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Real numbers, rationals, irrationals. We denote by Z the ring of rational inte-
gers, by Q the field of rational numbers, by R the field of real numbers and by C
the field of complex numbers. Given a real number, we want to know whether
it is rational or not, that means whether it belongs to Q or not. The set of
irrational numbers R \ Q has no nice algebraic properties: it is not stable by
addition nor by multiplication.
How to prove that a number is irrational?
Decimal, binary expansion. A real number is rational if and only if its decimal
(or in any base g ≥ 2) expansion is ultimately periodic.
Exercise: given a/b ∈ Q, write b = 2k15k2b1 with k1 ≥ 0, k2 ≥ 0, gcd(b1, 10) = 1.
Set k = max{k1, k2}. Check that there exists h ≥ 1 such that 10h ≡ 1 (mod b1).
Write 10h − 1 = `b1 and

a

b
=

2k−k15k−k2`a

10k(10h − 1)
·

Decimal expansion of
√

2, of e. Borel conjecture; normal numbers.
Continued fraction: of

√
2, of e, of π.

Rational approximation
Density of Q in R.

The main tool in Diophantine approximation is the basic property that any
non-zero integer has absolute value at least 1. There are many corollaries of
this fact. The first one we consider here is the following:
If ϑ is a rational number, there is a positive constant c = c(ϑ) such that, for
any rational number p/q with p/q 6= ϑ,∣∣∣∣ϑ− p

q

∣∣∣∣ ≥ c

q
· (1.1)

This result is obvious: if ϑ = a/b then an admissible value for c is 1/b, because
the non-zero integer aq − bp has absolute value at least 1.

This property is characteristic of rational numbers: a rational number cannot
be well approximated by other rational numbers, while an irrational number can
be well approximated by rational numbers.

We now give several such a criterion.
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Lemma 1.2 (Irrationality criterion). Let ϑ be a real number. The following
conditions are equivalent:
(i) ϑ is irrational.
(ii) For any ε > 0 there exists p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any real number Q > 1 there exists an integer q in the range 1 ≤ q < Q
and a rational integer p such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

qQ
·

(iv) There exist infinitely many p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

q2
·

According to this implication, in order to prove that some number is ir-
rational, it is sufficient (and in fact also necessary) to produce good rational
approximations. Lemma 1.2 tells us that an irrational real number ϑ has very
good friends among the rational numbers, the sharp inequality (iv) shows in-
deed that ϑ is well approximated by rational numbers. Conversely, the proof we
just gave shows that a rational number has no good friend, apart from himself.
Hence in this world of rational approximation it suffices to have one good friend
(not counting oneself) to guarantee that one has many very good friends.

Proof of Dirichlet’s Theorem (i)⇒(iii) . The implications (iii)⇒(iv)⇒(ii)⇒(i)
in Lemma 1.2 are easy. It only remains to prove (i)⇒(iii), which is a Theorem
due to Dirichlet. For this we shall use the box or pigeon hole principle.

Let Q > 1 be given. Define N = dQe: this means that N is the integer such
that N − 1 < Q ≤ N . Since Q > 1, we have N ≥ 2.

For x ∈ R write x = bxc + {x} with bxc ∈ Z (integral part of x) and
0 ≤ {x} < 1 (fractional part of x). Let ϑ ∈ R \Q. Consider the subset E of the
unit interval [0, 1] which consists of the N + 1 elements

0, {ϑ}, {2ϑ}, {3ϑ}, . . . , {(N − 1)ϑ}, 1.

Since ϑ is irrational, these N+1 elements are pairwise distinct. Split the interval
[0, 1] into N intervals

Ij =

[
j

N
,
j + 1

N

]
(0 ≤ j ≤ N − 1).

One at least of these N intervals, say Ij0 , contains at least two elements of
E. Apart from 0 and 1, all elements {qϑ} in E with 1 ≤ q ≤ N − 1 are
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irrational, hence belong to the union of the open intervals (j/N, (j + 1)/N)
with 0 ≤ j ≤ N − 1.

If j0 = N − 1, then the interval

Ij0 = IN−1 =

[
1− 1

N
, 1

]
contains 1 as well as another element of E of the form {qϑ} with 1 ≤ q ≤ N −1.
Set p = bqϑc+ 1. Then we have 1 ≤ q ≤ N − 1 < Q and

p− qϑ = bqϑc+ 1− bqϑc − {qϑ} = 1− {qϑ}, hence 0 < p− qϑ < 1

N
≤ 1

Q
·

Otherwise we have 0 ≤ j0 ≤ N − 2 and Ij0 contains two elements {q1ϑ} and
{q2ϑ} with 0 ≤ q1 < q2 ≤ N − 1. Set

q = q2 − q1, p = bq2ϑc − bq1ϑc.

