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Abstract

The transcendence proofs for constants of analysis are
essentially all based on the seminal work by Ch. Hermite : his
proof of the transcendence of the number e in 1873 is the
prototype of the methods which have been subsequently
developed. We first show how the founding paper by Hermite
was influenced by earlier authors (Lambert, Euler, Fourier,
Liouville), next we explain how his arguments have been
expanded in several directions : Padé approximants,
interpolation series, auxiliary functions.



Numbers : rational, irrational

Numbers = real or complex numbers R, C.

Natural integers : N = {0, 1, 2, . . .}.

Rational integers : Z = {0,±1,±2, . . .}.

Rational numbers :
a/b with a and b rational integers, b > 0.

Irreducible representation :
p/q with p and q in Z, q > 0 and gcd(p, q) = 1.

Irrational number : a real (or complex) number which is not
rational.
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Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a
non-zero polynomial with rational coefficients.

Examples :
rational numbers : a/b, root of bX − a.√

2, root of X 2 − 2.
i , root of X 2 + 1.

The sum and the product of algebraic numbers are algebraic
numbers. The set of complex algebraic numbers is a field, the
algebraic closure of Q in C.

A transcendental number is a complex number which is not
algebraic.
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Irrationality of
√

2 : geometric proof

• Start with a rectangle have side length 1 and 1 +
√

2.
• Decompose it into two squares with sides 1 and a smaller
rectangle of sides 1 +

√
2− 2 =

√
2− 1 and 1.

• This second small rectangle has side lenghts in the
proportion

1√
2− 1

= 1 +
√

2,

which is the same as for the large one.
• Hence the second small rectangle can be split into two
squares and a third smaller rectangle, the sides of which are
again in the same proportion.
• This process does not end.
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√

2 : geometric proof

If we start with a rectangle having integer side lengths, then
this process stops after finitely may steps (the side lengths are
positive decreasing integers).

Also for a rectangle with side lengths in a rational proportion,
this process stops after finitely may steps (reduce to a
common denominator and scale).

Hence 1 +
√

2 is an irrational number, and
√

2 also.
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• Benôıt Rittaud, Éditions Le Pommier (2006).

http://www.math.univ-paris13.fr/∼rittaud/RacineDeDeux



Continued fraction
The number

√
2 = 1.414 213 562 373 095 048 801 688 724 209 . . .

satisfies √
2 = 1 +

1√
2 + 1

·

Hence

√
2 = 1 +

1

2 +
1√

2 + 1

= 1 +
1

2 +
1

2 +
1

. . .

We write the continued fraction expansion of
√

2 using the
shorter notation

√
2 = [1; 2, 2, 2, 2, 2, . . . ] = [1; 2].



Continued fraction
The number

√
2 = 1.414 213 562 373 095 048 801 688 724 209 . . .

satisfies √
2 = 1 +

1√
2 + 1

·

Hence

√
2 = 1 +

1

2 +
1√

2 + 1

= 1 +
1

2 +
1

2 +
1

. . .

We write the continued fraction expansion of
√

2 using the
shorter notation

√
2 = [1; 2, 2, 2, 2, 2, . . . ] = [1; 2].



Continued fraction
The number

√
2 = 1.414 213 562 373 095 048 801 688 724 209 . . .

satisfies √
2 = 1 +

1√
2 + 1

·

Hence

√
2 = 1 +

1

2 +
1√

2 + 1

= 1 +
1

2 +
1

2 +
1

. . .

We write the continued fraction expansion of
√

2 using the
shorter notation

√
2 = [1; 2, 2, 2, 2, 2, . . . ] = [1; 2].



Continued fraction
The number

√
2 = 1.414 213 562 373 095 048 801 688 724 209 . . .

satisfies √
2 = 1 +

1√
2 + 1

·

Hence

√
2 = 1 +

1

2 +
1√

2 + 1

= 1 +
1

2 +
1

2 +
1

. . .

We write the continued fraction expansion of
√

2 using the
shorter notation

√
2 = [1; 2, 2, 2, 2, 2, . . . ] = [1; 2].



Continued fraction
The number

√
2 = 1.414 213 562 373 095 048 801 688 724 209 . . .

satisfies √
2 = 1 +

1√
2 + 1

·

Hence

√
2 = 1 +

1

2 +
1√

2 + 1

= 1 +
1

2 +
1

2 +
1

. . .

