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Abstract

An integer-valued entire function is an entire function which is
analytic in the complex plane and takes integer values at the
nonnegative integers ; an example is 2z.

A Hurwitz function is an entire function with derivatives of
any order taking integer values at 0 ; an example is ez.

Lower bounds for the growth of such functions and similar
ones when they are not a polynomial have been investigated.

We start with its connection with transcendental number
theory. Next we survey this topic. Finally, we present some new
results related with Lidstone, Whittaker, Poritsky and
Gontcharoff interpolation.



Introduction : Hilbert’s 7th problem (1900)

David Hilbert

(1862 – 1943)

Prove that the numbers

eπ = 23.140 692 632 . . .

and

2
√
2 = 2.665 144 142 . . .

are transcendental.

A transcendental number is a number which is not algebraic.
The algebraic numbers are the roots of the polynomials with
rational coefficients.
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Values of the exponential function ez = exp(z)

eπ = 1 +
π

1
+
π2

2
+
π3

6
+ · · ·+ πn

n!
+ · · ·

The number

e = e1 = 1 +
1

1
+

1

2
+

1

6
+ · · ·+ 1

n!
+ · · ·

is transcendental (Hermite, 1873), while

elog 2 = 1 +
log 2

1
+

(log 2)2

2
+ · · ·+ (log 2)n

n!
+ · · · = 2

eiπ = 1 +
iπ

1
+

(iπ)2

2
+ · · ·+ (iπ)n

n!
+ · · · = −1

are rational numbers.



Charles Hermite

Charles Hermite

(1822 – 1901)

1873
The number e is
transcendental.

Ch. Hermite – Sur la fonction exponentielle, C. R. Acad.
Sci. Paris, 77 (1873), 18–24 ; 74–79 ; 226–233 ; 285–293 ;
Oeuvres, Gauthier Villars (1905), III, 150–181.
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Constance Reid : Hilbert

• Constance Reid. Hilbert. Springer Verlag 1970.
• Jay Goldman. The Queen of Mathematics : A Historically
Motivated Guide to Number Theory. Taylor & Francis, 1998.



George Pólya Aleksandr Osipovich Gel’fond

Growth of integer-valued entire functions.
Pólya : N Gel’fond : Z[i]

G. Pólya

(1887 – 1985)

A.O. Gel’fond

(1906 – 1968)

http://www-history.mcs.st-and.ac.uk/Biographies/Polya.html
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Integer-valued entire functions on N

G. Pólya (1915) :
An entire function f which is
not a polynomial and satisfies
f(a) ∈ Z for all nonnegative
integers a grows at least like
2z. It satisfies

lim sup
R→∞

1

R
log |f |R ≥ log 2.

G. Pólya

(1887 – 1985)

Notation :
|f |R := sup

|z|≤R
|f(z)|.

http://www-history.mcs.st-and.ac.uk/Biographies/Polya.html
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Integer-valued entire function on Z[i]

S. Fukasawa (1928), A.O. Gel’fond (1929) :
An entire function f which is not a polynomial and satisfies
f(a+ ib) ∈ Z[i] for all a+ ib ∈ Z[i] grows at least like ecz

2
. It

satisfies

lim sup
R→∞

1

R2
log |f |R ≥ γ.

Proof : Expand f(z) into a Newton interpolation series at the
Gaussian integers.

A.O. Gel’fond : γ ≥ 10−45.



Entire functions vanishing on Z[i]
The canonical product associated with the lattice Z[i] is the
Weierstrass sigma function

σ(z) = z
∏

ω∈Z[i]\{0}

(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)
,

which is an entire function vanishing on Z[i].
σ(z) grows like eπz

2/2 :

lim sup
R→∞

1

R2
log |σ|R =

π

2
·

Hence
10−45 ≤ γ ≤ π

2
·



Exact value of the constant γ of Gel’fond

F. Gramain (1981) : γ =
π

2e
·

This is best possible : D.W. Masser (1980).

