Linear recurrence sequences, exponential polynomials and Diophantine approximation

Michel Waldschmidt

Institut de Mathématiques de Jussieu - Paris VI http://webusers.imj-prg.fr/~michel.waldschmidt/

Abstract

In the first part :

Linear recurrence sequences : an introduction

we gave a number of examples and we stated some properties of linear recurrence sequences.

Here we give more information on this topic and we include new results, arising from a joint work with Claude Levesque, involving families of Diophantine equations, with explicit examples related to some units of L. Bernstein and H. Hasse.

Linear recurrence sequences: definitions

A linear recurrence sequence is a sequence of numbers $\mathbf{u}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ for which there exist a positive integer d together with numbers a_{1}, \ldots, a_{d} with $a_{d} \neq 0$ such that, for $n \geq 0$,
$(\star) \quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$.
Here, a number means an element of a field \mathbb{K} of zero
characteristic.
Given $\underline{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{K}^{d}$, the set E_{a} of linear recurrence sequences $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfying (\star) is a \mathbb{K}-vector subspace of dimension d of the space $\mathbb{K}^{\mathbb{N}}$ of all sequences
The characteristic (or companion) polynomial of the linear
recurrence is

Linear recurrence sequences: definitions

A linear recurrence sequence is a sequence of numbers $\mathbf{u}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ for which there exist a positive integer d together with numbers a_{1}, \ldots, a_{d} with $a_{d} \neq 0$ such that, for $n \geq 0$,
$(\star) \quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$.
Here, a number means an element of a field \mathbb{K} of zero characteristic.
Given $\underline{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{K}^{d}$, the set E_{a} of linear recurrence
sequences $\mathrm{u}=\left(u_{n}\right)_{n \geq 0}$ satisfying (\star) is a \mathbb{K}-vector subspace
of dimension d of the space $\mathbb{K}^{\mathbb{N}}$ of all sequences.
The characteristic (or companion) polynomial of the linear recurrence is

Linear recurrence sequences: definitions

A linear recurrence sequence is a sequence of numbers $\mathbf{u}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ for which there exist a positive integer d together with numbers a_{1}, \ldots, a_{d} with $a_{d} \neq 0$ such that, for $n \geq 0$,
$(\star) \quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$.
Here, a number means an element of a field \mathbb{K} of zero characteristic.
Given $\underline{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{K}^{d}$, the set $E_{\underline{a}}$ of linear recurrence sequences $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfying (\star) is a \mathbb{K}-vector subspace of dimension d of the space $\mathbb{K}^{\mathbb{N}}$ of all sequences.
recurrence is

Linear recurrence sequences: definitions

A linear recurrence sequence is a sequence of numbers $\mathbf{u}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ for which there exist a positive integer d together with numbers a_{1}, \ldots, a_{d} with $a_{d} \neq 0$ such that, for $n \geq 0$,

$$
(\star) \quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n} .
$$

Here, a number means an element of a field \mathbb{K} of zero characteristic.
Given $\underline{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{K}^{d}$, the set $E_{\underline{a}}$ of linear recurrence sequences $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfying (\star) is a \mathbb{K}-vector subspace of dimension d of the space $\mathbb{K}^{\mathbb{N}}$ of all sequences.
The characteristic (or companion) polynomial of the linear recurrence is

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d} .
$$

Linear recurrence sequences: examples

- Constant sequence : $u_{n}=u_{0}$.

Linear recurrence sequence of order $1: u_{n+1}=u_{n}$.
Characteristic polynomial : $f(X)=X-1$.
Generating series :

$$
\sum_{n \geq 0} X^{n}=\frac{1}{1-X}
$$

- Geometric progression

Linear recurrence sequence of order 1
Characteristic poly
Generating series

Linear recurrence sequences: examples

- Constant sequence : $u_{n}=u_{0}$.

Linear recurrence sequence of order $1: u_{n+1}=u_{n}$.
Characteristic polynomial : $f(X)=X-1$.
Generating series :

$$
\sum_{n \geq 0} X^{n}=\frac{1}{1-X}
$$

- Geometric progression : $u_{n}=u_{0} \gamma^{n}$.

Linear recurrence sequence of order 1: $u_{n}=\gamma u_{n-1}$.
Characteristic polynomial $f(X)=X-\gamma$.
Generating series :

$$
\sum_{n \geq 0} u_{0} \gamma^{n} X^{n}=\frac{u_{0}}{1-\gamma X}
$$

Linear recurrence sequences: examples

- $u_{n}=n$. This is a linear recurrence sequence of order 2 :

$$
n+2=2(n+1)-n
$$

Characteristic polynomial

$$
f(X)=X^{2}-2 X+1=(X-1)^{2}
$$

Generating series

$$
\sum_{n \geq 0} n X^{n}=\frac{1}{1-2 X+X^{2}}
$$

Power of matrices :

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right)^{n}=\left(\begin{array}{cc}
-n+1 & n \\
-n & n+1
\end{array}\right)
$$

Linear recurrence sequences: examples

- $u_{n}=f(n)$, where f is polynomial of degree d. This is a linear recurrence sequence of order $d+1$.

Proof. The sequences
are \mathbb{K}-linearly independent in $\mathbb{K}^{\mathbb{N}}$ for $k=d-1$ and linearly dependent for $k=d$

A basis of the space of polynomials of degree d is given by the $d+1$ polynomials

Linear recurrence sequences: examples

- $u_{n}=f(n)$, where f is polynomial of degree d. This is a linear recurrence sequence of order $d+1$.

Proof. The sequences

$$
(f(n))_{n \geq 0}, \quad(f(n+1))_{n \geq 0}, \quad \cdots, \quad(f(n+k))_{n \geq 0}
$$

are \mathbb{K}-linearly independent in $\mathbb{K}^{\mathbb{N}}$ for $k=d-1$ and linearly dependent for $k=d$.

A basis of the space of polynomials of degree d is given by the $d+1$ polynomials

Linear recurrence sequences: examples

- $u_{n}=f(n)$, where f is polynomial of degree d. This is a linear recurrence sequence of order $d+1$.

Proof. The sequences

$$
(f(n))_{n \geq 0}, \quad(f(n+1))_{n \geq 0}, \quad \cdots, \quad(f(n+k))_{n \geq 0}
$$

are \mathbb{K}-linearly independent in $\mathbb{K}^{\mathbb{N}}$ for $k=d-1$ and linearly dependent for $k=d$.

A basis of the space of polynomials of degree d is given by the $d+1$ polynomials

$$
f(X), f(X+1), \ldots, f(X+d)
$$

Question: which is the characteristic polynomial ?

Linear sequences which are ultimately recurrent

The sequence

$$
(1,0,0, \ldots)
$$

is not a linear recurrence sequence.

The condition

$$
u_{n+1}=u_{n}
$$

is satisfied only for $n \geq 1$.

The relation
with $d=2, a_{d}=0$ does not fulfill the requirement $a_{d} \neq 0$.

Linear sequences which are ultimately recurrent

The sequence

$$
(1,0,0, \ldots)
$$

is not a linear recurrence sequence.

The condition

$$
u_{n+1}=u_{n}
$$

is satisfied only for $n \geq 1$.

The relation
with $d=2, a_{d}=0$ does not fulfill the requirement $a_{d} \neq 0$.

Linear sequences which are ultimately recurrent

The sequence

$$
(1,0,0, \ldots)
$$

is not a linear recurrence sequence.

The condition

$$
u_{n+1}=u_{n}
$$

is satisfied only for $n \geq 1$.

The relation

$$
u_{n+2}=u_{n+1}+0 u_{n}
$$

with $d=2, a_{d}=0$ does not fulfill the requirement $a_{d} \neq 0$.

Order of a linear recurrence sequence

If $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfies the linear recurrence, the characteristic polynomial of which is f, then, for any monic polynomial $g \in \mathbb{K}[X]$ with $g(0) \neq 0$, this sequence \mathbf{u} also satisfies the linear recurrence, the characteristic polynomial of which is fg . Example : for $g(X)=X-\gamma$ with $\gamma \neq 0$, from

$$
u_{n+d}-a_{1} u_{n+d-1}-\cdots-a_{d} u_{n}=0
$$

we deduce

$$
\begin{aligned}
& u_{n+d+1}-a_{1} u_{n+d}-\cdots-a_{d} u_{n+1} \\
& \quad-\gamma\left(u_{n+d}-a_{1} u_{n+d-1}-\cdots-a_{d} u_{n}\right)=0
\end{aligned}
$$

The order of a linear recurrence sequence is the smallest d such that (\star) holds for all $n \geq 0$.

Order of a linear recurrence sequence

If $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfies the linear recurrence, the characteristic polynomial of which is f, then, for any monic polynomial $g \in \mathbb{K}[X]$ with $g(0) \neq 0$, this sequence \mathbf{u} also satisfies the linear recurrence, the characteristic polynomial of which is $f g$. Example : for $g(X)=X-\gamma$ with $\gamma \neq 0$, from

$$
u_{n+d}-a_{1} u_{n+d-1}-\cdots-a_{d} u_{n}=0
$$

we deduce

$$
\begin{aligned}
& u_{n+d+1}-a_{1} u_{n+d}-\cdots-a_{d} u_{n+1} \\
& \quad-\gamma\left(u_{n+d}-a_{1} u_{n+d-1}-\cdots-a_{d} u_{n}\right)=0
\end{aligned}
$$

The order of a linear recurrence sequence is the smallest d such that (\star) holds for all $n \geq 0$.

Generating series of a linear recurrence sequence

Let $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ be a linear recurrence sequence
(*) $\quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n} \quad$ for $\quad n \geq 0$ with characteristic polynomial

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

Denote by f^{-}the reciprocal polynomial of f :

$$
f^{-}(X)=X^{d} f\left(X^{-1}\right)=1-a_{1} X-\cdots-a_{d} X^{d}
$$

Then

$$
\sum_{n=0}^{\infty} u_{n} X^{n}=\frac{r(X)}{f^{-}(X)}
$$

where r is a polynomial of degree less than d determined by the initial values of \mathbf{u}.