We write the continued fraction expansion of
√

2 using the
shorter notation

√
2 = [1; 2, 2, 2, 2, 2, . . . ] = [1; 2].



Continued fractions

• H.W. Lenstra Jr,
Solving the Pell Equation,
Notices of the A.M.S.
49 (2) (2002) 182–192.



Irrationality criteria

A real number is rational if and only if its continued fraction
expansion is finite.

A real number is rational if and only if its binary (or decimal,
or in any basis b ≥ 2) expansion is ultimately periodic.

Consequence : it should not be so difficult to decide whether a
given number is rational or not.

To prove that certain numbers (occurring as constants in
analysis) are irrational is most often an impossible challenge.
However to construct irrational (even transcendental) numbers
is easy.
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Euler–Mascheroni constant

Euler’s Constant is

γ= lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
= 0.577 215 664 901 532 860 606 512 090 082 . . .

Is–it a rational number ?

γ=
∞∑

k=1

(
1

k
− log

(
1 +

1

k

))
=

∫ ∞
1

(
1

[x ]
− 1

x

)
dx

= −
∫ 1

0

∫ 1

0

(1− x)dxdy

(1− xy) log(xy)
·

Recent work by J. Sondow inspired by the work of F. Beukers
on Apéry’s proof.
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Riemann zeta function

The function

ζ(s) =
∑
n≥1

1

ns

was studied by Euler (1707– 1783)
for integer values of s
and by Riemann (1859) for complex values of s.

Euler : for any even integer value of s ≥ 2, the number ζ(s) is
a rational multiple of πs .

Examples : ζ(2) = π2/6, ζ(4) = π4/90, ζ(6) = π6/945,
ζ(8) = π8/9450 · · ·

Coefficiens : Bernoulli numbers.
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Introductio in analysin infinitorum

Leonhard Euler

(1707 – 1783)

Introductio in analysin infinitorum



Divergent series

Euler :

1− 1 + 1− 1 + 1− 1 + · · · =
1

2

1 + 1 + 1 + 1 + 1 + · · · = − 1

2

1 + 2 + 3 + 4 + 5 + · · · = − 1
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12 + 22 + 32 + 42 + 52 + · · · = 0.
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Riemann zeta function

The number

ζ(3) =
∑
n≥1

1

n3
= 1, 202 056 903 159 594 285 399 738 161 511 . . .

is irrational (Apéry 1978).

Recall that ζ(s)/πs is rational for any even value of s ≥ 2.

Open question : Is the number ζ(3)/π3 irrational ?
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Riemann zeta function

Is the number

ζ(5) =
∑
n≥1

1

n5
= 1.036 927 755 143 369 926 331 365 486 457 . . .

irrational ?

T. Rivoal (2000) : infinitely many ζ(2n + 1) are irrational.
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• Is the number

e + π = 5.859 874 482 048 838 473 822 930 854 632 . . .

irrational ?
• Is the number

eπ = 8.539 734 222 673 567 065 463 550 869 546 . . .

irrational ?
• Is the number

log π = 1.144 729 885 849 400 174 143 427 351 353 . . .

irrational ?



Open problems (irrationality)

• Is the number

e + π = 5.859 874 482 048 838 473 822 930 854 632 . . .

irrational ?
• Is the number

eπ = 8.539 734 222 673 567 065 463 550 869 546 . . .

irrational ?
• Is the number

log π = 1.144 729 885 849 400 174 143 427 351 353 . . .

irrational ?



Open problems (irrationality)

• Is the number

e + π = 5.859 874 482 048 838 473 822 930 854 632 . . .

irrational ?
• Is the number

eπ = 8.539 734 222 673 567 065 463 550 869 546 . . .

irrational ?
• Is the number

log π = 1.144 729 885 849 400 174 143 427 351 353 . . .

irrational ?



Catalan’s constant

Is Catalan’s constant∑
n≥1

(−1)n

(2n + 1)2

= 0.915 965 594 177 219 015 0 . . .

an irrational number ?

This is the value at s = 2 of the
Dirichlet L–function L(s, χ−4)
associated with the Kronecker character

χ−4(n) =
(n

4

)
,

which is the quotient of the Dedekind zeta function of Q(i)
and the Riemann zeta function.
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Euler Gamma function

Is the number

Γ(1/5) = 4.590 843 711 998 803 053 204 758 275 929 152 . . .

irrational ?