F. Gramain D.W. Masser



Irrationality of eπ

The function eπz takes the value

(eπ)a(−1)b

at the point a+ ib ∈ Z[i].

If the number

eπ = 23.140 692 632 779 269 005 729 086 367 . . .

were rational, these values would all be rational numbers.

Gel’fond’s proof yields the irrationality of eπ and more
generally the fact that eπ is not root of a polynomial XN − a
with N ≥ 1 and a ∈ Q.



Transcendence of eπ

A.O. Gel’fond (1929) : eπ is transcendental.

More generally, for α nonzero algebraic number with logα 6= 0
and for β imaginary quadratic number,

αβ = exp(β logα)

is transcendental.
Example : α = −1, logα = iπ, β = −i, αβ = (−1)−i = eπ.

R.O. Kuzmin (1930) : 2
√
2 is transcendental.

More generally, for α nonzero algebraic number with logα 6= 0
and for β real quadratic number,

αβ = exp(β logα)

is transcendental.
Example : α = 2, logα = log 2, β =

√
2, αβ = 2

√
2.



Solution of Hilbert’s seventh problem

A.O. Gel’fond and Th. Schneider (1934).

Transcendence of αβ

and of (logα1)/(logα2)
for algebraic α, β, α2 and α2.



Further connection with transcendental number

theory

In 1950, E. G. Straus introduced a connection between
integer–valued functions and transcendence results, including
the Hermite–Lindemann Theorem on the transcendence of eα

for α 6= 0 algebraic.

However, as he pointed out in a footnote, at the same time,
Th. Schneider obtained more far reaching results, which
ultimately gave rise to the Schneider–Lang Criterion (1962).



Integer-valued entire functions

An integer-valued entire function is an entire function f
(analytic in C) which satisfies f(n) ∈ Z for n = 0, 1, 2, . . . .

Example : the polynomials(
z

n

)
=
z(z − 1) · · · (z − n+ 1)

n!
(n ≥ 0).

Any polynomial with complex coefficients which is an
integer-valued entire function is a linear combination with
coefficients in Z of these polynomials :

u0+u1z+u2
z(z − 1)

2
+ · · ·+un

z(z − 1) · · · (z − n+ 1)

n!
+ · · ·

(finite sum) with ui in Z.



G. Pólya (1915)

The function 2z is a transcendental (= not a polynomial)
integer-valued entire function.

2p/q =
q
√
2
p

2lim pn/qn = lim 2pn/qn ,

2z = exp(z log 2) = 1 +
z log 2

1
+

(z log 2)2

2
+

(z log 2)3

6
+ · · ·

G. Pólya (1915) : 2z is the smallest transcendental
integer-valued entire function. It has exponential type

log 2 = 0.693 147 180 . . .



Order and type of entire functions

Maximum modulus principle :

|f |r := sup
|z|=r
|f(z)| = sup

|z|≤r
|f(z)|.

The order of an entire function f is

%(f) = lim sup
r→∞

log log |f |r
log r

,

while the exponential type of an entire function is

τ(f) = lim sup
r→∞

log |f |r
r
·



Order and type of entire functions

For % ∈ Z, % ≥ 0, the function ez
%

is an entire function of
order %.

For τ ∈ C, τ 6= 0, the function eτz is an entire function of
order 1 and exponential type |τ |.

For τ ∈ C, τ 6= 0, the function

sin(τz) =
eiτπz − e−iτπz

2i

has order 1 and exponential type |τ |π.



Entire functions of finite exponential type

The exponential type of an entire function is also given by

τ(f) = lim sup
n→∞

|f (n)(z0)|1/n (z0 ∈ C).

Notation :

f (n)(z) =

(
d

dz

)n
f(z).

The proof rests on Cauchy’s estimate for the coefficients of
the Taylor series and on Stirling’s formula for n!.