Generating series of a linear recurrence sequence

Assume

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n} \quad \text { for } \quad n \geq 0
$$

Then

$$
\sum_{n=0}^{\infty} u_{n} X^{n}=\frac{r(X)}{f^{-}(X)}
$$

Proof. Comparing the coefficients of X^{n} for $n \geq d$ shows that

Generating series of a linear recurrence sequence

Assume

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n} \quad \text { for } \quad n \geq 0
$$

Then

$$
\sum_{n=0}^{\infty} u_{n} X^{n}=\frac{r(X)}{f^{-}(X)}
$$

Proof. Comparing the coefficients of X^{n} for $n \geq d$ shows that

$$
f^{-}(X) \sum_{n=0}^{\infty} u_{n} X^{n}
$$

is a polynomial of degree less than d

Taylor coefficients of rational functions

Conversely, the coefficients the Taylor expansion of any rational fraction $a(X) / b(X)$ with $\operatorname{deg} a<\operatorname{deg} b$ and $b(0) \neq 0$ satisfies the recurrence relation with characteristic polynomial $f \in K[X]$ given by $f(X)=b^{-}(X)$.

where r is a polynomial of degree less than d determined by the initial values of \mathbf{u}.

Taylor coefficients of rational functions

Conversely, the coefficients the Taylor expansion of any rational fraction $a(X) / b(X)$ with $\operatorname{deg} a<\operatorname{deg} b$ and $b(0) \neq 0$ satisfies the recurrence relation with characteristic polynomial $f \in K[X]$ given by $f(X)=b^{-}(X)$.

Therefore a sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfies the recurrence relation (\star) with characteristic polynomial $f \in K[X]$ if and only if

$$
\sum_{n=0}^{\infty} u_{n} X^{n}=\frac{r(X)}{f^{-}(X)}
$$

where r is a polynomial of degree less than d determined by the initial values of \mathbf{u}.

Linear differential equations

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ of numbers, its exponential generating power series is

$$
f(z)=\sum_{n \geq 0} u_{n} \frac{z^{n}}{n!}
$$

For $k \geq 0$, the k-the derivative $f^{(k)}$ of f satisfies

Hence the sequence satisfies the linear recurrence relation
\square
if and only if f satisfies the homogeneous linear differential
equation

Linear differential equations

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ of numbers, its exponential generating power series is

$$
f(z)=\sum_{n \geq 0} u_{n} \frac{z^{n}}{n!}
$$

For $k \geq 0$, the k-the derivative $f^{(k)}$ of f satisfies

$$
f^{(k)}(z)=\sum_{n \geq 0} u_{n+k} \frac{z^{n}}{n!}
$$

Hence the sequence satisfies the linear recurrence relation
\square
if and only if f satisfies the homogeneous linear differential

Linear differential equations

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ of numbers, its exponential generating power series is

$$
f(z)=\sum_{n \geq 0} u_{n} \frac{z^{n}}{n!}
$$

For $k \geq 0$, the k-the derivative $f^{(k)}$ of f satisfies

$$
f^{(k)}(z)=\sum_{n \geq 0} u_{n+k} \frac{z^{n}}{n!}
$$

Hence the sequence satisfies the linear recurrence relation
(夫) $\quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$ for $n \geq 0$
if and only if f satisfies the homogeneous linear differential equation

$$
y^{(d)}=a_{1} y^{(d-1)}+\cdots+a_{d} y
$$

Matrix notation for a linear recurrence sequence

The linear recurrence sequence
(*) $\quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n} \quad$ for $\quad n \geq 0$
can be written

$$
\left(\begin{array}{c}
u_{n+1} \\
u_{n+2} \\
\vdots \\
u_{n+d}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_{d} & a_{d-1} & a_{d-2} & \cdots & a_{1}
\end{array}\right)\left(\begin{array}{c}
u_{n} \\
u_{n+1} \\
\vdots \\
u_{n+d-1}
\end{array}\right)
$$

Matrix notation for a linear recurrence sequence

$$
U_{n+1}=A U_{n}
$$

with

$$
U_{n}=\left(\begin{array}{c}
u_{n} \\
u_{n+1} \\
\vdots \\
u_{n+d-1}
\end{array}\right), \quad A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_{d} & a_{d-1} & a_{d-2} & \cdots & a_{1}
\end{array}\right)
$$

The determinant of $I_{d} X-A$ (the characteristic polynomial of A) is nothing but
the characteristic polynomial of the linear recurrence sequence. By induction

Matrix notation for a linear recurrence sequence

$$
U_{n+1}=A U_{n}
$$

with

$$
U_{n}=\left(\begin{array}{c}
u_{n} \\
u_{n+1} \\
\vdots \\
u_{n+d-1}
\end{array}\right), \quad A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_{d} & a_{d-1} & a_{d-2} & \cdots & a_{1}
\end{array}\right)
$$

The determinant of $I_{d} X-A$ (the characteristic polynomial of A) is nothing but

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

the characteristic polynomial of the linear recurrence sequence.
By induction

Matrix notation for a linear recurrence sequence

$$
U_{n+1}=A U_{n}
$$

with

$$
U_{n}=\left(\begin{array}{c}
u_{n} \\
u_{n+1} \\
\vdots \\
u_{n+d-1}
\end{array}\right), \quad A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_{d} & a_{d-1} & a_{d-2} & \cdots & a_{1}
\end{array}\right) .
$$

The determinant of $I_{d} X-A$ (the characteristic polynomial of A) is nothing but

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

the characteristic polynomial of the linear recurrence sequence.
By induction

$$
U_{n}=A^{n} U_{0}
$$

Powers of matrices

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq d} \in \mathrm{GL}_{d \times d}(\mathbb{K})$ be a $d \times d$ matrix with coefficients in \mathbb{K} and nonzero determinant. For $n \geq 0$, define

$$
A^{n}=\left(a_{i j}^{(n)}\right)_{1 \leq i, j \leq d}
$$

Then each of the d^{2} sequences $\left(a_{i j}^{(n)}\right)_{n>0^{\prime}}(1 \leq i, j \leq d)$ is a linear recurrence sequence. The roots of the characteristic polynomial of these linear recurrences are the eigenvalues of A.

In particular the sequence $\left(\operatorname{Tr}\left(A^{n}\right)\right)_{n>0}$ satisfies the linear recurrence, the characteristic polynomial of which is the characteristic polynomial of the matrix A.

Powers of matrices

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq d} \in \mathrm{GL}_{d \times d}(\mathbb{K})$ be a $d \times d$ matrix with coefficients in \mathbb{K} and nonzero determinant. For $n \geq 0$, define

$$
A^{n}=\left(a_{i j}^{(n)}\right)_{1 \leq i, j \leq d}
$$

Then each of the d^{2} sequences $\left(a_{i j}^{(n)}\right)_{n>0},(1 \leq i, j \leq d)$ is a linear recurrence sequence. The roots of the characteristic polynomial of these linear recurrences are the eigenvalues of A.

In particular the sequence $\left(\operatorname{Tr}\left(A^{n}\right)\right)_{n>0}$ satisfies the linear recurrence, the characteristic polynomial of which is the characteristic polynomial of the matrix A.

Powers of matrices

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq d} \in \mathrm{GL}_{d \times d}(\mathbb{K})$ be a $d \times d$ matrix with coefficients in \mathbb{K} and nonzero determinant. For $n \geq 0$, define

$$
A^{n}=\left(a_{i j}^{(n)}\right)_{1 \leq i, j \leq d}
$$

Then each of the d^{2} sequences $\left(a_{i j}^{(n)}\right)_{n \geq 0},(1 \leq i, j \leq d)$ is a linear recurrence sequence. The roots of the characteristic polynomial of these linear recurrences are the eigenvalues of A.

In particular the sequence $\left(\operatorname{Tr}\left(A^{n}\right)\right)_{n \geq 0}$ satisfies the linear recurrence, the characteristic polynomial of which is the characteristic polynomial of the matrix A.

Conversely :

Given a linear recurrence sequence $\mathbf{u} \in \mathbb{K}^{\mathbb{N}}$, there exist an integer $d \geq 1$ and a matrix $A \in \mathrm{GL}_{d}(\mathbb{K})$ such that, for each $n \geq 0$,

$$
u_{n}=a_{11}^{(n)}
$$

The characteristic polynomial of A is the characteristic polynomial of the linear recurrence sequence.

Recurrence sequences, Mathematical Surveys and Monographs (AMS, 2003), volume 104.

Conversely :

Given a linear recurrence sequence $\mathbf{u} \in \mathbb{K}^{\mathbb{N}}$, there exist an integer $d \geq 1$ and a matrix $A \in \mathrm{GL}_{d}(\mathbb{K})$ such that, for each $n \geq 0$,

$$
u_{n}=a_{11}^{(n)}
$$

The characteristic polynomial of A is the characteristic polynomial of the linear recurrence sequence.

Everest G., van der Poorten A., Shparlinski I., Ward T. Recurrence sequences, Mathematical Surveys and Monographs (AMS, 2003), volume 104.

Linear recurrence sequences: simple roots

A basis of $E_{\underline{a}}$ over \mathbb{K} is obtained by attributing to the initial values u_{0}, \ldots, u_{d-1} the values given by the canonical basis of \mathbb{K}^{d}.
Given γ in \mathbb{K}^{\times}, a necessary and sufficient condition for a sequence $\left(\gamma^{n}\right)_{n \geq 0}$ to satisfy (\star) is that γ is a root of the characteristic polynomial

If this polynomial has d distinct roots $\gamma_{1}, \ldots, \gamma_{d}$ in \mathbb{K}, then a basis of $E_{\underline{a}}$ over \mathbb{K} is given by the d sequences $\left(\gamma_{i}^{n}\right)_{n \geq 0}$,

Linear recurrence sequences: simple roots

A basis of $E_{\underline{a}}$ over \mathbb{K} is obtained by attributing to the initial values u_{0}, \ldots, u_{d-1} the values given by the canonical basis of \mathbb{K}^{d}.
Given γ in \mathbb{K}^{\times}, a necessary and sufficient condition for a sequence $\left(\gamma^{n}\right)_{n \geq 0}$ to satisfy (\star) is that γ is a root of the characteristic polynomial

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

If this polynomial has d distinct roots $\gamma_{1}, \ldots, \gamma_{d}$ in \mathbb{K},

Linear recurrence sequences: simple roots

A basis of $E_{\underline{a}}$ over \mathbb{K} is obtained by attributing to the initial values u_{0}, \ldots, u_{d-1} the values given by the canonical basis of \mathbb{K}^{d}.
Given γ in \mathbb{K}^{\times}, a necessary and sufficient condition for a sequence $\left(\gamma^{n}\right)_{n \geq 0}$ to satisfy (\star) is that γ is a root of the characteristic polynomial

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

If this polynomial has d distinct roots $\gamma_{1}, \ldots, \gamma_{d}$ in \mathbb{K},

$$
f(X)=\left(X-\gamma_{1}\right) \cdots\left(X-\gamma_{d}\right), \quad \gamma_{i} \neq \gamma_{j}
$$

then a basis of $E_{\underline{a}}$ over \mathbb{K} is given by the d sequences $\left(\gamma_{i}^{n}\right)_{n \geq 0}$, $i=1, \ldots, d$.