Γ(z) = e−γzz−1
∞∏

n=1

(
1 +

z

n

)−1

ez/n =

∫ ∞
0

e−ttz · dt

t

Here is the set of rational values for z for which the answer is
known (and, for these arguments, the Gamma value is a
transcendental number) :

r ∈
{

1

6
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

5

6

}
(mod 1).
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Known results

Irrationality of the number π :

Āryabhat.a, b. 476 AD : π ∼ 3.1416.

N̄ılakan. t.ha Somayāj̄ı, b. 1444 AD : Why then has an
approximate value been mentioned here leaving behind the
actual value ? Because it (exact value) cannot be expressed.

K. Ramasubramanian, The Notion of Proof in Indian Science,
13th World Sanskrit Conference, 2006.
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Irrationality of π

Johann Heinrich Lambert (1728 - 1777)
Mémoire sur quelques propriétés
remarquables des quantités transcendantes
circulaires et logarithmiques,
Mémoires de l’Académie des Sciences
de Berlin, 17 (1761), p. 265-322 ;
read in 1767 ; Math. Werke, t. II.

tan(v) is irrational for any rational value of v 6= 0
and tan(π/4) = 1.
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Continued fraction expansion of tan(x)

tan(x) =
1

i
tanh(ix), tanh(x) =

ex − e−x

ex + e−x
·

tan(x) =
x

1− x2

3− x2

5− x2

7− x2

9− x2

. . .

·

S.A. Shirali – Continued fraction for e,
Resonance, vol. 5 N◦1, Jan. 2000, 14–28.
http ://www.ias.ac.in/resonance/

http://www.ias.ac.in/resonance/
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Leonard Euler (April 15, 1707 – 1783)

Leonhard Euler (1707 - 1783)
De fractionibus continuis dissertatio,
Commentarii Acad. Sci. Petropolitanae,
9 (1737), 1744, p. 98–137 ;
Opera Omnia Ser. I vol. 14,
Commentationes Analyticae, p. 187–215.

e= lim
n→∞

(1 + 1/n)n

= 2.718 281 828 459 045 235 360 287 471 352 . . .

= 1 + 1 +
1

2
· (1 +

1

3
· (1 +

1

4
· (1 +

1

5
· (1 + · · · )))).
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Continued fraction expansion for e

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

. . .

= [2 ; 1, 2, 1, 1, 4, 1, 1, 6, . . . ]

= [2; 1, 2m, 1]m≥1.

e is neither rational (J-H. Lambert, 1766) nor quadratic
irrational (J-L. Lagrange, 1770).



Continued fraction expansion for e1/a

Starting point : y = tanh(x/a) satisfies the differential
equation ay ′ + y 2 = 1.
This leads Euler to

e1/a= [1 ; a − 1, 1, 1, 3a − 1, 1, 1, 5a − 1, . . . ]

= [1, (2m + 1)a − 1, 1]m≥0.
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Geometric proof of the irrationality of e

Jonathan Sondow
http://home.earthlink.net/∼jsondow/
A geometric proof that e is irrational
and a new measure of its irrationality,
Amer. Math. Monthly 113 (2006) 637-641.

Start with an interval I1 with length 1. The interval In will be
obtained by splitting the interval In−1 into n intervals of the
same length, so that the length of In will be 1/n!.
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Geometric proof of the irrationality of e

The origin of In will be

1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
·

Hence we start from the interval I1 = [2, 3]. For n ≥ 2, we
construct In inductively as follows : split In−1 into n intervals of
the same length, and call the second one In :

I1=

[
1 +

1

1!
, 1 +

2

1!

]
= [2, 3],

I2=

[
1 +

1

1!
+

1

2!
, 1 +

1

1!
+

2

2!

]
=

[
5

2!
,

6

2!

]
,

I3=

[
1 +

1

1!
+

1

2!
+

1

3!
, 1 +

1

1!
+

1

2!
+

2

3!

]
=

[
16

3!
,

17

3!

]
·
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Irrationality of e, following J. Sondow

The origin of In is

1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
=

an

n!
,

the length is 1/n!, hence In = [an/n!, (an + 1)/n!].

