
Theorem 7 (Dirichlet’s units Theorem).

The image of the group of units \(Z;) is a lattice in H. As a
consequence, the group of units of an algebraic number field k
is a finitely generated group of rank r.

http://www.numbertheory.org/ntw/lecture notes.html
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Logarithmic embedding of a number field
The logarithmic embedding is the map \ : kX — R™ 172
obtained by composing the restriction of o to k™ with the map

(2j)1<j<ritr — (10g|25])1<j<r+rs

from (R*)™ x (C*)™ to R "2,

In other words

Aa) = (log |oj(@)r<jcritr-

Geometry of numbers and transcendence

Thue-Siegel's Lemma - Dirichlet’s box principle.

SIEGEL, C.L. Uber einige Anwendungen diophantischer
Approximationen. Abh. der PreuB Akad. der Wissenschaften.
Phys.-math. K1. 1929, Nr. 1 (=Ges. Abh., I, 209-266).

K. Mahler: proof by geometry of numbers.

E. BOMBIERI- J. VAALER On Siegel’s Lemma. Invent.
math. 73, 11-32 (1983)
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Siegel's lemma (1929) Bombieri—Vaaler

. Let
Let a,,, be rational numbers, not all 0, bounded by B. The N
system of linear equations Z ATy = 0 (m=1,...,M)
n=1
anzi+ -t awzy = 0 be a linear system of M linearly independent equations in
: N > M unknowns with rational integer coefficients a,,,,,.
ayix1+ - +aynry = 0 There is a nontrivial solution in integers z,, with
where N > M, has a solution z1,...,zy, where the z; are max _|a.] < (D‘l ]det(AtA)]>1/(N_M)
rational integers, not all 0, bounded by 1<n<N M T ’
1+ (NB)M/(N-M) where A denotes the M x N matrix (a,,,), ‘A the transpose

and where D is the greatest common divisor of the
determinants of all M x M minors of A.
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Bombieri—Vaaler Auxiliary functions in transcendence

Zero estimate
There are N — M linearly independent integral solutions in

integers z, = (%14, ..., TNg) with
NZM . Interpolation determinants
max_|zne| < (D— \/]det(AtA)]).
1<n<N

Arakelov theory, slopes inequalities
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