Linear recurrence sequences: double roots

The characteristic polynomial of the linear recurrence $u_{n}=2 \gamma u_{n-1}-\gamma^{2} u_{n-2}$ is $X^{2}-2 \gamma X+\gamma^{2}=(X-\gamma)^{2}$ with a double root γ.

The sequence $\left(n \gamma^{n}\right)_{n \geq 0}$ satisfies

A basis of $E_{\underline{a}}$ for $a_{1}=2 \gamma, a_{2}=-\gamma^{2}$ is given by the two sequences $\left(\gamma^{n}\right)_{n \geq 0},\left(n \gamma^{n}\right)_{n \geq 0}$.

Given $\gamma \in \mathbb{K}^{\times}$, a necessary and sufficient condition for the sequence $n \gamma^{n}$ to satisfy the linear recurrence relation (\star) is that γ is a root of multiplicity ≥ 2 of $f(X)$

Linear recurrence sequences: double roots

The characteristic polynomial of the linear recurrence $u_{n}=2 \gamma u_{n-1}-\gamma^{2} u_{n-2}$ is $X^{2}-2 \gamma X+\gamma^{2}=(X-\gamma)^{2}$ with a double root γ.

The sequence $\left(n \gamma^{n}\right)_{n \geq 0}$ satisfies

$$
n \gamma^{n}=2 \gamma(n-1) n \gamma^{n-1}-\gamma^{2}(n-2) \gamma^{n-2}
$$

A basis of $E_{\underline{a}}$ for $a_{1}=2 \gamma, a_{2}=-\gamma^{2}$ is given by the two sequences $\left(\gamma^{n}\right)_{n \geq 0},\left(n \gamma^{n}\right)_{n \geq 0}$.

Given $\gamma \in \mathbb{K}^{\times}$, a necessary and sufficient condition for the sequence $n \gamma^{n}$ to satisfy the linear recurrence relation (\star) is that γ is a root of multiplicity ≥ 2 of $f(X)$.

Linear recurrence sequences: double roots

The characteristic polynomial of the linear recurrence $u_{n}=2 \gamma u_{n-1}-\gamma^{2} u_{n-2}$ is $X^{2}-2 \gamma X+\gamma^{2}=(X-\gamma)^{2}$ with a double root γ.

The sequence $\left(n \gamma^{n}\right)_{n \geq 0}$ satisfies

$$
n \gamma^{n}=2 \gamma(n-1) n \gamma^{n-1}-\gamma^{2}(n-2) \gamma^{n-2}
$$

A basis of $E_{\underline{a}}$ for $a_{1}=2 \gamma, a_{2}=-\gamma^{2}$ is given by the two sequences $\left(\gamma^{n}\right)_{n \geq 0},\left(n \gamma^{n}\right)_{n \geq 0}$.

Given $\gamma \in \mathbb{K}^{\times}$, a necessary and sufficient condition for the sequence $n \gamma^{n}$ to satisfy the linear recurrence relation (\star) is that γ is a root of multiplicity ≥ 2 of $f(X)$.

Linear recurrence sequences: double roots

The characteristic polynomial of the linear recurrence $u_{n}=2 \gamma u_{n-1}-\gamma^{2} u_{n-2}$ is $X^{2}-2 \gamma X+\gamma^{2}=(X-\gamma)^{2}$ with a double root γ.

The sequence $\left(n \gamma^{n}\right)_{n \geq 0}$ satisfies

$$
n \gamma^{n}=2 \gamma(n-1) n \gamma^{n-1}-\gamma^{2}(n-2) \gamma^{n-2} .
$$

A basis of $E_{\underline{a}}$ for $a_{1}=2 \gamma, a_{2}=-\gamma^{2}$ is given by the two sequences $\left(\gamma^{n}\right)_{n \geq 0},\left(n \gamma^{n}\right)_{n \geq 0}$.

Given $\gamma \in \mathbb{K}^{\times}$, a necessary and sufficient condition for the sequence $n \gamma^{n}$ to satisfy the linear recurrence relation (\star) is that γ is a root of multiplicity ≥ 2 of $f(X)$.

Linear recurrence sequences: multiple roots

In general, when the characteristic polynomial splits as

$$
X^{d}-a_{1} X^{d-1}-\cdots-a_{d}=\prod_{i=1}^{\ell}\left(X-\gamma_{i}\right)^{t_{i}}
$$

a basis of $E_{\underline{a}}$ is given by the d sequences

$$
\left(n^{k} \gamma_{i}^{n}\right)_{n \geq 0}, \quad 0 \leq k \leq t_{i}-1, \quad 1 \leq i \leq \ell
$$

Polynomial combinations of powers

The sum and the product of any two linear recurrence sequences are linear recurrence sequences.

The set $\cup_{\underline{a}} E_{\underline{a}}$ of all linear recurrence sequences with coefficients in \mathbb{K} is a sub- \mathbb{K}-algebra of $\mathbb{K}^{\mathbb{N}}$.

Given polynomials p_{1}, \ldots, p_{ℓ} in $\mathbb{K}[X]$ and elements γ_{1} in \mathbb{K}^{\times}, the sequence

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.

Polynomial combinations of powers

The sum and the product of any two linear recurrence sequences are linear recurrence sequences.

The set $\cup_{\underline{a}} E_{\underline{a}}$ of all linear recurrence sequences with coefficients in \mathbb{K} is a sub- \mathbb{K}-algebra of $\mathbb{K}^{\mathbb{N}}$.

Given polynomials p_{1}, \ldots, p_{ℓ} in $\mathbb{K}[X]$ and elements
in \mathbb{K}^{\times}, the sequence

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.

Polynomial combinations of powers

The sum and the product of any two linear recurrence sequences are linear recurrence sequences.

The set $\cup_{\underline{a}} E_{\underline{a}}$ of all linear recurrence sequences with coefficients in \mathbb{K} is a sub- \mathbb{K}-algebra of $\mathbb{K}^{\mathbb{N}}$.

Given polynomials p_{1}, \ldots, p_{ℓ} in $\mathbb{K}[X]$ and elements $\gamma_{1}, \ldots, \gamma_{\ell}$ in \mathbb{K}^{\times}, the sequence

$$
\left(p_{1}(n) \gamma_{1}^{n}+\cdots+p_{\ell}(n) \gamma_{\ell}^{n}\right)_{n \geq 0}
$$

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.

Polynomial combinations of powers

The sum and the product of any two linear recurrence sequences are linear recurrence sequences.

The set $\cup_{\underline{a}} E_{\underline{a}}$ of all linear recurrence sequences with coefficients in \mathbb{K} is a sub- \mathbb{K}-algebra of $\mathbb{K}^{\mathbb{N}}$.

Given polynomials p_{1}, \ldots, p_{ℓ} in $\mathbb{K}[X]$ and elements $\gamma_{1}, \ldots, \gamma_{\ell}$ in \mathbb{K}^{\times}, the sequence

$$
\left(p_{1}(n) \gamma_{1}^{n}+\cdots+p_{\ell}(n) \gamma_{\ell}^{n}\right)_{n \geq 0}
$$

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.

Consequence

- When f is a polynomial of degree $<d$, the characteristic polynomial of the sequence $u_{n}=f(n)$ divides $(X-1)^{d}$.

Proof.
Set

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)=I_{d}+N
$$

where I_{d} is the $d \times d$ identity matrix and N is nilpotent : $N^{d}=0$.

Consequence

The characteristic polynomial of A is $(X-1)^{d}$. Hence for $1 \leq i, j \leq d$, the sequence u_{n} of the coefficient $a_{i j}^{(n)}$ of A^{n} satisfies the linear recurrence relation
(\star

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

that is

$$
u_{n+d}=d u_{n+d-1}-\binom{d}{2} u_{n+d-2}+\cdots+(-1)^{d-2} d u_{n+1}+(-1)^{d-1} u_{n}
$$

The characteristic polynomial of this recurrence relation is $(X-1)^{d}$.

Characteristic polynomial of the recurrence

 sequence $f(n)$.Since, for $1 \leq i, j \leq d$ and $n \geq 0$, we have

$$
a_{i j}^{(n)}=\binom{n}{j-i}
$$

(where we agree that $\binom{n}{k}=0$ for $k<0$ and for $k>n$, while $\binom{d}{0}=\binom{d}{d}=1$), we deduce that each of the d polynomials

$$
1, \quad \frac{X(X+1) \cdots(X+k-1)}{k!} \quad k=1,2, \ldots, d-1
$$

namely

$$
1, X, \frac{X(X+1)}{2}, \ldots, \frac{X(X+1) \cdots(X+d-2)}{(d-1)!}
$$

satisfies the recurrence (\star). These d polynomials constitute a basis of the space of polynomials of degree $<d_{5}$

Sum of polynomial combinations of powers

If \mathbf{u}_{1} and \mathbf{u}_{2} are two linear recurrence sequences of characteristic polynomials f_{1} and f_{2} respectively, then $\mathbf{u}_{1}+\mathbf{u}_{2}$ satisfies the linear recurrence, the characteristic polynomial of which is

$$
\frac{f_{1} f_{2}}{\operatorname{gcd}\left(f_{1}, f_{2}\right)}
$$

Product of polynomial combinations of powers

If the characteristic polynomials of the two linear recurrence sequences \mathbf{u}_{1} and \mathbf{u}_{2} are respectively

$$
f_{1}(T)=\prod_{j=1}^{\ell}\left(T-\gamma_{j}\right)^{t_{j}} \quad \text { and } \quad f_{2}(T)=\prod_{k=1}^{\ell^{\prime}}\left(T-\gamma_{k}^{\prime}\right)^{t_{k}^{\prime}}
$$

then $\mathbf{u}_{1} \mathbf{u}_{2}$ satisfies the linear recurrence, the characteristic polynomial of which is

$$
\prod_{j=1}^{\ell} \prod_{k=1}^{\ell^{\prime}}\left(T-\gamma_{j} \gamma_{k}^{\prime}\right)^{t_{j}+t_{k}^{\prime}-1}
$$

Linear recurrence sequences and

Brahmagupta-Pell-Fermat Equation

Let d be a positive integer, not a square. The solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ of the Brahmagupta-Pell-Fermat Equation

$$
x^{2}-d y^{2}= \pm 1
$$

form a sequence $\left(x_{n}, y_{n}\right)_{n \in \mathbb{Z}}$ defined by

$$
x_{n}+\sqrt{d} y_{n}=\left(x_{1}+\sqrt{d} y_{1}\right)^{n} .
$$

From
we deduce that $\left(x_{n}\right)_{n \geq 0}$ is a linear recurrence sequence. Same
for y_{n}, and also for $n \leq 0$.