Then we have 0 < q = q2 − q1 ≤ N − 1 < Q and

|qϑ− p| = |{q2ϑ} − {q1ϑ}| < 1/N ≤ 1/Q.

There are other proofs of (i)⇒(iii) – for instance one can use Minkowski’s
Theorem in the geometry of numbers, which is more powerful than Dirichlet’s
box principle.

Exercise 1. This exercise extends the irrationality criterion Lemma 1.2 by
replacing Q by Q(i). The elements in Q(i) are called the Gaussian numbers,
the elements in Z(i) are called the Gaussian integers. The elements of Q(i) will
be written p/q with p ∈ Z[i] and q ∈ Z, q > 0.

Let ϑ be a complex number. Check that the following conditions are equiv-
alent:
(i) ϑ 6∈ Q(i).
(ii) For any ε > 0 there exists p/q ∈ Q(i) such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any rational integer N ≥ 1 there exists a rational integer q in the range
1 ≤ q ≤ N2 and a Gaussian integer p such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < √2

qN
·

(iv) There exist infinitely many Gaussian numbers p/q ∈ Q(i) such that∣∣∣∣ϑ− p

q

∣∣∣∣ < √2

q3/2
·
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Schanuel’s Conjecture. Let x1, . . . , xn be Q–linearly independent complex
numbers. Then among the 2n numbers x1, . . . , xn, e

x1 , . . . , exn , there exists a
subset {y1, . . . , yn} of n numbers which are algebraically independent: for any
non–zero polynomial P ∈ Q[T1, . . . , Tn], the number P (y1, . . . , yn) is not 0.
Assume Schanuel’s Conjecture. Deduce that the number log π is transcendental.
More generally, for any nonzero algebraic number, the two numbers eα and π are
algebraically independent. As a consequence, the number π cannot be written
as the tangent, the cosine, the sine,. . . of an algebraic number.
N.B. Such results are not known unconditionally.

The following result improves the implication (i)⇒(iv) of Lemma 1.2.

Lemma 2.1. Let ϑ be a real number. The following conditions are equivalent:
(i) ϑ is irrational.
(ii) There exist infinitely many p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·

Of course the implication (ii)⇒(i) in Lemma 2.1 is weaker than the implica-
tion (iv)⇒(i) in Lemma 1.2. What is new is the converse.

Classical proofs of the equivalence between (i) and (ii) in Lemma 2.1 involve
either continued fractions or Farey series.

Denote by Φ = 1.6180339887499 . . . the Golden ratio, which is the root > 1
of the polynomial X2−X − 1. The discriminant of this polynomial is 5. Recall
also the definition of the Fibonacci sequence (Fn)n≥0:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).

Lemma 2.2. For any q ≥ 1 and any p ∈ Z,∣∣∣∣Φ− p

q

∣∣∣∣ > 1√
5q2 + (q/2)

·

On the other hand

lim
n→∞

F 2
n−1

∣∣∣∣Φ− Fn
Fn−1

∣∣∣∣ =
1√
5
·

Proof. It suffices to prove the lower bound when p is the nearest integer to qΦ.
From X2 −X − 1 = (X − Φ)(X + Φ−1) we deduce

p2 − pq − q2 = q2
(
p

q
− Φ

)(
p

q
+ Φ−1

)
.
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The left hand side is a non-zero rational integer, hence has absolute value at
least 1. We now bound the absolute value of the right hand side from above.
Since p < qΦ + (1/2) and Φ + Φ−1 =

√
5 we have

p

q
+ Φ−1 ≤

√
5 +

1

2q
·

Hence

1 ≤ q2
∣∣∣∣pq − Φ

∣∣∣∣ (√5 +
1

2q

)
The first part of Lemma 2.2 follows.