Example :

(eτz)(n) = τneτz, lim
n→∞

|τneτz|1/n = |τ |.



Order and type of entire functions

If the exponential type is finite, then f has order ≤ 1.
If f has order < 1, then the exponential type is 0.

Examples :
A polynomial has order 0, hence exponential type 0.
The function ez

2
has order 2, hence infinite exponential type.

The function ee
z

has infinite order, hence infinite exponential
type.



Integer-valued entire functions on N
Pólya’s proof starts by expanding the function f into a
Newton interpolation series at the points 0, 1, 2, . . . :

f(z) =
∑
n≥0

un

(
z

n

)
, un =

n∑
k=0

(−1)k
(
n

k

)
f(n− k).

Since f(n) is an integer for all
n ≥ 0, the coefficients un are
integers. If f does not grow
fast, for sufficiently large n we
have |un| < 1, hence un = 0.

I. Newton

(1643– 1727)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Newton.html
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Proof of Pólya’s Theorem using Laplace transform

For N ≥ 0 and t ∈ C we have

N∑
n=0

(
N

n

)
(et − 1)n = eNt.

For |t| < log 2, we have

∣∣et − 1
∣∣ = ∣∣∣∣∣

∞∑
k=1

tk

k!

∣∣∣∣∣ ≤
∞∑
k=1

|t|k

k!
= e|t| − 1 < 1.

Hence for z ∈ C and |t| < log 2,

∞∑
n=0

(
z

n

)
(et − 1)n = etz.



Laplace transform

Let f be an entire function of exponential type < log 2. Let r
satisfy τ(f) < r < log 2.
Let F (t) be the Laplace transform of f :

f(z) =
1

2πi

∫
|t|=r

etzF (t)dt =
∞∑
n=0

un

(
z

n

)
with

un =
1

2πi

∫
|t|=r

(et − 1)nF (t)dt.



Proof of Pólya’s Theorem
Let f be an entire function of exponential type < log 2. We have

f(z) =

∞∑
n=0

un

(
z

n

)
.

Let r satisfy τ(f) < r < log 2. Then

un =
1

2πi

∫
|t|=r

(et − 1)nF (t)dt.

Hence, for sufficiently large n,

|un| ≤ r|F |r(er − 1)n < 1.

Gérard Rauzy. Les zéros entiers des fonctions entières de type
exponentiel. Séminaire de Théorie des Nombres de Bordeaux,
(1976-1977), pp. 1-10 https://www.jstor.org/stable/44165280

https://www.jstor.org/stable/44165280


Growth of integer-valued entire functions

G. Pólya (1915) : an integral valued entire of exponential type
< log 2 is a polynomial.

More precisely, if f is a transcendental integer-valued entire
function, then

lim
r→∞

√
r2−r|f |r > 0.

Equivalent formulation :

If f is an integer-valued entire function such that

lim
r→∞

√
r2−r|f |r = 0,

then f is a polynomial.



Carlson vs Pólya

F. Carlson (1914) : an entire
function f of exponential type
< π satisfying f(N) = {0} is
0.
The function sin(πz) is a
transcendental entire function
of exponential type π
vanishing on Z.

Fritz Carlson

(1888 – 1952)

G. Pólya (1915) : an integer-valued entire function of
exponential type < log 2 is a polynomial.
The function 2z is an integer-valued entire function of
exponential type log 2.

https://projecteuclid.org/download/pdf_1/euclid.acta/1485892028


G.H. Hardy (1917)

A refinement of Pólya’s result
was achieved by G.H. Hardy
who proved that if f is an
integer-valued entire function
such that

lim
r→∞

2−r|f |r = 0,

then f is a polynomial.
G.H. Hardy

(1877 – 1947)

Compare with Pólya’s assumption :

lim
r→∞

√
r2−r|f |r = 0.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Hardy.html
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A. Selberg (1941)

A. Selberg proved that if an
integer–valued entire function
f satisfies

τ(f) ≤ log 2 +
1

1500
,

then f is of the form
P 0(z) + P 1(z)2

z, where P 0

and P 1 are polynomials.