Linear recurrence sequences and

Brahmagupta-Pell-Fermat Equation

Let d be a positive integer, not a square. The solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ of the Brahmagupta-Pell-Fermat Equation

$$
x^{2}-d y^{2}= \pm 1
$$

form a sequence $\left(x_{n}, y_{n}\right)_{n \in \mathbb{Z}}$ defined by

$$
x_{n}+\sqrt{d} y_{n}=\left(x_{1}+\sqrt{d} y_{1}\right)^{n} .
$$

From

$$
2 x_{n}=\left(x_{1}+\sqrt{d} y_{1}\right)^{n}+\left(x_{1}-\sqrt{d} y_{1}\right)^{n}
$$

we deduce that $\left(x_{n}\right)_{n \geq 0}$ is a linear recurrence sequence. Same for y_{n}, and also for $n \leq 0$.

Doubly infinite linear recurrence sequences

A sequence $\left(u_{n}\right)_{n \in \mathbb{Z}}$ indexed by \mathbb{Z} is a linear recurrence sequence if it satisfies
(\star

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

for all $n \in \mathbb{Z}$.

Recall $a_{d} \neq 0$.

Such a sequence is determined by d consecutive values.

Doubly infinite linear recurrence sequences

A sequence $\left(u_{n}\right)_{n \in \mathbb{Z}}$ indexed by \mathbb{Z} is a linear recurrence sequence if it satisfies
(\star

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

for all $n \in \mathbb{Z}$.

Recall $a_{d} \neq 0$.

Such a sequence is determined by d consecutive values.

Doubly infinite linear recurrence sequences

A sequence $\left(u_{n}\right)_{n \in \mathbb{Z}}$ indexed by \mathbb{Z} is a linear recurrence sequence if it satisfies
(*)

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

for all $n \in \mathbb{Z}$.

Recall $a_{d} \neq 0$.

Such a sequence is determined by d consecutive values.

Discrete version of linear differential equations

A sequence $\mathbf{u} \in \mathbb{K}^{\mathbb{N}}$ can be viewed as a linear map $\mathbb{N} \longrightarrow \mathbb{K}$. Define the discrete derivative \mathcal{D} by

$$
\begin{array}{rlcc}
\mathcal{D} \mathbf{u}: \mathbb{N} & \longrightarrow & \mathbb{K} \\
n & \longmapsto & u_{n+1}-u_{n} .
\end{array}
$$

A sequence $\mathbf{u} \in \mathbb{K}^{\mathbb{N}}$ is a linear recurrence sequence if and only if there exists $Q \in \mathbb{K}[T]$ with $Q(1) \neq 1$ such that

$$
Q(\mathcal{D}) \mathbf{u}=0 .
$$

Linear recurrence sequences are a discrete version of linear differential equations with constant coefficients.

The condition $Q(1) \neq 0$ reflects $a_{d} \neq 0$ - otherwise one gets ultimately recurrent sequences.

97th Indian Science Congress, 2010

A.K. Agarwal

Invited by Ashok Agrawal to the 97th Indian Science
Congress in
Thiruvananthapuram
(Trivandrum, Kerala), January
3-7, 2010.

- Lecture on Number Theory

Challenges of 21st Century

A. P. J. Abdul Kalam (1931-2015)

Public Lecture during the 97th Indian Science Congress, Thiruvananthapuram - 4 January 2010 Thiruvananthapuram

Basic research is vital for enhancing national and international competitiveness

http://www.abdulkalam.com/kalam/theme/jsp/guest/
content-display.jsp

Kerala 2010

Sudhir Ghorpade

Ambar Vijayatkumar

January 9-10, 2010, Cochin = Kochi (Kerala) Department of Mathematics, Cochin University of Science and Technology CUSAT

KSOM 2010

January 8, 2010, Calicut $=$ Kozhikode (Kerala) The Kerala School of Mathematics (KSoM)

A. J. Parameswaran, Director of the Kerala School of Mathematical Science (KSOM) in Kozikhode (Calicut)

KSOM 2010

Work on dynamical systems by A. J. Parameswaran and S.G. Dani

A. J. Parameswaran

S.G. Dani

A dynamical system

Let V be a finite dimensional vector space over a field of zero characteristic, H an hyperplane of $V, f: V \rightarrow V$ an endomorphism (linear map) and x an element in V.

Theorem. If there exist infinitely many $n \geq 1$ such that $f^{n}(x) \in H$, then there is an (infinite) arithmetic progression of n for which it is so.

A dynamical system

Let V be a finite dimensional vector space over a field of zero characteristic, H an hyperplane of $V, f: V \rightarrow V$ an endomorphism (linear map) and x an element in V.

Theorem. If there exist infinitely many $n \geq 1$ such that $f^{n}(x) \in H$, then there is an (infinite) arithmetic progression of n for which it is so.

Skolem - Mahler - Lech Theorem

Theorem (Skolem 1934 - Mahler 1935 - Lech 1953). Given a linear recurrence sequence, the set of indices $n \geq 0$ such that $u_{n}=0$ is a finite union of arithmetic progressions.

Linear recurrence sequence

Characteristic polynomial

Skolem - Mahler - Lech Theorem

Theorem (Skolem 1934 - Mahler 1935 - Lech 1953). Given a linear recurrence sequence, the set of indices $n \geq 0$ such that $u_{n}=0$ is a finite union of arithmetic progressions.
Linear recurrence sequence :

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}, \quad n \geq 0
$$

Characteristic polynomial

Skolem - Mahler - Lech Theorem

Theorem (Skolem 1934 - Mahler 1935 - Lech 1953). Given a linear recurrence sequence, the set of indices $n \geq 0$ such that $u_{n}=0$ is a finite union of arithmetic progressions.
Linear recurrence sequence :

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}, \quad n \geq 0 \quad\left(a_{d} \neq 0\right)
$$

Characteristic polynomial

Skolem - Mahler - Lech Theorem

Theorem (Skolem 1934 - Mahler 1935 - Lech 1953). Given a linear recurrence sequence, the set of indices $n \geq 0$ such that $u_{n}=0$ is a finite union of arithmetic progressions.
Linear recurrence sequence :

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}, \quad n \geq 0 \quad\left(a_{d} \neq 0\right)
$$

Characteristic polynomial :

$$
X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

Skolem - Mahler - Lech Theorem

Theorem (Skolem 1934 - Mahler 1935 - Lech 1953). Given a linear recurrence sequence, the set of indices $n \geq 0$ such that $u_{n}=0$ is a finite union of arithmetic progressions.
Linear recurrence sequence :

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}, \quad n \geq 0 \quad\left(a_{d} \neq 0\right) .
$$

Characteristic polynomial :

$$
X^{d}-a_{1} X^{d-1}-\cdots-a_{d}=\prod_{j=1}^{\ell}\left(X-\gamma_{j}\right)^{t_{j}}
$$

Skolem - Mahler - Lech Theorem

Theorem (Skolem 1934 - Mahler 1935 - Lech 1953). Given a linear recurrence sequence, the set of indices $n \geq 0$ such that $u_{n}=0$ is a finite union of arithmetic progressions.
Linear recurrence sequence :

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}, \quad n \geq 0 \quad\left(a_{d} \neq 0\right)
$$

Characteristic polynomial :

$$
\begin{gathered}
X^{d}-a_{1} X^{d-1}-\cdots-a_{d}=\prod_{j=1}^{\ell}\left(X-\gamma_{j}\right)^{t_{j}} \\
u_{n}=\sum_{j=1}^{\ell} \sum_{i=0}^{t_{j}-1} c_{i j} n^{i} \gamma_{j}^{n} .
\end{gathered}
$$

Wolfgang M. Schmidt

Thue - Siegel - Roth - Schmidt,
Schmidt's Subspace Theorem. The generalized S-unit Theorem

Let \mathbb{K} be a field of characteristic zero, let G be a finitely multiplicative subgroup of the multiplicative group $\mathbb{K}^{\times}=\mathbb{K} \backslash\{0\}$ and let $n \geq 2$. Then the equation

$$
u_{1}+u_{2}+\cdots+u_{n}=1
$$

where the values of the unknowns $u_{1}, u_{2}, \cdots, u_{n}$ are in G for which no nontrivial subsum

vanishes, has only finitely many solutions.

Wolfgang M. Schmidt

Thue - Siegel - Roth - Schmidt,
Schmidt's Subspace Theorem. The generalized S-unit
Theorem
Let \mathbb{K} be a field of characteristic zero, let G be a finitely multiplicative subgroup of the multiplicative group
$\mathbb{K}^{\times}=\mathbb{K} \backslash\{0\}$ and let $n \geq 2$. Then the equation

$$
u_{1}+u_{2}+\cdots+u_{n}=1,
$$

where the values of the unknowns $u_{1}, u_{2}, \cdots, u_{n}$ are in G for which no nontrivial subsum

vanishes, has only finitely many solutions.

Wolfgang M. Schmidt

Thue - Siegel - Roth - Schmidt,
Schmidt's Subspace Theorem. The generalized S-unit Theorem

> Let \mathbb{K} be a field of characteristic zero, let G be a finitely multiplicative subgroup of the multiplicative group $\mathbb{K}^{\times}=\mathbb{K} \backslash\{0\}$ and let $n \geq 2$. Then the equation

where the values of the unknowns $u_{1}, u_{2}, \cdots, u_{n}$ are in G for which no nontrivial subsum

Wolfgang M. Schmidt

Thue - Siegel - Roth - Schmidt,
Schmidt's Subspace Theorem. The generalized S-unit Theorem
Let \mathbb{K} be a field of characteristic zero, let G be a finitely multiplicative subgroup of the multiplicative group $\mathbb{K}^{\times}=\mathbb{K} \backslash\{0\}$ and let $n \geq 2$. Then the equation

$$
u_{1}+u_{2}+\cdots+u_{n}=1
$$

where the values of the unknowns $u_{1}, u_{2}, \cdots, u_{n}$ are in G for which no nontrivial subsum

$$
\sum_{i \in I} u_{i} \quad \emptyset \neq I \subset\{1, \ldots, n\}
$$

vanishes, has only finitely many solutions.

Schmidt's subspace Theorem

Wolfgang M. Schmidt

Pietro Corvaja

Umberto Zannier

Balu's 60's Birthday, 2011

December 15-20, 2011: HRI : International Meeting on Number Theory 2011 celebrating the 60th Birthday of Professor R. Balasubramanian.

Pietro Corvaja

M. Manickam, director of KSOM.

December 16, 2011 : lecture on Families of Thue-Mahler equations.