The number e is the intersection point of all these intervals,
hence it is inside each In, therefore it cannot be written a/n!
with a an integer.
Since

p

q
=

(q − 1)! p

q!
,

we deduce that the number e is irrational.
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Joseph Fourier

Course of analysis at the École Polytechnique Paris, 1815.



Irrationality of e, following J. Fourier

e =
N∑

n=0

1

n!
+
∑

m≥N+1

1

m!
·

Multiply by N! and set

BN = N!, AN =
N∑

n=0

N!

n!
, RN =

∑
m≥N+1

N!

m!
,

so that BNe = AN + RN . Then AN and BN are in Z, RN > 0
and

RN =
1

N + 1
+

1

(N + 1)(N + 2)
+ · · · < e

N + 1
·
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Irrationality of e, following J. Fourier

In the formula
BNe − AN = RN ,

the numbers AN and BN = N! are integers, while the right
hand side is > 0 and tends to 0 when N tends to infinity.
Hence N! e is not an integer, therefore e is irrational.
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Irrationality of e−1, following F. Beukers

F. Beukers (2008) : even
simpler by considering e−1

(alternating series).

The sequence (1/n!)n≥0 is decreasing and tends to 0, hence
for odd N ,

1− 1

1!
+

1

2!
− · · · − 1

N!
< e−1 < 1− 1

1!
+

1

2!
− · · ·+ 1

(N + 1)!
·

Set

aN = N!− N!

1!
+

N!

2!
− · · ·+ (N − 1)!

N!
− 1 ∈ Z

Then 0 < N!e−1 − aN < 1, and therefore N!e−1 is not an
integer.
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The number e is not quadratic

Since e is irrational, the same is true for e1/b when b is a
positive integer. That e2 is irrational is a stronger statement.

Recall (Euler, 1737) : e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]
which is not a periodic expansion. J.L. Lagrange (1770) : it
follows that e is not a quadratic number.

Assume ae2 + be + c = 0. Replacing e and e2 by the series
and truncating does not work : the denominator is too large
and the remainder does not tend to zero.

Liouville (1840) : Write the quadratic equation as
ae + b + ce−1 = 0.
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Joseph Liouville

J. Liouville (1809 - 1882) proved also that e2 is not a
quadratic irrational number in 1840.

Sur l’irrationalité du nombre e = 2, 718 . . .,
J. Math. Pures Appl.
(1) 5 (1840), p. 192 and p. 193-194.

1844 : J. Liouville proved the existence of transcendental
numbers by giving explicit examples (continued fractions,
series).
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The number e2 is not quadratic

The irrationality of e4, hence of e4/b for b a positive integer,
follows.

It does not seem that this kind of argument will suffice to
prove the irrationality of e3, even less to prove that the
number e is not a cubic irrational.

Fourier’s argument rests on truncating the exponential series,
it amounts to approximate e by a/N! where a ∈ Z. Better
rational approximations exist, involving other denominators
than N!.

The denominator N! arises when one approximates the
exponential series of ez by polynomials

∑N
n=1 zn/n!.
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Idea of Ch. Hermite

Ch. Hermite (1822 - 1901).
approximate the exponential function ez

by rational fractions A(z)/B(z).

For proving the irrationality of ea,
(a an integer ≥ 2), approximate
ea par A(a)/B(a).

If the function B(z)ez − A(z) has a zero of high multiplicity
at the origin, then this function has a small modulus near 0,
hence at z = a. Therefore |B(a)ea − A(a)| is small.
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Charles Hermite

A rational function A(z)/B(z) is close to a complex analytic
function f if B(z)f (z)− A(z) has a zero of high multiplicity
at the origin.

Goal : find B ∈ C[z ] such that the Taylor expansion at the
origin of B(z)f (z) has a big gap : A(z) will be the part of the
expansion before the gap, R(z) = B(z)f (z)− A(z) the
remainder.
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Irrationality of er and π (Lambert, 1766)

Charles Hermite (1873)

Carl Ludwig Siegel (1929, 1949)

Yuri Nesterenko (2005)



Irrationality of er and π (Lambert, 1766)

We wish to prove the irrationality of ea for a a positive integer.

Goal : write Bn(z)ez = An(z) + Rn(z) with An and Bn in Z[z ]
and Rn(a) 6= 0, limn→∞ Rn(a) = 0.