The real vector space of sequences (vn)n≥0 satisfying vn = vn−1 + vn−2 has
dimension 2, a basis is given by the two sequences (Φn)n≥0 and ((−Φ−1)n)n≥0.
From this one easily deduces the formula

Fn =
1√
5

(Φn − (−1)nΦ−n)

due to A. De Moivre (1730), L. Euler (1765) and J.P.M. Binet (1843). It follows
that Fn is the nearest integer to

1√
5

Φn,

hence the sequence (un)n≥2 of quotients of Fibonacci numbers

un = Fn/Fn−1

satisfies limn→∞ un = Φ.
By induction one easily checks

F 2
n − FnFn−1 − F 2

n−1 = (−1)n−1

for n ≥ 1. The left hand side is F 2
n−1(un − Φ)(un + Φ−1), as we already saw.

Hence

F 2
n−1|Φ− un| =

1

Φ−1 + un
,

and the limit of the right hand side is 1/(Φ + Φ−1) = 1/
√

5. The result follows.

Remark. The sequence un = Fn/Fn−1 is also defined by

u2 = 2, un = 1 +
1

un−1
, (n ≥ 3).

Hence

un = 1 +
1

1 +
1

un−2

= 1 +
1

1 +
1

1 +
1

un−3

= · · ·
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This proof of Lemma 2.2 can be extended by replacing X2 −X − 1 by any
irreducible polynomial with integer coefficients (see below Lemma 2.5).

If α is a real root of a quadratic polynomial P (X) = aX2 + bX + c, then
P ′(α) = 2aα+ b is a square root of the discriminant of P . So Hurwitz Lemma
2.1 is optimal for all quadratic numbers having a minimal polynomial of dis-
criminant 5. Incidentally, this shows that 5 is the smallest positive discriminant
of an irreducible quadratic polynomial in Z[X] (of course it is easily checked di-
rectly that if a, b, c are three rational integers with a > 0 and b2 − 4ac positive
and not a perfect square in Z, then b2 − 4ac ≥ 5).

It follows that for the numbers of the form (aΦ + b)/(cΦ + d) with integers
a, b, c, d having ad − bc = ±1, one cannot replace in Lemma 2.1 the number√

5 by a larger number.
If one omits these irrational numbers in the field generated by the Golden

ratio, then Hurwitz showed that one can replace
√

5 by 2
√

2, and again this
is optimal. This is the beginning of the so-called Markoff 2 spectrum

√
5,
√

8,√
221/5,

√
1517/13, . . . which tends to 1/3 and is obtained as follows. First

consider the set of integers m for which the Markoff equation

m2 +m2
1 +m2

2 = 3mm1m2

has a solution in positive integers (m1,m2) with 0 < m1 ≤ m2 ≤ m. The
infinite increasing sequence of these integers m starts with

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, . . . (2.3)

and there is an easy and well known algorithm to construct it: apart from
(1, 1, 1) and (2, 1, 1), for any solution (m,m1,m2) there are three exactly solu-
tions sharing two components with (m,m1,m2), namely

(m′,m1,m2), (m,m′1,m2), (m,m1,m
′
2),

where

m′ = 3m1m2 −m, m′1 = 3mm2 −m1, m′2 = 3mm1 −m2.

2His name is spelled Markov in probability theory.
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This produces the Markoff tree

(1, 1, 1)
|

(2, 1, 1)
|

(5, 2, 1)

|
| |

(29, 5, 2) (13, 5, 1)

| |
| | | |

(433, 29, 5) (169, 29, 2) (194, 13, 5) (34, 13, 1)

|
...

...

|
...

...

|
...

...

|
...

...

For each m in the Markoff sequence (2.3), we define

µm =

√
9m2 − 4

m
·

Then there is an explicit quadratic form fm(x, y) such that fm(x, 1) = 0 and
there is a root αm of fm for which

lim inf
q∈Z, q→∞

(q‖qαm‖) =
1

µm
,

where ‖ · ‖ denotes the distance too the nearest integer:

‖x‖ = min
m∈Z
|x−m| = min

{
{x} ; 1− {x}

}
.

The sequence of (m, fm, αm, µm) starts as follows,

m 1 2 5 13

fm(x, 1) x2 + x− 1 x2 + 2x− 1 5x2 + 11x− 5 13x2 + 29x− 13

αm [0; 1] [0; 2] [0; 2211] [0; 221111]

µm
√

5
√

8
√

221/5
√

1517/13

The third row gives the continued fraction expansion for αm.

Exercise 2. Check that any solution (m,m1,m2) of Markoff’s equation (2.3)
is in Markoff’s tree.
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Irrationality of e

That e is not quadratic follows from the fact that the continued fraction
expansion of e, which was known by L. Euler in 1737 is not periodic:

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

. . .