A. Selberg

(1917 – 2007)

There are only countably many such functions.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Selberg.html
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Ch. Pisot (1942)
Ch. Pisot proved that if an integer–valued entire function f
has exponential type ≤ 0.8, then f is of the form

P 0(z) + 2zP 1(z) + γzP 2(z) + γzP 3(z),

where P 0, P 1, P 2, P 3 are polynomials and γ, γ are the non real
roots of the polynomial z3 − 3z + 3.

This contains the result of
Selberg, since

| log γ| = 0.758 98 · · · > log 2+
1

1500
= 0.693 81 . . .

Pisot obtained more general
result for functions of
exponential type < 0.9934 . . .

Ch. Pisot

(1910 – 1984)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Pisot.html
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Completely integer–valued entire function
A completely integer–valued entire function is an entire
function which takes values in Z at all points in Z.

Let u > 1 be a quadratic unit, root of a polynomial
X2 + aX + 1 for some a ∈ Z. Then the functions

uz + u−z and
uz − u−z

u− u−1

are completely integer–valued entire function of exponential
type log u.

Examples of such quadratic units are the roots u and u−1 of
the polynomial X2 − 3X + 1 :

u =
3 +
√
5

2
, u−1 =

3−
√
5

2
·



Quizz

Let φ be the Golden ratio and let φ̃ = −φ−1, so that

X2 −X − 1 = (X − φ)(X − φ̃).

For any n ∈ Z we have

φn + φ̃n ∈ Z

and
log φ = − log |φ̃| < log 2.

Why is φz + φ̃z not a counterexample to Pólya’s result on the
growth of transcendental integer-valued entire functions ?



Completely integer–valued entire function

The function

1√
5

(
3 +
√
5

2

)z

− 1√
5

(
3 +
√
5

2

)−z
.

is a completely integer–valued transcendental entire function.

In 1921, F. Carlson proved that if the type τ(f) of a
completely integer–valued entire function f satisfies

τ(f) < log

(
3 +
√
5

2

)
= 0.962 . . . ,

then f is a polynomial.



A. Selberg (1941)

A. Selberg : if the type τ(f) of a completely integer–valued
entire function f satisfies

τ(f) ≤ log

(
3 +
√
5

2

)
+ 2 · 10−6,

then f is of the form

P 0(z) + P 1(z)

(
3 +
√
5

2

)z

+ P 2(z)

(
3 +
√
5

2

)−z
where P 0, P 1, P 2 are polynomials.



Hurwitz functions

A Hurwitz function is an
entire function f such that
f (n)(0) ∈ Z for all n ≥ 0.

A. Hurwitz

(1859 – 1919)

The polynomials which are Hurwitz functions are the
polynomials of the form

a0 + a1z + a2
z2

2
+ a3

z3

6
+ · · ·+ an

zn

n!

with ai ∈ Z.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Hurwitz.html
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Hurwitz functions

The exponential function

ez = 1 + z +
z2

2
+
z3

6
+ · · ·+ zn

n!
+ · · ·

is a transcendental Hurwitz function of exponential type 1. For
a ∈ Z, the function eaz is also a Hurwitz function of
exponential type |a|.



Kakeya (1916)

S. Kakeya (1916) : a Hurwitz function of exponential type < 1
is a polynomial.
More precisely, a Hurwitz function satisfying

lim sup
r→∞

√
re−r|f |r = 0

is a polynomial.

Question : is
√
r superfluous ? Is ez the smallest Hurwitz

function ?

Recall Pólya vs Hardy : an integer-valued entire functions of
low growth is a polynomial.

Pólya’s assumption : lim
r→∞

√
r2−r|f |r = 0.