Substitute z = a, set q = Bn(a), p = An(a) and get

0 < |qea − p| < ε.
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Rational approximation to exp

Given n0 ≥ 0, n1 ≥ 0, find A and B in R[z ] of degrees ≤ n0

and ≤ n1 such that R(z) = B(z)ez − A(z) has a zero at the
origin of multiplicity ≥ N + 1 with N = n0 + n1.

Theorem There is a non-trivial solution, it is unique with B
monic. Further, B is in Z[z ] and (n0!/n1!)A is in Z[z ].
Furthermore A has degree n0, B has degree n1 and R has
multiplicity exactly N + 1 at the origin.



Rational approximation to exp

Given n0 ≥ 0, n1 ≥ 0, find A and B in R[z ] of degrees ≤ n0

and ≤ n1 such that R(z) = B(z)ez − A(z) has a zero at the
origin of multiplicity ≥ N + 1 with N = n0 + n1.

Theorem There is a non-trivial solution, it is unique with B
monic. Further, B is in Z[z ] and (n0!/n1!)A is in Z[z ].
Furthermore A has degree n0, B has degree n1 and R has
multiplicity exactly N + 1 at the origin.



B(z)ez = A(z) + R(z)

Proof. Unicity of R , hence of A and B .
Let D = d/dz . Since A has degree ≤ n0,

Dn0+1R = Dn0+1(B(z)ez)

is the product of ez with a polynomial of the same degree as
the degree of B and same leading coefficient.
Since Dn0+1R(z) has a zero of multiplicity ≥ n1 at the origin,
Dn0+1R = zn1ez . Hence R is the unique function satisfying
Dn0+1R = zn1ez with a zero of multiplicity ≥ n0 at 0 and B
has degree n1.
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Siegel’s algebraic point of view

C.L. Siegel, 1949.
Solve Dn0+1R(z) = zn1ez .

The operator Jϕ =

∫ z

0

ϕ(t)dt,

inverse of D, satisfies

Jn+1ϕ =

∫ z

0

1

n!
(z − t)nϕ(t)dt.

Hence

R(z) =
1

n0!

∫ z

0

(z − t)n0tn1etdt.

Also A(z) = −(−1 + D)−n1−1zn0 and
B(z) = (1 + D)−n0−1zn1 .
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Irrationality of logarithms including π

The irrationality of er for r ∈ Q×, is equivalent to the
irrationality of log s for s ∈ Q>0.

The same argument gives the irrationality of log(−1), meaning
log(−1) = iπ 6∈ Q(i).

Hence π 6∈ Q.
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Simultaneous approximation and transcendence

Irrationality proofs involve rational approximation to a single
real number θ.

We wish to prove transcendence results.

A complex number θ is transcendental if and only if the
numbers

1, θ, θ2, . . . , θm, . . .

are Q–linearly independent.

Hence our goal is to prove linear independence, over the
rational number field, of complex numbers.
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L = a0 + a1x1 + · · · + amxm

Let x1, . . . , xm be real numbers and a0, a1, . . . , am rational
integers, not all of which are zero. We wish to prove that the
number

L = a0 + a1x1 + · · ·+ amxm

is not zero. Approximate simultaneously x1, . . . , xm by rational
numbers b1/b0, . . . , bm/b0.
Let b0, b1, . . . , bm be rational integers. For 1 ≤ k ≤ m set

εk = b0xk − bk .

Then b0L = A + R with

A = a0b0 + · · ·+ ambm ∈ Z and R = a1ε1 + · · ·+ amεm ∈ R.

If 0 < |R | < 1, then L 6= 0.
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Simultaneous approximation to the exponential

function

Irrationality results follow from rational approximations
A/B ∈ Q(x) to the exponential function ex .

One of Hermite’s ideas is to consider simultaneous rational
approximations to the exponential function, in analogy with
Diophantine approximation.

Let B0,B1, . . . ,Bm be polynomials in Z[x ]. For 1 ≤ k ≤ m
define

Rk(x) = B0(x)ekx − Bk(x).

Set bj = Bj(1), 0 ≤ j ≤ m and

R = a0 + a1R1(1) + · · ·+ amRm(1).

If 0 < |R | < 1, then a0 + a1e + · · ·+ amem 6= 0.
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Hermite–Lindemann Theorem

For any non-zero complex number z, one at least of the two
numbers z and ez is transcendental.