= [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]

Since this expansion is infinite we deduce that e is irrational. The fact that it
is not ultimately periodic implies also that e is not a quadratic irrationality, as
shown by Lagrange in 1770 – Euler knew already in 1737 that a number with
an ultimately periodic continued fraction expansion is quadratic.

An easy and well known proof of the irrationality of e was given by J. Fourier
in his course at the École Polytechnique in 1815. The main idea was to truncate
the exponential series giving the value of e at some point N , which produces
good enough approximations of e to use the irrationality criterion. Here is a
simplification, found by Liouville, who proves the irrationality of e−1 instead of
e, and avoids estimating the remainder.

We truncate the exponential series giving the value of e−1 at some point N :

N ! e−1 −
N∑
n=0

(−1)nN !

n!
=
∑
k≥1

N !(−1)N+k

(N + k)!
· (2.4)

The right hand side of (2.4) is a sum of an alternating series with general term
tending to 0, its absolute value is bounded by the absolute value of the first
term, which is positive and < 1. Hence the left hand side of (2.4) cannot be an
integer. It follows that for any integer N ≥ 1 the number N !e is not an integer,
which means that e is an irrational number.

Recall that the ring Z[X] is factorial, its irreducible elements of positive
degree are the non-constant polynomials with integer coefficients which are ir-
reducible in Q[X] (i.e. not a product of two non-constant polynomials in Q[X])
and have content 1. The content of a polynomial in Z[X] is the greatest common
divisor of its coefficients.

The minimal polynomial of an algebraic number α is the unique irreducible
polynomial P ∈ Z[X] which vanishes at α and has a positive leading coefficient.

The next lemma is a variant of Liouville’s inequality that we shall study
more throughly later.

Lemma 2.5. Let α be a real algebraic number of degree d ≥ 2 and minimal
polynomial P ∈ Z[X]. Define c = |P ′(α)|. Let ε > 0. Then there exists an
integer q0 such that, for any p/q ∈ Q with q ≥ q0,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

(c+ ε)qd
·
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Proof. Let q be a sufficiently large positive integer and let p be the nearest
integer to qα. In particular ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

2
·

Denote a0 the leading coefficient of P and by α1, . . . , αd its the roots with
α1 = α. Hence

P (X) = a0(X − α1)(X − α2) · · · (X − αd)

and

qdP (p/q) = a0q
d

d∏
i=1

(
p

q
− αi

)
. (2.6)

Also

P ′(α) = a0

d∏
i=2

(α− αi).

The left hand side of (2.6) is a rational integer. It is not zero because P is
irreducible of degree ≥ 2. For i ≥ 2 we use the estimate∣∣∣∣αi − p

q

∣∣∣∣ ≤ |αi − α|+ 1

2q
·

We deduce

1 ≤ qda0
∣∣∣∣α− p

q

∣∣∣∣ d∏
i=2

(
|αi − α|+

1

2q

)
.

For sufficiently large q the right hand side is bounded from above by

qd
∣∣∣∣α− p

q

∣∣∣∣ (|P ′(α)|+ ε).

The next corollary of Lemma 2.5 was proved by J. Liouville in 1844: this his
how he constructed the first examples of transcendental numbers. His first ex-
plicit examples were given by continued fractions, next he gave further examples
with series like

θa =
∑
n≥0

a−n! (2.7)

for any integer a ≥ 2.

Lemma 2.8. For any algebraic number α, there exist two constants c and d
such that, for any rational number p/q 6= α,∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qd
·
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It follows also from Lemma 2.5 that in Lemma 2.8, one can take for d the
degree of α (that is the degree of the minimal polynomial of α).

Exercise 3. Denote by P ∈ Z[X] the minimal polynomial of α.
(a) Prove this result with d the degree of P and κ given by

κ = max
{

1 ; max
|t−α|≤1

|P ′(t)|
}
.

(b) Check also that the same estimate is true with again d the degree of P and
κ given by

κ = a0

d∏
i=2

(|αj − α|+ 1),

where a0 is the leading coefficient and α1, . . . , αd the roots of P with α1 = α:

P (X) = a0(X − α1)(X − α2) · · · (X − αd).

Hint: For both parts of this exercise one may distinguish two cases, whether
|α− (p/q)| is ≥ 1 or < 1.