Hardy’s assumption : lim
r→∞

2−r|f |r = 0.



Pólya (1921)
G. Pólya refined Kakeya’s result in 1921 : a Hurwitz function
satisfying

lim sup
r→∞

√
re−r|f |r <

1√
2π

is a polynomial.
(Kakeya’s assumption : lim sup = 0).
This is best possible for uncountably many functions, as
shown by the functions

f(z) =
∑
n≥0

en
2n!

z2
n

with en ∈ {1,−1} which satisfy

lim sup
r→∞

√
re−r|f |r =

1√
2π
·



A variant of Pólya’s result

Let f be an entire function and let A ≥ 0. Assume

lim sup
r→∞

e−r
√
r|f |r <

e−A√
2π
·

Then there exists n0 > 0 such that, for n ≥ n0 and for all
z ∈ C in the disc |z| ≤ A, we have

|f (n)(z)| < 1.

Hint for the proof.
Use Cauchy’s inequalities and Stirling’s formula.



Sato and Straus (1964)

D. Sato and E.G. Straus
proved that for every ε > 0,
there exists a transcendental
Hurwitz function with

lim sup
r→∞

√
2πr e−r

(
1 +

1 + ε

24r

)−1
|f |r < 1,

while every Hurwitz function
for which

lim sup
r→∞

√
2πr e−r

(
1 +

1− ε
24r

)−1
|f |r ≤ 1

is a polynomial.

E.G. Straus

(1922 – 1983)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Straus.html
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Integer–valued functions vs Hurwitz functions :

Let us display horizontally the rational integers and vertically
the derivatives.

integer–valued functions :
horizontal

f • • • · · · • · · ·
0 1 2 · · · n · · ·

Hurwitz functions : vertical

...
f (n) •

...
f ′ •
f •

0



Several points and / or several derivatives

There are several natural ways to mix integer–valued functions
and Hurwitz functions :

I horizontally, one may include finitely may derivatives in
the study of integer–valued functions.

A k–times integer–valued function is an entire function f
such that f (j)(n) ∈ Z for all n ≥ 0 and
j = 0, 1, . . . , k − 1.

I Vertically, one may consider entire functions with all
derivatives at finitely many points taking integer values.

A k–point Hurwitz function is an entire function having
all its derivatives at 0, 1, . . . , k − 1 taking integer values.



k–times integer–valued functions (horizontal)

k = 2 : f(n) ∈ Z, f ′(n) ∈ Z (n ≥ 0).

f ′ • • • · · · • · · ·
f • • • · · · • · · ·

0 1 2 · · · n · · ·

According to Gel’fond (1929), a k–times integer–valued

function of exponential type < k log

(
1 + e−

k−1
k

)
is a

polynomial.

The function (sin(πz))k has exponential type kπ and vanishes
with multiplicity k on Z.



Two–point Hurwitz functions (vertical)
k = 2 : f (n)(0) ∈ Z, f (n)(1) ∈ Z (n ≥ 0).

...
...

...
f (n) • •

...
...

...
f ′ • •
f • •

0 1

D. Sato (1971) : every two
point Hurwitz entire functions
for which there exists a
positive constant C such that

|f |r ≤ C exp
(
r2 − r − log r

)
is a polynomial.

Also, there exist transcendental two point Hurwitz entire
functions with

|f |r ≤ exp
(
r2 + r − log r +O(1)

)
.



k–point Hurwitz functions

For k ≥ 3 our knowledge is more limited.

...
...

...
...

...
f (n) • • · · · •

...
...

...
. . .

...
f ′ • • · · · •
f • • · · · •

0 1 · · · k

D. Sato (1971) proved that
the order of k–point Hurwitz
functions is ≥ k.
This is best possible, as
shown by the function
ez(z−1)···(z−k+1).



k–point Hurwitz functions

For an entire function f of order ≤ %, define

τ%(f) = lim sup
r→∞

log |f |r
r%

·

f grows like eτ%(f)z
%
.