Joint work with Claude Levesque

http://arxiv.org/abs/1505.06653

Solving simultaneously Thue Diophantine equations : almost totally imaginary case Proceedings of the International Meeting on Number Theory HRI 2011, in honor of R. Balasubramanian.

Ramanujan Mathematical Society, Lecture Notes Series 23, Highly composite : papers in number theory, (2016), 137-156. Editors Kumar Murty, Ravindranathan Thangadurai. http://www.ramanujanmathsociety.org/publications/ rms-lecture-notes-series

Number-20: The Legacy of Srinivasa Ramanujan

posted Nov 22, 2013, 6:32 AM by RMS Administrator [updated Nov 23, 2013, $10: 55$ AM]

```
Rgmamugan MatfiematicalSociety
    Lecture Notes Series
            The Legacy of
        Srinivasa Ramanujan
            Poccerlevs of an
```



```
ditue 13 Sth Amblveruary of Ramanulumy fle
    Imberity & DNBN 1F-22 DNommber 2012
```


Title:
Number 20 - The Legacy of Srinivasa Ramanujan

Volume Editors:

Bruce C. Berndt, Dipendra Prasad

KSOM 2013

Workshop number theory and dynamical systems in KSOM (Director M. Manickam) in February 2013

Yann Bugeaud

Pietro Corvaja

S.G. Dani

Reference

M. Waldschmidt. Diophantine approximation with applications to dynamical systems. Proceedings of the International Conference on Pure and Applied Mathematics ICPAM-LAE 2013, South Pacific Journal of Pure and Applied Mathematics, vol. 1, No 2 (2014), 1-18.

Skolem - Mahler - Lech Theorem

Theorem (Skolem 1934 - Mahler 1935 - Lech 1953). Given a linear recurrence sequence, the set of indices $n \geq 0$ such that $u_{n}=0$ is a finite union of arithmetic progressions.

Thoralf Albert Skolem
(1887-1963)

Kurt Mahler
$(1903-1988)$

An arithmetic progression is a set of positive integers of the form $\left\{n_{0}, n_{0}+k, n_{0}+2 k, \ldots\right\}$. Here, we allow $k=0$.

A dynamical system

Let V be a finite dimensional vector space over a field of zero characteristic, W a subspace of $V, f: V \rightarrow V$ an endomorphism (linear map) and x an element in V.

Corollary of the Skolem - Mahler - Lech Theorem. The set of $n \geq 0$ such that $f^{n}(x) \in W$ is a finite union of arithmetic progressions.

By induction, it suffices to consider the case where $W=H$ is
an hyperplane of V

A dynamical system

Let V be a finite dimensional vector space over a field of zero characteristic, W a subspace of $V, f: V \rightarrow V$ an endomorphism (linear map) and x an element in V.

Corollary of the Skolem - Mahler - Lech Theorem. The set of $n \geq 0$ such that $f^{n}(x) \in W$ is a finite union of arithmetic progressions.

By induction, it suffices to consider the case where $W=H$ is
an hyperplane of V

A dynamical system

Let V be a finite dimensional vector space over a field of zero characteristic, W a subspace of $V, f: V \rightarrow V$ an endomorphism (linear map) and x an element in V.

Corollary of the Skolem - Mahler - Lech Theorem. The set of $n \geq 0$ such that $f^{n}(x) \in W$ is a finite union of arithmetic progressions.

By induction, it suffices to consider the case where $W=H$ is an hyperplane of V.

Idea of the proof of the corollary

Choose a basis of V. The endomorphism f is given by a square $d \times d$ matrix A, where d is the dimension of V.
Consider the characteristic polynomial of A, say

$$
X^{d}-a_{d-1} X^{d-1}-\cdots-a_{1} X-a_{0} .
$$

By the Theorem of Cayley - Hamilton,

$$
A^{d}=a_{d-1} A^{d-1}+\cdots+a_{1} A+a_{0} I_{d}
$$

where I_{d} is the identity $d \times d$ matrix.

Theorem of Cayley - Hamilton

Arthur Cayley
(1821-1895)

Hence, for $n \geq 0$,

Sir William Rowan Hamilton
(1805-1865)

It follows that each entry $a_{i j}(n), 1 \leq i, j \leq d$, satisfies a linear recurrence relation, the same for all i, j.

Theorem of Cayley - Hamilton

Arthur Cayley
(1821-1895)

Sir William Rowan Hamilton
(1805-1865)

Hence, for $n \geq 0$,

$$
A^{n+d}=a_{d-1} A^{n+d-1}+\cdots+a_{1} A^{n+1}+a_{0} A^{n}
$$

It follows that each entry $a_{i j}(n), 1 \leq i, j \leq d$, satisfies a linear recurrence relation, the same for all i, j.

Theorem of Cayley - Hamilton

Arthur Cayley
(1821-1895)

Sir William Rowan Hamilton

Hence, for $n \geq 0$,

$$
A^{n+d}=a_{d-1} A^{n+d-1}+\cdots+a_{1} A^{n+1}+a_{0} A^{n}
$$

It follows that each entry $a_{i j}(n), 1 \leq i, j \leq d$, satisfies a linear recurrence relation, the same for all i, j.

Hyperplane membership

Let $b_{1} x_{1}+\cdots+b_{d} x_{d}=0$ be an equation of the hyperplane H in the selected basis of V.
$\left(b_{1}, \ldots, b_{d}\right)$ (transpose of a column matrix \underline{b}). Using the notation \underline{v} for the $d \times 1$ (column) matrix given by the coordinates of an element v in V, the condition $v \in H$ can be written ${ }^{t} \underline{b} \underline{v}=0$.

Let x be an element in V and \underline{x} the $d \times 1$ (column) matrix given by its coordinates. The condition $f^{n}(x) \in H$ can now be written
${ }^{t} \underline{b} A^{n} \underline{x}=0$.
The entry u_{n} of the 1×1 matrix ${ }^{t} \underline{b} A^{n} \underline{\underline{r}}$ satisfies a linear recurrence relation, hence, the Skolem - Mahler - Lech
Theorem applies.

Hyperplane membership

Let $b_{1} x_{1}+\cdots+b_{d} x_{d}=0$ be an equation of the hyperplane H in the selected basis of V. Let ${ }^{t} \underline{b}$ denote the $1 \times d$ matrix $\left(b_{1}, \ldots, b_{d}\right)$ (transpose of a column matrix \underline{b}). Using the notation \underline{v} for the $d \times 1$ (column) matrix given by the coordinates of an element v in V, the condition $v \in H$ can be written ${ }^{t} \underline{b} \underline{v}=0$.

Let x be an element in V and \underline{x} the $d \times 1$ (column) matrix given by its coordinates. The condition $f^{n}(x) \in H$ can now be written

$$
{ }^{t} \underline{b} A^{n} \underline{x}=0 .
$$

The entry u_{n} of the 1×1 matrix ${ }^{t} \underline{b} A^{n} \underline{x}$ satisfies a linear recurrence relation, hence, the Skolem - Mahler - Lech Theorem applies.

Hyperplane membership

Let $b_{1} x_{1}+\cdots+b_{d} x_{d}=0$ be an equation of the hyperplane H in the selected basis of V. Let ${ }^{t} \underline{b}$ denote the $1 \times d$ matrix $\left(b_{1}, \ldots, b_{d}\right)$ (transpose of a column matrix \underline{b}). Using the notation \underline{v} for the $d \times 1$ (column) matrix given by the coordinates of an element v in V, the condition $v \in H$ can be written ${ }^{t} \underline{b} \underline{v}=0$.

Let x be an element in V and \underline{x} the $d \times 1$ (column) matrix
given by its coordinates. The condition $f^{n}(x) \in H$ can now be written ${ }^{t} \underline{b} A^{n} \underline{x}=0$.
\square
Theorem applies.

Hyperplane membership

Let $b_{1} x_{1}+\cdots+b_{d} x_{d}=0$ be an equation of the hyperplane H in the selected basis of V. Let ${ }^{t} \underline{b}$ denote the $1 \times d$ matrix $\left(b_{1}, \ldots, b_{d}\right)$ (transpose of a column matrix \underline{b}). Using the notation \underline{v} for the $d \times 1$ (column) matrix given by the coordinates of an element v in V, the condition $v \in H$ can be written ${ }^{t} \underline{b} \underline{v}=0$.

Let x be an element in V and \underline{x} the $d \times 1$ (column) matrix given by its coordinates.
written

The entry u_{n} of the 1×1 matrix ${ }^{t} \underline{b} A^{n} \underline{x}$ satisfies a linear
recurrence relation, hence, the Skolem - Mahler - Lech
Theorem applies.

Hyperplane membership

Let $b_{1} x_{1}+\cdots+b_{d} x_{d}=0$ be an equation of the hyperplane H in the selected basis of V. Let ${ }^{t} \underline{b}$ denote the $1 \times d$ matrix $\left(b_{1}, \ldots, b_{d}\right)$ (transpose of a column matrix \underline{b}). Using the notation \underline{v} for the $d \times 1$ (column) matrix given by the coordinates of an element v in V, the condition $v \in H$ can be written ${ }^{t} \underline{b} \underline{v}=0$.

Let x be an element in V and \underline{x} the $d \times 1$ (column) matrix given by its coordinates. The condition $f^{n}(x) \in H$ can now be written

$$
{ }^{t} \underline{b} A^{n} \underline{x}=0 .
$$

The entry u_{n} of the 1×1 matrix ${ }^{t} \underline{b} A^{n} \underline{x}$ satisfies a linear recurrence relation, hence, the Skolem - Mahler - Lech Theorem applies.

Hyperplane membership

Let $b_{1} x_{1}+\cdots+b_{d} x_{d}=0$ be an equation of the hyperplane H in the selected basis of V. Let ${ }^{t} \underline{b}$ denote the $1 \times d$ matrix $\left(b_{1}, \ldots, b_{d}\right)$ (transpose of a column matrix \underline{b}). Using the notation \underline{v} for the $d \times 1$ (column) matrix given by the coordinates of an element v in V, the condition $v \in H$ can be written ${ }^{t} \underline{b} \underline{v}=0$.

Let x be an element in V and \underline{x} the $d \times 1$ (column) matrix given by its coordinates. The condition $f^{n}(x) \in H$ can now be written

$$
{ }^{t} \underline{b} A^{n} \underline{x}=0 .
$$

The entry u_{n} of the 1×1 matrix ${ }^{t} \underline{b} A^{n} \underline{x}$ satisfies a linear recurrence relation,

Hyperplane membership

Let $b_{1} x_{1}+\cdots+b_{d} x_{d}=0$ be an equation of the hyperplane H in the selected basis of V. Let ${ }^{t} \underline{b}$ denote the $1 \times d$ matrix $\left(b_{1}, \ldots, b_{d}\right)$ (transpose of a column matrix \underline{b}). Using the notation \underline{v} for the $d \times 1$ (column) matrix given by the coordinates of an element v in V, the condition $v \in H$ can be written ${ }^{t} \underline{b} \underline{v}=0$.