3 Third course: December 8, 2018.

Definition. A real number θ is a Liouville number if for any κ > 0 there exists
p/q ∈ Q with q ≥ 2 and

0 <

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qκ
·

It follows from Lemma 2.8 that Liouville numbers are transcendental. In
dynamical systems one says that an irrational real number satisfies a Diophan-
tine condition if is not Liouville: this means that there exists a constant κ > 0
such that, for any p/q ∈ Q with sufficiently large q,∣∣∣∣α− p

q

∣∣∣∣ > 1

qκ
·

Let us check that the numbers (2.7) are Liouville numbers: let a ≥ 2 be an
integer and κ > 0 a real number. For sufficiently large N , set

q = aN !, p =

N∑
n=0

aN !−n!.

Then we have

0 < θa −
p

q
=
∑
k≥1

1

a(N+k)!−N !
·

For k ≥ 1 we use the crude estimate

(N + k)!−N ! ≥ N !N(N + 1) · (N + k − 1) ≥ N !
(
N + (k − 1)!

)
,
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which yields

0 < θa −
p

q
≤ e

qN
·

Diophantine approximation and Diophantine Equations In 1909 A. Thue
found a connection between Diophantine equation and refinements of Liouville’s
estimate. We restrict here on one specific example.

Liouville’s estimate for the rational Diophantine approximation of 3
√

2 is∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

5q3

for sufficiently large q (use Lemma 2.5 with P (X) = X3 − 2, c = 3 3
√

4 < 5).
Thue was the first to achieve an improvement of the exponent 3. A explicit
estimate was then obtained by A. Baker∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

106q2.955

and refined by Chudnovskii, Easton, Rickert, Voutier and others, until 1997
when M. Bennett proved that for any p/q ∈ Q,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ ≥ 1

4 q2,5
·

From his result, Thue deduced that for any fixed k ∈ Z \ {0}, there are only
finitely many (x, y) ∈ Z × Z satisfying the Diophantine equation x3 − 2y3 = k.
The result of Baker shows more precisely that if (x, y) ∈ Z× Z is a solution to
x3 − 2y3 = k, then

|x| ≤ 10137|k|23.

M. Bennett gave the sharper estimate: for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥
√
x.

The connexion between Diophantine approximation to 3
√

2 and the Diophantine
equation x3 − 2y3 = k is explained in the next lemma.

Lemma 3.1. Let η be a positive real number. The two following properties are
equivalent:
(i) There exists a constant c1 > 0 such that, for any p/q ∈ Q with q > 0,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1
qη
·

(ii) There exists a constant c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥ c2x3−η.
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Properties (i) and (ii) are true but uninteresting with η ≥ 3. They are not
true with η < 2. It is not expected that they are true with η = 2, but it is
expected that they are true for any η > 2.

Proof. We assume η < 3, otherwise the result is trivial. Set α = 3
√

2.
Assume (i) and let (x, y) ∈ Z × Z have x > 0. Set k = x3 − 2y3. Since 2 is

not the cube of a rational number we have k 6= 0. If y = 0 assertion (ii) plainly
holds. So assume y 6= 0.

Write
x3 − 2y3 = (x− αy)(x2 + αxy + α2y2).

The polynomial X2 + αX + α2 has negative discriminant −3α2, hence has a
positive minimum c0 = 3α2/4. Hence the value at (x, y) of the quadratic form
X2 + αXY + α2Y 2 is bounded form below by c0y

2. From (i) we deduce

|k| = |y|3
∣∣∣∣ 3
√

2− x

y

∣∣∣∣ (x2 + αxy + α2y2) ≥ c1c0|y|3

|y|η
= c3|y|3−η.

This gives an upper bound for |y|:

|y| ≤ c4|k|1/(3−η), hence |y3| ≤ c4|k|3/(3−η).

We want an upper bound for x: we use x3 = k + 2y3 and we bound |k| by
|k|3/(3−η) since 3/(3− η) > 1. Hence

x3 ≤ c5|k|3/(3−η) and x3−η ≤ c6|k|.

Conversely, assume (ii). Let p/q be a rational number. If p is not the nearest
integer to qα, then |qα− p| > 1/2 and the estimate (i) is trivial. So we assume
|qα − p| ≤ 1/2. We need only the weaker estimate c7q < p < c8q with some
positive constants c7 and c8, showing that we may replace p by q or q by p in
our estimates, provided that we adjust the constants. From

p3 − 2q3 = (p− αq)(p2 + αpq + α2q2),

using (ii), we deduce

c2p
3−η ≤ c10q3

∣∣∣∣α− p

q

∣∣∣∣ ,
and (i) easily follows.