Example : for k ≥ 1, the function f(z) = ez(z−1)···(z−k+1) has
order k and τk(f) = 1 : it grows like ez

k
.



k–point Hurwitz functions

L. Bieberbach (1953) stated
that if a transcendental entire
function f of order % is a
k–point Hurwitz entire
function, then either % > k, or
% = k and the type τk(f) of f
satisfies τk(f) ≥ 1. L. Bieberbach

(1886 – 1982)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Bieberbach.html
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k–point Hurwitz functions

However, as noted by D. Sato, since the polynomial

a(z) =
1

2
z(z − 1)(z − 2)(z − 3)

can be written

a(z) =
1

2
z4 − 3z3 − 11

2
z2 − 3z,

it satisfies a′(z) ∈ Z[z].

It follows that the function ea(z) is a 4-point Hurwitz
transcendental entire function of order % = 4 and τ4(f) = 1/2.



Utterly integer–valued entire functions

Another way of mixing the horizontal and the vertical
generalizations is to introduce utterly integer–valued entire
function, namely entire functions f which satisfy f (n)(m) ∈ Z
for all n ≥ 0 and m ∈ Z.

...
...

...
...

f (n) • • · · · • · · ·
...

...
...

. . .
...

f ′ • • · · · • · · ·
f • • · · · • · · ·

0 1 · · · m · · ·



G.A. Fridman (1968), M. Welter (2005)
E.G. Straus (1951) suggested that transcendental utterly
integer–valued entire function may not exist.

G.A. Fridman (1968) showed that there exists transcendental
utterly integer–valued function f with

lim sup
r→∞

log log |f |r
r

≤ π

and proved that a transcendental utterly integer–valued
function f satisfies

lim sup
r→∞

log log |f |r
r

≥ log(1 + 1/e).

The bound log(1 + 1/e) was improved by M. Welter (2005) to
log 2 : hence f grows like e2

z
(double exponential).



Sato’s examples

An utterly integer–valued transcendental entire functions has
infinite order : it grows like a double exponential ee

αz
.

D. Sato (1985) constructed a nondenumerable set of utterly
integer–valued transcendental entire functions.

He selected inductively the coefficients an with

1

n!(2π)n
≤ |an| ≤

3

n!(2π)n

and defined
f(z) =

∑
n≥0

an sin
n(2πz).



Abel series

There is also a diagonal way of mixing the questions of
integer–valued functions and Hurwitz functions by considering
entire functions f such that f (n)(n) ∈ Z. The source of this
question goes back to N. Abel.

... . ..

f (n) •
... . ..

f ′ •
f •

0 1 · · · n · · ·
Niels Abel

(1802 – 1829)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Abel.html

https://www-history.mcs.st-andrews.ac.uk/Biographies/Abel.html
https://www-history.mcs.st-andrews.ac.uk/Biographies/Abel.html


Abel polynomials
Recall

P n(z) =
1

n!
z(z − n)n−1 (n ≥ 1).

Any polynomial f has a finite expansion

f(z) =
∑
n≥0

f (n)(n)P n(z).

G. Halphén (1882) : Such an expansion (with a series in the
right hand side which is absolutely and uniformly convergent
on any compact of C) holds also for any entire function f of
finite exponential type < ω, where ω = 0.278 464 542 . . . is
the positive real number defined by ωeω+1 = 1.

If an entire function f of exponential type < ω satisfies
f (n)(n) = 0 for all sufficiently large n, then f is a polynomial.



F. Bertrandias (1958)

Let τ0 = 0.567 143 290 . . . be the positive real number defined
by τ0e

τ0 = 1.
The function f(z) = eτ0z satisfies f ′(z) = f(z − 1) and
f(0) = 1, hence f (n)(n) = 1 for all n ≥ 0.