Hermite (1873) : transcendence of e.

Lindemann (1882) : transcendence of π.

Corollaries : transcendence of logα and of eβ for α and β
non-zero algebraic complex numbers, with logα 6= 0.
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Hermite : approximation to the functions

1, eα1x , . . . , eαmx

Let α1, . . . , αm be pairwise distinct complex numbers and
n0, . . . , nm be rational integers, all ≥ 0. Set
N = n0 + · · ·+ nm.

Hermite constructs explicitly polynomials B0, B1, . . . , Bm with
Bj of degree N − nj such that each of the functions

B0(z)eαkz − Bk(z), (1 ≤ k ≤ m)

has a zero at the origin of multiplicity at least N .



Approximants de Padé

Henri Eugène Padé (1863 - 1953)
Approximation of complex
analytic functions by
rational functions.



Transcendental functions

A complex function is called transcendental if it is
transcendental over the field C(z), which means that the
functions z and f (z) are algebraically independent : if
P ∈ C[X ,Y ] is a non-zero polynomial, then the function
P
(
z , f (z)

)
is not 0.

Exercise. An entire function (analytic in C) is transcendental if
and only if it is not a polynomial.

Example. The transcendental entire function ez takes an
algebraic value at an algebraic argument z only for z = 0.
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Stäckel, Faber, van der Poorten, Gramain. . .
If S is a countable subset of C and T is a dense subset of C,
there exist transcendental entire functions f mapping S into
T , as well as all its derivatives.
Also there are transcendental entire functions f such that
Dk f (α) ∈ Q(α) for all k ≥ 0 and all algebraic α.



Weierstrass question

Is–it true that a transcendental
entire function f takes usually
transcendental values at algebraic
arguments ?

Answers by Weierstrass (letter to Strauss in 1886), Strauss,
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Integer valued entire functions

An integer valued entire function is a function f , which is
analytic in C, and maps N into Z.

Example : 2z is an integer valued entire function, not a
polynomial.

Question : Are-there integer valued entire function growing
slower than 2z without being a polynomial ?

Let f be a transcendental entire function in C. For R > 0 set

|f |R = sup
|z|=R

|f (z)|.
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Integer valued entire functions

G. Pólya (1914) :
if f is not a polynomial
and f (n) ∈ Z for n ∈ Z≥0, then

lim sup
R→∞

2−R |f |R ≥ 1.

Further works on this topic by G.H. Hardy, G. Pólya, D. Sato,
E.G. Straus, A. Selberg, Ch. Pisot, F. Carlson, F. Gross,. . .
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Arithmetic functions

Pólya’s proof starts by expanding the function f into a Newton
interpolation series at the points 0, 1, 2, . . . :

f (z) = a0 + a1z + a2z(z − 1) + a3z(z − 1)(z − 2) + · · ·

Since f (n) is an integer for all n ≥ 0, the coefficients an are
rational and one can bound the denominators. If f does not
grow fast, one deduces that these coefficients vanish for
sufficiently large n.
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Newton interpolation series

From

f (z) = f (α1) + (z − α1)f1(z), f1(z) = f1(α2) + (z − α2)f2(z), . . .

we deduce

f (z) = a0 + a1(z − α1) + a2(z − α1)(z − α2) + · · ·

with

a0 = f (α1), a1 = f1(α2), . . . , an = fn(αn+1).
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An identity due to Ch. Hermite
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An identity due to Ch. Hermite

Inductively we deduce the next formula due to Hermite :

1

x − z
=

n−1∑
j=0

(z − α1)(z − α2) · · · (z − αj)

(x − α1)(x − α2) · · · (x − αj+1)

+
(z − α1)(z − α2) · · · (z − αn)

(x − α1)(x − α2) · · · (x − αn)
· 1

x − z
·



Newton interpolation expansion

Application. Multiply by (1/2iπ)f (z) and integrate :

f (z) =
n−1∑
j=0

aj(z − α1) · · · (z − αj) + Rn(z)

with

aj =
1

2iπ

∫
C

F (x)dx

(x − α1)(x − α2) · · · (x − αj+1)
(0 ≤ j ≤ n − 1)

and

Rn(z)= (z − α1)(z − α2) · · · (z − αn)·
1

2iπ

∫
C

F (x)dx

(x − α1)(x − α2) · · · (x − αn)(x − z)
·



Integer valued entire function on Z[i ]

A.O. Gel’fond (1929) : growth of entire functions mapping the
Gaussian integers into themselves.
Newton interpolation series at the points in Z[i ].