Diophantine Approximation: historical survey

Definition. Given a real irrational number ϑ, a function ϕ = N → R>0 is an
irrationality measure for ϑ if there exists an integer q0 > 0 such that, for any
p/q ∈ Q with q ≥ q0, ∣∣∣∣ϑ− p

q

∣∣∣∣ ≥ ϕ(q).

Further, a real number κ is an irrationality exponent for ϑ if there exists a
positive constant c such that the function c/qκ is an irrationality measure for ϑ.
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From Dirichlet’s box principle (see (i)⇒(iv) in Lemma 1.2) it follows that
any irrationality exponent κ satisfies κ ≥ 2. Irrational quadratic numbers have
irrationality exponent 2. It is known that 2 is an irrationality exponent for
an irrational real number ϑ if and only if the sequence of partial quotients
(a0, a1, . . .) in the continued fraction expansion of ϑ is bounded: these are called
the badly approximable numbers.

From Liouville’s inequality in Lemma 2.8 it follows that any irrational alge-
braic real number α has a finite irrationality exponent ≤ d. Liouville numbers
are by definition exactly the irrational real numbers which have no finite irra-
tionality exponent.

For any κ ≥ 2, there are irrational real numbers ϑ for which κ is an irrational-
ity exponent and is the best: no positive number less than κ is an irrationality
exponent for ϑ. Examples due to Y. Bugeaud in connexion with the triadic
Cantor set are

∞∑
n=0

3−dλκ
ne

where λ is any positive real number.
The first significant improvement to Liouville’s inequality is due to the Nor-

wegian mathematician Axel Thue who proved in 1909:

Theorem 3.2 (A. Thue, 1909). Let α be a real algebraic number of degree
d ≥ 3. Then any κ > (d/2) + 1 is an irrationality exponent for α.

The fact that the irrationality exponent is < d has very important corollaries
in the theory of Diophantine equations. We gave an example above with 3

√
2;

here is the more general result of Thue on Diophantine equations.

Theorem 3.3 (Thue). Let f ∈ Z[X] be an irreducible polynomial of degree
d ≥ 3 and m a non-zero rational integer. Define F (X,Y ) = Y df(X/Y ). Then
the Diophantine equation F (x, y) = m has only finitely many solutions (x, y) ∈
Z× Z.

The equation F (x, y) = m in Proposition 3.3 is called Thue equation. The
connexion between Thue equation and Liouville’s inequality has been explained
in Lemma 3.1 in the special case 3

√
2; the general case is similar.

Lemma 3.4. Let α be an algebraic number of degree d ≥ 3 and minimal poly-
nomial f ∈ Z[X], let F (X,Y ) = Y df(X/Y ) ∈ Z[X,Y ] be the associated homo-
geneous polynomial. Let 0 < κ ≤ d. The following conditions are equivalent:
(i) There exists c1 > 0 such that, for any p/q ∈ Q,∣∣∣∣α− p

q

∣∣∣∣ ≥ c1
qκ
·

(ii) There exists c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|F (x, y)| ≥ c2 xd−κ.
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In 1921 C.L. Siegel sharpened Thue’s result 3.2 by showing that any real
number

κ > min
1≤j≤d

(
d

j + 1
+ j

)
is an irrationality exponent for α. With j = [

√
d] it follows that 2

√
d is an

irrationality exponent for α. Dyson and Gel’fond in 1947 independently refined
Siegel’s estimate and replaced the hypothesis in Thue’s Theorem 3.2 by κ >√

2d. The essentially best possible estimate has been achieved by K.F. Roth
in 1955: any κ > 2 is an irrationality exponent for a real irrational algebraic
number α.

Theorem 3.5 (A. Thue, C.L. Siegel, F. Dyson, K.F. Roth 1955). For any real
algebraic number α, for any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is
finite.

It is expected that the result is not true with ε = 0 as soon as the degree of
α is ≥ 3, which means that it is expected no real algebraic number of degree at
least 3 is badly approximable, but essentially nothing is known on the continued
fraction of such numbers: we do not know whether there exists an irrational
algebraic number which is not quadratic and has bounded partial quotient in
its continued fraction expansion, but we do not know either whether there exists
a real algebraic number of degree at least 3 whose sequence of partial quotients
is not bounded!

References:

• Diophantine approximation and Diophantine equations.
https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/HRI2011.pdf

• Introduction to Diophantine methods: irrationality and transcendence
https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/IntroductionDiophantineMethods.pdf
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