F. Bertrandias (1958) : an entire function f of exponential
type < τ0 such that f (n)(n) ∈ Z for all sufficiently large
integers n ≥ 0 is a polynomial.

Let τ1 be the complex number defined by τ1e
τ1 = (1+ i

√
3)/2.

Then an entire function f of exponential type
< |τ1| = 0.616 . . . such that f (n)(n) ∈ Z for all sufficiently
large integers n ≥ 0 is of the form P (z) +Q(z)eτ0z, where P
and Q are polynomials.



Variations on this theme

I q analogues and multiplicative versions (geometric
progressions) :
Gel’fond (1933, 1952), J.A. Kazmin (1973), J.P. Bézivin
(1984, 1992) F. Gramain (1990), M. Welter (2000,
2005), J-P. Bézivin (2014).

I analogs in finite characteristic :
D. Adam (2011), D. Adam and M. Welter (2015).

I congruences :
A. Perelli and U. Zannier (1981), J. Pila (2003, 2005).

I several variables :
S. Lang (1965), F. Gross (1965), A. Baker (1967),
V. Avanissian and R. Gay (1975), F. Gramain (1977,
1986), P. Bundschuh (1980) . . .



The Masser–Gramain–Weber constant

D.W. Masser (1980) and F. Gramain–M. Weber (1985)
studied an analog of Euler’s constant for Z[i], which arises in a
2–dimensional analogue of Stirling’s formula :

δ = lim
n→∞

(
n∑
k=2

(πrk
2)−1 − log n

)
,

where rk is the radius of the smallest disc in R2 that contains
at least k integer lattice points inside it or on its boundary.

In 2013, G. Melquiond, W. G. Nowak and P. Zimmermann
computed the first four digits :

1.819776 < δ < 1.819833,

disproving a conjecture of F. Gramain.



Lidstone and Whittaker interpolation

George James Lidstone

(1870 – 1952)

John Macnaghten Whittaker

(1905 – 1984)

...
...

...
f (2n+1) ◦ ◦
f (2n) • •

...
...

...
f ′′ • •
f ′ ◦ ◦
f • •

s0 s1

...
...

...
f (2n+1) • ◦
f (2n) ◦ •

...
...

...
f ′′ ◦ •
f ′ • ◦
f ◦ •

s0 s1

• values in Z ◦ no condition

https://mathshistory.st-andrews.ac.uk/Biographies/Lidstone/
https://mathshistory.st-andrews.ac.uk/Biographies/Whittaker_John/


Arithmetic result for Lidstone interpolation
Let s0 and s1 be two complex numbers and f an entire
function satisfying f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all
sufficiently large n.

...
...

...
f (2n+1) ◦ ◦
f (2n) • •

...
...

...
f ′′ • •
f ′ ◦ ◦
f • •

s0 s1

If

τ(f) < min

{
1,

π

|s0 − s1|

}
,

then f is a polynomial.

This is best possible.

• values in Z ◦ no condition



Arithmetic result for Lidstone interpolation

If τ(f) < min

{
1,

π

|s0 − s1|

}
, f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z

for all sufficiently large n, then f is a polynomial.

The function

f(z) =
sinh(z − s1)
sinh(s0 − s1)

has exponential type 1 and satisfies f(s0) = 1, f(s1) = 0 and
f ′′ = f , hence f (2n)(s0) = 1 and f (2n)(s1) = 0 for all n ≥ 0.

The function

f(z) = sin

(
π
z − s0
s1 − s0

)
has exponential type π

|s1−s0| and satisfies

f (2n)(s0) = f (2n)(s1) = 0 for all n ≥ 0.



Sketch of proof
Recall the following variant of Pólya’s result :

Let f be an entire function. Let A ≥ 0. Assume

lim sup
r→∞

e−r
√
r|f |r <

e−A√
2π
·

Then the set{
(n, z0) ∈ N× C | |z0| ≤ A, f (n)(z0) ∈ Z \ {0}

}
is finite.