Let x be an element in V and \underline{x} the $d \times 1$ (column) matrix given by its coordinates. The condition $f^{n}(x) \in H$ can now be written

$$
{ }^{t} \underline{b} A^{n} \underline{x}=0 .
$$

The entry u_{n} of the 1×1 matrix ${ }^{t} \underline{b} A^{n} \underline{x}$ satisfies a linear recurrence relation, hence, the Skolem - Mahler - Lech Theorem applies.

Remark on the theorem of Skolem-Mahler-Lech

T.A. Skolem treated the case $K=\mathbb{Q}$ of in 1934
K. Mahler the case $\mathbb{K}=\overline{\mathbb{Q}}$, the algebraic closure of \mathbb{Q}, in 1935

The general case was settled by C. Lech in 1953.

Finite characteristic

C. Lech pointed out in 1953 that such a result may not hold if the characteristic of \mathbb{K} is positive : he gave as an example the sequence $u_{n}=(1+x)^{n}-x^{n}-1$, a third-order linear recurrence over the field of rational functions in one variable over the field \mathbb{F}_{p} with p elements, where $u_{n}=0$ for $n \in\left\{1, p, p^{2}, p^{3}, \ldots\right\}$. A substitute is provided by a result of Harm Derksen (2007), who proved that the zero set in characteristic p is a p-automatic sequence. Further results by Boris Adamczewski and Jason Bell.

Harm Derksen

Boris Adamczewski

Jason Bell

Polynomial-linear recurrence relation

A generalization of the Theorem of Skolem-Mahler-Lech has been achieved by Jason P. Bell, Stanley Burris and Karen Yeats who prove that the same conclusion holds if the sequence $\left(u_{n}\right)_{n \geq 0}$ satisfies a polynomial-linear recurrence relation

$$
u_{n}=\sum_{i=1}^{d} P_{i}(n) u_{n-i}
$$

where d is a positive integer and P_{1}, \ldots, P_{d} are polynomials with coefficient in the field \mathbb{K} of zero characteristic, provided that $P_{d}(x)$ is a nonzero constant.

Algebraic maps, algebraic groups

There are also analogues of the Theorem of Skolem-Mahler-Lech for algebraic maps on varieties (Jason Bell).

A version of the Skolem-Mahler-Lech Theorem for any algebraic group is due to Umberto Zannier.

Jason Bell

Umberto Zannier

Open problem

One main open problem related with Theorem of Skolem-Mahler-Lech is that it is not effective : explicit upper bounds for the number of arithmetic progressions, depending only on the order d of the linear recurrence sequence, are known (W.M. Schmidt, U. Zannier), but no upper bound for the arithmetic progressions themselves is known. A related open problem raised by T.A. Skolem and C. Pisot is :

Given an integer linear recurrence sequence, is the truth of the statement " $x_{n} \neq 0$ for all n " decidable in finite time?
T. Tao, Effective Skolem Mahler Lech theorem. In "Structure and Randomness : pages from year one of a mathematical blog", American Mathematical Society (2008), 298 pages.

Zeros of linear recurrence sequences

Jean Berstel et Maurice Mignotte. - Deux propriétés décidables des suites récurrentes linéaires Bulletin de la S.M.F., tome 104 (1976), p. 175-184. http://www.numdam.org/item?id=BSMF_1976__104__175_0 Given a linear recurrence sequence with integer coefficients; are there finitely or infinitely many zeroes?

Zeros of linear recurrence sequences

Jean Berstel et Maurice Mignotte. - Deux propriétés décidables des suites récurrentes linéaires Bulletin de la S.M.F., tome 104 (1976), p. 175-184.
http://www.numdam.org/item?id=BSMF_1976__104__175_0
Given a linear recurrence sequence with integer coefficients; are there finitely or infinitely many zeroes?

Philippe Robba. - Zéros de suites récurrentes linéaires. Groupe de travail d'analyse ultramétrique (1977-1978) Volume : 5, page 1-5.

Zeros of linear recurrence sequences

Jean Berstel et Maurice Mignotte. - Deux propriétés décidables des suites récurrentes linéaires Bulletin de la S.M.F., tome 104 (1976), p. 175-184.
http://www.numdam.org/item?id=BSMF_1976__104__175_0
Given a linear recurrence sequence with integer coefficients; are there finitely or infinitely many zeroes?

Philippe Robba. - Zéros de suites récurrentes linéaires. Groupe de travail d'analyse ultramétrique (1977-1978) Volume : 5, page 1-5.
L. Cerlienco, M. Mignotte, F. Piras. Suites récurrentes linéaires. Propriétés algébriques et arithmétiques.
L'Enseignement Mathématique 33 (1987).

Zeros of linear recurrence sequences

Maurice Mignotte Propriétés arithmétiques des suites récurrentes linéaires. Besançon, 1989
http://pmb.univ-fcomte.fr/1989/Mignotte.pdf
E. Bavencoffe and J-P. Bézivin Une famille remarquable de suites recurrentes lineaires. - Monatshefte für Mathematik, (1995) 120 3, 189-203

Karim Samake. - Suites récurrentes linéaires, problème d'effectivité. Inst. de Recherche Math. Avancée, 1996-62
pages

Zeros of linear recurrence sequences

Maurice Mignotte Propriétés arithmétiques des suites récurrentes linéaires. Besançon, 1989
http://pmb.univ-fcomte.fr/1989/Mignotte.pdf
E. Bavencoffe and J-P. Bézivin Une famille remarquable de suites recurrentes lineaires. - Monatshefte für Mathematik, (1995) 120 3, 189-203

Karim Samake. - Suites récurrentes linéaires, problème d'effectivité. Inst. de Recherche Math. Avancée, 1996-62 pages

Zeros of linear recurrence sequences

Maurice Mignotte Propriétés arithmétiques des suites récurrentes linéaires. Besançon, 1989
http://pmb.univ-fcomte.fr/1989/Mignotte.pdf
E. Bavencoffe and J-P. Bézivin Une famille remarquable de suites recurrentes lineaires. - Monatshefte für Mathematik, (1995) 120 3, 189-203

Karim Samake. - Suites récurrentes linéaires, problème d'effectivité. Inst. de Recherche Math. Avancée, 1996-62 pages

Reference

Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Tom - Recurrence sequences, Mathematical Surveys and Monographs (AMS, 2003), volume 104.

1290 references.

Graham Everest

Igor Shparlinski

Alf van der Poorten

Tom Ward

Berstel's sequence

http://oeis.org/A007420

$0,0,1,2,0,-4,0,16,16,-32,-64,64,256,0,-768, \ldots$

$$
\begin{aligned}
& b_{0}=b_{1}=0, b_{2}=1 \\
& b_{n+3}=2 b_{n+2}-4 b_{n+1}+4 b_{n} \\
& \text { for } n \geq 0
\end{aligned}
$$

Linear recurrence sequence of order 3 with exactly 6 zeros : $n=0,1,4,6,13,52$.

Jean Berstel
http://www-igm.univ-mlv.fr/~berstel/

Ternary linear recurrences

Berstel's sequence is a linear recurrence sequence of order 3 with 6 zeroes.

> Frits Beukers (1991) : up to trivial transformation, any other linear recurrence of order 3 with finitely many zeroes has at most 5 zeros.

Frits Beukers

Edgard Bavencoffe and Jean-Paul Bézivin

Let $n \geq 2$. The sequence with initial values

$$
u_{0}=1, u_{1}=\cdots=u_{n-1}=0
$$

satisfying the recurrence relation of order n with characteristic polynomial

$$
\frac{X^{n+1}-(-2)^{n-1} X+(-2)^{n}}{X+2}
$$

has at least

$$
\frac{n(n+1)}{2}-1
$$

zeroes.

Edgard Bavencoffe and Jean-Paul Bézivin

For $n=3$ one obtains Berstel's sequence which happens to have an extra zero.

$$
\frac{X^{4}+4 X-8}{X+2}=X^{3}-2 X^{2}+4 X-4
$$

Edgard Bavencoffe
Jean-Paul Bézivin

Berstel's sequence

$$
\begin{aligned}
& 0,0,1,2,0,-4,0,16,16,-32,-64,64,256,0,-768, \ldots \\
& b_{0}=b_{1}=0, b_{2}=1, b_{n+3}=2 b_{n+2}-4 b_{n+1}+4 b_{n} \text { for } n \geq 0
\end{aligned}
$$

Maurice Mignotte

The equation $b_{m}= \pm b_{n}$ has exactly 21 solutions (m, n) with $m \neq n$.

The equation $b_{n}= \pm 2^{r} 3^{s}$ has exactly 44 solutions (n, r, s).

Joint work with Claude Levesque

Linear recurrence sequences and twisted binary forms. Proceedings of the International Conference on Pure and Applied Mathematics ICPAM-GOROKA 2014.
South Pacific Journal of Pure and Applied Mathematics.
http://webusers.imj-prg.fr/~michel.waldschmidt//articles/ pdf/ProcConfPNG2014.pdf

Families of binary forms

Consider a binary form $F_{0}(X, Y) \in \mathbb{C}[X, Y]$ which satisfies $F_{0}(1,0)=1$. We write it as

$$
F_{0}(X, Y)=X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d}=\prod_{i=1}^{d}\left(X-\alpha_{i} Y\right)
$$

Let $\epsilon_{1}, \ldots, \epsilon_{d}$ be d nonzero complex numbers not necessarily distinct. Twisting F_{0} by the powers $\epsilon_{1}^{n}, \ldots, \epsilon_{d}^{n}(n \in \mathbb{Z})$ boils down to considering the family of binary forms
which we write as

Families of binary forms

Consider a binary form $F_{0}(X, Y) \in \mathbb{C}[X, Y]$ which satisfies $F_{0}(1,0)=1$. We write it as

$$
F_{0}(X, Y)=X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d}=\prod_{i=1}^{d}\left(X-\alpha_{i} Y\right)
$$

Let $\epsilon_{1}, \ldots, \epsilon_{d}$ be d nonzero complex numbers not necessarily distinct.
down to considering the family of binary forms
which we write as

Therefore

Families of binary forms

Consider a binary form $F_{0}(X, Y) \in \mathbb{C}[X, Y]$ which satisfies $F_{0}(1,0)=1$. We write it as

$$
F_{0}(X, Y)=X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d}=\prod_{i=1}^{d}\left(X-\alpha_{i} Y\right)
$$