An entire function f which is not a polynomial and satisfies
f (a + ib) ∈ Z[i ] for all a + ib ∈ Z[i ] satisfies

lim sup
R→∞

1

R2
log |f |R ≥ γ.

F. Gramain (1981) : γ = π/(2e).
This is best possible : D.W. Masser (1980).
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Transcendence of eπ

A.O. Gel’fond (1929).

If
eπ = 23, 140 692 632 779 269 005 729 086 367 . . .

is rational, then the function eπz takes values in Q(i) when
the argument z is in Z[i ].

Expand eπz into an interpolation series at the Gaussian
integers.
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Hilbert’s seventh problem

A.O. Gel’fond and Th. Schneider (1934).
Solution of Hilbert’s seventh problem :
transcendence of αβ

and of (logα1)/(logα2)
for algebraic α, β, α2 and α2.



Dirichlet’s box principle

Gel’fond and Schneider
use an auxiliary function,
the existence of which follows
from Dirichlet’s box principle
(pigeonhole principle,
Thue-Siegel Lemma).



Auxiliary functions

C.L. Siegel (1929) :
Hermite’s explicit formulae
can be replaced by
Dirichlet’s box principle
(Thue–Siegel Lemma)
which shows the existence
of suitable auxiliary functions.

M. Laurent (1991) : instead of using the pigeonhole principle
for proving the existence of solutions to homogeneous linear
systems of equations, consider the matrices of such systems
and take determinants.
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Slope inequalities in Arakelov theory

J–B. Bost (1994) :
matrices and determinants require
choices of bases.
Arakelov’s Theory produces
slope inequalities which
avoid the need of bases.

Périodes et isogénies des variétés abéliennes sur les corps de
nombres, (d’après D. Masser et G. Wüstholz).
Séminaire Nicolas Bourbaki, Vol. 1994/95.
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Rational interpolation

René Lagrange (1935).

1

x − z
=

α− β
(x − α)(x − β)

+
x − β
x − α

· z − α
z − β

· 1

x − z
·

Iterating and integrating yield

f (z) =
N−1∑
n=0

Bn
(z − α1) · · · (z − αn)

(z − β1) · · · (z − βn)
+ R̃N(z).
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Hurwitz zeta function
T. Rivoal (2006) : consider Hurwitz zeta function

ζ(s, z) =
∞∑

k=1

1

(k + z)s
·

Expand ζ(2, z) as a series in

z2(z − 1)2 · · · (z − n + 1)2

(z + 1)2 · · · (z + n)2
·

The coefficients of the expansion belong to Q + Qζ(3). This
produces a new proof of Apéry’s Theorem on the irrationality
of ζ(3).
In the same way : new proof of the irrationality of log 2 by
expanding

∞∑
k=1

(−1)k

k + z
·
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Mixing C. Hermite and R. Lagrange

T. Rivoal (2006) : new proof of the irrationality of ζ(2) by
expanding

∞∑
k=1

(
1

k
− 1

k + z

)
as a Hermite–Lagrange series in(

z(z − 1) · · · (z − n + 1)
)2

(z + 1) · · · (z + n)
·



Taylor series and interpolation series

Taylor series are the special case of Hermite’s formula with a
single point and multiplicities — they give rise to Padé
approximants.

Multiplicities can also be introduced in René Lagrange
interpolation.

There is another duality between the methods of Gel’fond and
Schneider : Fourier-Borel transform.
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Further develoments

Transcendence and algebraic independence of values of
modular functions (méthode stéphanoise and work of
Yu.V. Nesterenko).

Measures : transcendence, linear independence, algebraic
independence. . .

Finite characteristic :

Federico Pellarin - Aspects de l’indépendance algébrique en
caractéristique non nulle [d’après Anderson, Brownawell,
Denis, Papanikolas, Thakur, Yu,. . .]
Séminaire Nicolas Bourbaki, Dimanche 18 mars 2007.
http://www.bourbaki.ens.fr/seminaires/2007/Prog−mars.07.html
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