Consequence. Let s0 and s1 be two complex numbers and f
an entire function of exponential type < 1 satisfying
f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large n.
Then only finitely many numbers among f (2n)(s0), f

(2n)(s1)
are not 0.



Lidstone interpolation

Lidstone polynomials. Given two sequences (an)n≥0 and
(bn)n≥0 of complex numbers, only finitely many of them are
not 0, there is a unique polynomial P such that P (2n)(0) = an
and P (2n)(1) = bn for all n ≥ 0.

Hence, there exists a unique polynomial Q such that the

function f̃ = f −Q satisfies f̃
(2n)

(s0) = f̃
(2n)

(s1) = 0.

Unicity [H. Poritsky, 1932]. Let g be an entire function of
exponential type < π satisfying g(2n)(0) = g(2n)(1) = 0 for all
sufficiently large n. Then g is a polynomial.

Hence, if f has exponential type < π
|s0−s1| , then f̃ = 0.



Arithmetic result for Whittaker interpolation

Let s0 and s1 be two complex numbers and f an entire
function satisfying f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z for each
sufficiently large n.

...
...

...
f (2n+1) • ◦
f (2n) ◦ •

...
...

...
f ′′ ◦ •
f ′ • ◦
f ◦ •

s0 s1

Assume

τ(f) < min

{
1,

π

2|s0 − s1|

}
.

Then f is a polynomial.

This is best possible.



Arithmetic result for Whittaker interpolation

If τ(f) < min

{
1,

π

2|s0 − s1|

}
, f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z

for each sufficiently large n, then f is a polynomial.

The function

f(z) =
sinh(z − s1)
cosh(s0 − s1)

has exponential type 1 and satisfies f ′(s0) = 1, f(s1) = 0 and
f ′′ = f , hence f (2n+1)(s0) = 1 and f (2n)(s1) = 0 for all n ≥ 0.

The function

f(z) = cos

(
π

2
· z − s0
s1 − s0

)
has exponential type π

2|s1−s0| and satisfies

f (2n+1)(s0) = f (2n)(s1) = 0 for all n ≥ 0.



Poritsky and Gontcharoff–Abel interpolation

Poritsky

...
...

...
...

f (3n+2) ◦ ◦ ◦
f (3n+1) ◦ ◦ ◦
f (3n) • • •

...
...

...
...

f (iv) ◦ ◦ ◦
f ′′′ • • •
f ′′ ◦ ◦ ◦
f ′ ◦ ◦ ◦
f • • •

s0 s1 s2

Gontcharoff–Abel

...
...

...
...

f (3n+3) • ◦ ◦
f (3n+2) ◦ ◦ •
f (3n+1) ◦ • ◦
f (3n) ◦ ◦ •

...
...

...
...

f (iv) ◦ ◦ •
f ′′′ • ◦ ◦
f ′′ ◦ • ◦
f ′ ◦ • ◦
f • ◦ ◦

s0 s1 s2



Arithmetic result for Poritsky interpolation

Let s0, s1, . . . , sm−1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.

Theorem.
If

f (mn)(sj) ∈ Z

for all sufficiently large n and for 0 ≤ j ≤ m− 1, then f is a
polynomial.

For m = 2 with f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z (Lidstone),
the assumption on the exponential type τ(f) of f is

τ(f) < min{1, π/|s0 − s1|},

and this is best possible.



Gontcharoff–Abel interpolation

Let s0, s1, . . . , sm−1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.

Theorem.
Assume that for each sufficiently large n, one at least of the
numbers

f (n)(sj) j = 0, 1, . . . ,m− 1

is in Z. Then f is a polynomial.

In the case m = 2 with f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z
(Whittaker), the assumption is

τ(f) < min

{
1,

π

2|s0 − s1|

}
,

and this is best possible.
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