Let $\epsilon_{1}, \ldots, \epsilon_{d}$ be d nonzero complex numbers not necessarily distinct. Twisting F_{0} by the powers $\epsilon_{1}^{n}, \ldots, \epsilon_{d}^{n}(n \in \mathbb{Z})$ boils down to considering the family of binary forms

$$
F_{n}(X, Y)=\prod_{i=1}^{d}\left(X-\alpha_{i} \epsilon_{i}^{n} Y\right)
$$

which we write as

$$
X^{d}-U_{1}(n) X^{d-1} Y+\cdots+(-1)^{d} U_{d}(n) Y^{d}
$$

Therefore

Families of binary forms

Consider a binary form $F_{0}(X, Y) \in \mathbb{C}[X, Y]$ which satisfies $F_{0}(1,0)=1$. We write it as

$$
F_{0}(X, Y)=X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d}=\prod_{i=1}^{d}\left(X-\alpha_{i} Y\right)
$$

Let $\epsilon_{1}, \ldots, \epsilon_{d}$ be d nonzero complex numbers not necessarily distinct. Twisting F_{0} by the powers $\epsilon_{1}^{n}, \ldots, \epsilon_{d}^{n}(n \in \mathbb{Z})$ boils down to considering the family of binary forms

$$
F_{n}(X, Y)=\prod_{i=1}^{d}\left(X-\alpha_{i} \epsilon_{i}^{n} Y\right)
$$

which we write as

$$
X^{d}-U_{1}(n) X^{d-1} Y+\cdots+(-1)^{d} U_{d}(n) Y^{d}
$$

Therefore

$$
U_{h}(0)=(-1)^{h} a_{h} \quad(1 \leq h \leq d)
$$

Families of Diophantine equations

With Claude Levesque, we considered some families of diophantine equations

$$
F_{n}(x, y)=m
$$

obtained in the same way from a given irreducible form $F(X, Y)$ with coefficients in \mathbb{Z}, when $\epsilon_{1}, \ldots, \epsilon_{d}$ are algebraic units and when the algebraic numbers $\alpha_{1} \epsilon_{1}, \ldots, \alpha_{d} \epsilon_{d}$ are Galois conjugates with $d \geq 3$.

Families of Diophantine equations

With Claude Levesque, we considered some families of diophantine equations

$$
F_{n}(x, y)=m
$$

obtained in the same way from a given irreducible form $F(X, Y)$ with coefficients in \mathbb{Z}, when $\epsilon_{1}, \ldots, \epsilon_{d}$ are algebraic units and when the algebraic numbers $\alpha_{1} \epsilon_{1}, \ldots, \alpha_{d} \epsilon_{d}$ are Galois conjugates with $d \geq 3$.
Theorem. Let \mathbb{K} be a number field of degree $d \geq 3, S$ a finite set of places of \mathbb{K} containing the places at infinity. Denote by \mathcal{O}_{S} the ring of S-integers of \mathbb{K} and by \mathcal{O}_{S}^{\times}the group of S-units of \mathbb{K}. Assume $\alpha_{1}, \ldots, \alpha_{d}, \epsilon_{1}, \ldots, \epsilon_{d}$ belong to \mathbb{K}^{\times} Then there are only finitely many (x, y, n) in $\mathcal{O}_{S} \times \mathcal{O}_{S} \times \mathbb{Z}$ satisfying

$$
F_{n}(x, y) \in \mathcal{O}_{S}^{\times}, \quad x y \neq 0 \quad \text { and } \quad \operatorname{Card}\left\{\alpha_{1} \epsilon_{1}^{n}, \ldots, \alpha_{d} \epsilon_{d}^{n}\right\} \geq 3
$$

Families of Diophantine equations

Each of the sequences $\left(U_{h}(n)\right)_{n \in \mathbb{Z}}$ coming from the coefficients of the relation

$$
F_{n}(X, Y)=X^{d}-U_{1}(n) X^{d-1} Y+\cdots+(-1)^{d} U_{d}(n) Y^{d}
$$

is a linear recurrence sequence.
For example, for $n \in \mathbb{Z}$,

For $1 \leq h \leq d$, the sequence $\left(U_{h}(n)\right)_{n \in \mathbb{Z}}$ is a linear
combination of the sequences

Families of Diophantine equations

Each of the sequences $\left(U_{h}(n)\right)_{n \in \mathbb{Z}}$ coming from the coefficients of the relation

$$
F_{n}(X, Y)=X^{d}-U_{1}(n) X^{d-1} Y+\cdots+(-1)^{d} U_{d}(n) Y^{d}
$$

is a linear recurrence sequence.
For example, for $n \in \mathbb{Z}$,

$$
U_{1}(n)=\sum_{i=1}^{d} \alpha_{i} \epsilon_{i}^{n}, \quad U_{d}(n)=\prod_{i=1}^{d} \alpha_{i} \epsilon_{i}^{n}
$$

For $1 \leq h \leq d$, the sequence $\left(U_{h}(n)\right)_{n \in \mathbb{Z}}$ is a linear
combination of the sequences

Families of Diophantine equations

Each of the sequences $\left(U_{h}(n)\right)_{n \in \mathbb{Z}}$ coming from the coefficients of the relation

$$
F_{n}(X, Y)=X^{d}-U_{1}(n) X^{d-1} Y+\cdots+(-1)^{d} U_{d}(n) Y^{d}
$$

is a linear recurrence sequence.
For example, for $n \in \mathbb{Z}$,

$$
U_{1}(n)=\sum_{i=1}^{d} \alpha_{i} \epsilon_{i}^{n}, \quad U_{d}(n)=\prod_{i=1}^{d} \alpha_{i} \epsilon_{i}^{n} .
$$

For $1 \leq h \leq d$, the sequence $\left(U_{h}(n)\right)_{n \in \mathbb{Z}}$ is a linear combination of the sequences

$$
\left(\left(\epsilon_{i_{1}} \cdots \epsilon_{i_{h}}\right)^{n}\right)_{n \in \mathbb{Z}}, \quad\left(1 \leq i_{1}<\cdots<i_{h} \leq d\right) .
$$

Some units of Bernstein and Hasse

Let t and s be two positive integers, D an integer ≥ 1, and $c \in\{-1,+1\}$. Let $\omega>1$ satisfy

$$
\omega^{s t}=D^{s t}+c
$$

where it is assumed that $\mathbb{Q}(\omega)$ is of degree st.
Consider
L. Bernstein and H. Hasse noticed that α and ϵ are units of degree st and s respectively, and showed that these units can be obtained from the Jacobi-Perron algorithm. H.-J. Stender proved that for $s=t=2,\{\alpha, \epsilon\}$ is a fundamental system of units of the quartic field $\mathbb{Q}(\omega)$.

Some units of Bernstein and Hasse

Let t and s be two positive integers, D an integer ≥ 1, and $c \in\{-1,+1\}$. Let $\omega>1$ satisfy

$$
\omega^{s t}=D^{s t}+c
$$

where it is assumed that $\mathbb{Q}(\omega)$ is of degree st.
Consider

$$
\alpha=D-\omega, \quad \epsilon=D^{t}-\omega^{t}
$$

L. Bernstein and H. Hasse noticed that α and ϵ are units of degree st and s respectively, and showed that these units can be obtained from the Jacobi-Perron algorithm. H.-J. Stender proved that for $s=t=2,\{\alpha, \epsilon\}$ is a fundamental system of units of the quartic field $\mathbb{Q}(\omega)$.

Helmut Hasse (1898-1979)

$$
\begin{array}{r}
D>0, s \geq 1, t \geq 1 \\
c \in\{-1,+1\}, \omega>0 \\
\omega^{s t}=D^{s t}+c \\
\alpha=D-\omega \\
\epsilon=D^{t}-\omega^{t}
\end{array}
$$

$$
(\alpha-D)^{s t}=(-1)^{s t}\left(D^{s t}+c\right)
$$

Diophantine equations associated with some units of Bernstein and Hasse

The irreducible polynomial of α is $F_{0}(X, 1)$, with

$$
F_{0}(X, Y)=(X-D Y)^{s t}-(-1)^{s t}\left(D^{s t}+c\right) Y^{s t}
$$

For $n \in \mathbb{Z}$, the binary form $F_{n}(X, Y)$, obtained by twisting $F_{0}(X, Y)$ with the powers ϵ^{n} of ϵ, is the homogeneous version of the irreducible polynomial $F_{n}(X, 1)$ of $\alpha \epsilon^{n}$. So F_{n} depends of the parameters n, D Theorem (LW). Suppose st ≥ 3. There exists an effectively computable constant κ, depending only on D, s and t, with the following property. Let m, a, x, y be rational integers satisfying $m \geq 2, x y \neq 0,\left[\mathbb{Q}\left(\alpha \epsilon^{a}\right): \mathbb{Q}\right]=$ st and

Then

Diophantine equations associated with some units

 of Bernstein and HasseThe irreducible polynomial of α is $F_{0}(X, 1)$, with

$$
F_{0}(X, Y)=(X-D Y)^{s t}-(-1)^{s t}\left(D^{s t}+c\right) Y^{s t}
$$

For $n \in \mathbb{Z}$, the binary form $F_{n}(X, Y)$, obtained by twisting $F_{0}(X, Y)$ with the powers ϵ^{n} of ϵ, is the homogeneous version of the irreducible polynomial $F_{n}(X, 1)$ of $\alpha \epsilon^{n}$. So F_{n} depends of the parameters n, D, s, t and c.
Theorem (LW). Suppose st ≥ 3. There exists an effectively computable constant κ, depending only on D, s and t, with the following property. Let m, a, x, y be rational integers satisfying $m \geq 2, x y \neq 0,\left[\mathbb{Q}\left(\alpha \epsilon^{a}\right): \mathbb{Q}\right]=$ st and

Diophantine equations associated with some units

 of Bernstein and HasseThe irreducible polynomial of α is $F_{0}(X, 1)$, with

$$
F_{0}(X, Y)=(X-D Y)^{s t}-(-1)^{s t}\left(D^{s t}+c\right) Y^{s t}
$$

For $n \in \mathbb{Z}$, the binary form $F_{n}(X, Y)$, obtained by twisting $F_{0}(X, Y)$ with the powers ϵ^{n} of ϵ, is the homogeneous version of the irreducible polynomial $F_{n}(X, 1)$ of $\alpha \epsilon^{n}$. So F_{n} depends of the parameters n, D, s, t and c.
Theorem (LW). Suppose st ≥ 3. There exists an effectively computable constant κ, depending only on D, s and t, with the following property. Let m, a, x, y be rational integers satisfying $m \geq 2, x y \neq 0,\left[\mathbb{Q}\left(\alpha \epsilon^{a}\right): \mathbb{Q}\right]=s t$ and

$$
\left|F_{n}(x, y)\right| \leq m
$$

Then

$$
\max \{\log |x|, \log |y|,|n|\} \leq \kappa \log m
$$

Hankel determinants

To test an arbitrary sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ of elements of a field \mathbb{K} for the property of being a linear recurrence sequence, consider the Hankel determinants

$$
\Delta_{N, d}(\mathbf{u})=\operatorname{det}\left(u_{d+i+j}\right)_{0 \leq i, j \leq N}
$$

The sum

(1839-1873)

$$
f(z)=\sum_{n=0}^{\infty} u_{n} z^{n}
$$

represents a rational function if and only if for some d, $\Delta_{N, d}(\mathbf{u})=0$ for all sufficiently large N

Hankel determinants

Alan Haynes, Wadim Zudilin. - Hankel determinants of zeta values
(Submitted on 7 Oct 2015)
Abstract: We study the asymptotics of Hankel determinants constructed using the values $\zeta(a n+b)$ of the Riemann zeta function at positive integers in an arithmetic progression. Our principal result is a Diophantine application of the asymptotics.

Alan Haynes

Wadim Zudilin

Perfect powers in the Fibonacci sequence

Yann Bugeaud, Maurice Mignotte, Samir Siksek (2004) : The only perfect powers (squares, cubes, etc.) in the Fibonacci sequence are 1,8 and 144 .

Powers in recurrence sequences

M. A. Bennett, Powers in recurrence sequences: Pell equations, Trans. Amer.
Math. Soc. 357 (2005), 1675-1691.
Mike Bennett
http://www.math.ubc.ca/~bennett/paper31.pdf

Bases of the space of linear recurrence sequences

Given a_{1}, \ldots, a_{d} with $a_{d} \neq 0$, consider the vector space of linear recurrence sequences satisfying, for $n \geq 0$,
(\star

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n} .
$$

Assuming the characteristic polynomial
of the recurrence splits completely in \mathbb{K},
we have two bases. The first one given by the initial conditions $\left(u_{0}, \ldots, u_{d-1}\right)$, and the second one is given by the sequences

Bases of the space of linear recurrence sequences

 Given a_{1}, \ldots, a_{d} with $a_{d} \neq 0$, consider the vector space of linear recurrence sequences satisfying, for $n \geq 0$,$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

Assuming the characteristic polynomial

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

of the recurrence splits completely in \mathbb{K},

$$
f(X)=\prod_{j=1}^{\ell}\left(X-\gamma_{j}\right)^{t_{i}}
$$

we have two bases.

Bases of the space of linear recurrence sequences

 Given a_{1}, \ldots, a_{d} with $a_{d} \neq 0$, consider the vector space of linear recurrence sequences satisfying, for $n \geq 0$,$(\star) \quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$.
Assuming the characteristic polynomial

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

of the recurrence splits completely in \mathbb{K},

$$
f(X)=\prod_{j=1}^{\ell}\left(X-\gamma_{j}\right)^{t_{i}}
$$

we have two bases. The first one given by the initial conditions (u_{0}, \ldots, u_{d-1}), and the second one is given by the sequences

$$
\left(n^{i} \gamma_{j}^{n}\right)_{n \geq 0}, \quad 0 \leq i \leq t_{j}-1,1 \leq j \leq \ell
$$

Change of basis

The matrix of change of bases is

$$
M=\left(\begin{array}{c}
M_{1} \\
\vdots \\
M_{\ell}
\end{array}\right)
$$

where

$$
M_{j}=\left(\begin{array}{cccccccc}
1 & \gamma_{j} & \gamma_{j}^{2} & \ldots & \gamma_{j}^{t_{j}-1} & \gamma_{j}^{t_{j}} & \ldots & \gamma_{j}^{d-1} \\
0 & 1 & \binom{2}{1} \gamma_{j} & \ldots & \binom{t_{j}-1}{1} \gamma_{j}^{t_{j}-2} & \binom{t_{j}}{1} \gamma_{j}^{t_{j}-1} & \ldots & \binom{d-1}{1} \gamma_{j}^{d-2} \\
0 & 0 & 1 & \ldots & \binom{t_{j}-1}{2} \gamma_{j}^{t_{j}-3} & \binom{t_{j}}{2} \gamma_{j}^{t_{j}-2} & \ldots & \binom{d-1}{2} \gamma_{j}^{d-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 & \binom{t_{j}}{t_{j}-1} \gamma_{j} & \cdots & \binom{d-1}{t_{j}-1} \gamma_{j}^{d-t_{j}}
\end{array}\right)
$$

Exponential polynomials

The sequence of derivatives of an exponential polynomial evaluated at one point satisfies a linear recurrence relation.

is not identically 0 . Then its vanishing order at a point z_{0} is smaller than or equal to $t_{1}+\cdots+t_{\ell}-1$.
In other terms, when the complex numbers γ_{j} are distinct, the determinant

is different from 0. This is no surprise that we come across the
\square

Exponential polynomials

The sequence of derivatives of an exponential polynomial evaluated at one point satisfies a linear recurrence relation. Let $p_{1}(z), \ldots, p_{\ell}(z)$ be nonzero polynomials of $\mathbb{C}[z]$ of degrees smaller than t_{1}, \ldots, t_{ℓ} respectively. Let $\gamma_{1}, \ldots, \gamma_{\ell}$ be distinct complex numbers. Suppose that the function

$$
F(z)=p_{1}(z) e^{\gamma_{1} z}+\cdots+p_{\ell}(z) e^{\gamma_{\ell} z}
$$

is not identically 0 . Then its vanishing order at a point z_{0} is smaller than or equal to $t_{1}+\cdots+t_{\ell}-1$.
determinant

Exponential polynomials

The sequence of derivatives of an exponential polynomial evaluated at one point satisfies a linear recurrence relation. Let $p_{1}(z), \ldots, p_{\ell}(z)$ be nonzero polynomials of $\mathbb{C}[z]$ of degrees smaller than t_{1}, \ldots, t_{ℓ} respectively. Let $\gamma_{1}, \ldots, \gamma_{\ell}$ be distinct complex numbers. Suppose that the function

$$
F(z)=p_{1}(z) e^{\gamma_{1} z}+\cdots+p_{\ell}(z) e^{\gamma_{\ell} z}
$$

is not identically 0 . Then its vanishing order at a point z_{0} is smaller than or equal to $t_{1}+\cdots+t_{\ell}-1$.
In other terms, when the complex numbers γ_{j} are distinct, the determinant

$$
\left|\left(\frac{\mathrm{d}}{\mathrm{~d} z}\right)^{a}\left(z^{i} e^{\gamma_{j} z}\right)_{z=0}\right|_{\substack{0 \leq i \leq t_{j}-1,1 \leq j \leq \ell \\ 0 \leq a \leq d-1}}
$$

is different from 0 .

Exponential polynomials

The sequence of derivatives of an exponential polynomial evaluated at one point satisfies a linear recurrence relation. Let $p_{1}(z), \ldots, p_{\ell}(z)$ be nonzero polynomials of $\mathbb{C}[z]$ of degrees smaller than t_{1}, \ldots, t_{ℓ} respectively. Let $\gamma_{1}, \ldots, \gamma_{\ell}$ be distinct complex numbers. Suppose that the function

$$
F(z)=p_{1}(z) e^{\gamma_{1} z}+\cdots+p_{\ell}(z) e^{\gamma_{\ell} z}
$$

is not identically 0 . Then its vanishing order at a point z_{0} is smaller than or equal to $t_{1}+\cdots+t_{\ell}-1$.
In other terms, when the complex numbers γ_{j} are distinct, the determinant

$$
\left|\left(\frac{\mathrm{d}}{\mathrm{~d} z}\right)^{a}\left(z^{i} e^{\gamma_{j} z}\right)_{z=0}\right|_{\substack{0 \leq i \leq t_{j}-1,1 \leq j \leq \ell \\ 0 \leq a \leq d-1}}
$$

is different from 0 . This is no surprise that we come across the determinant of the matrix M.

The matrix M

The determinant of M is

$$
\operatorname{det} M=\prod_{1 \leq i<j \leq \ell}\left(\gamma_{j}-\gamma_{i}\right)^{t_{i} t_{j}}
$$

For $1 \leq j \leq \ell, 0 \leq i \leq t_{j}-1, \quad 0 \leq k \leq d-1$, the $\left(s_{j}+i, k\right)$
entry of the matrix M is

The matrix M is associated with the linear system of d equations in d unknowns which amounts to finding a polynomial $f \in K[z]$ of degree $<d$ for which the d numbers

take prescribed values.

The matrix M

The determinant of M is

$$
\operatorname{det} M=\prod_{1 \leq i<j \leq \ell}\left(\gamma_{j}-\gamma_{i}\right)^{t_{i} t_{j}} .
$$

For $1 \leq j \leq \ell, 0 \leq i \leq t_{j}-1, \quad 0 \leq k \leq d-1$, the $\left(s_{j}+i, k\right)$ entry of the matrix M is

$$
\left.\frac{1}{i!}\left(\frac{\mathrm{d}}{\mathrm{~d} T}\right)^{i} T^{k}\right|_{T=\gamma_{j}}=\binom{k}{i} \gamma_{j}^{k-i} .
$$

The matrix M is associated with the linear system of d equations in d unknowns which amounts to finding a polynomial $f \in K[z]$ of degree $<d$ for which the d numbers

The matrix M

The determinant of M is

$$
\operatorname{det} M=\prod_{1 \leq i<j \leq \ell}\left(\gamma_{j}-\gamma_{i}\right)^{t_{i} t_{j}}
$$

For $1 \leq j \leq \ell, 0 \leq i \leq t_{j}-1, \quad 0 \leq k \leq d-1$, the $\left(s_{j}+i, k\right)$ entry of the matrix M is

$$
\left.\frac{1}{i!}\left(\frac{\mathrm{d}}{\mathrm{~d} T}\right)^{i} T^{k}\right|_{T=\gamma_{j}}=\binom{k}{i} \gamma_{j}^{k-i}
$$

The matrix M is associated with the linear system of d equations in d unknowns which amounts to finding a polynomial $f \in K[z]$ of degree $<d$ for which the d numbers

$$
\frac{\mathrm{d}^{i} f}{\mathrm{~d} z^{i}}\left(\gamma_{j}\right), \quad\left(1 \leq j \leq \ell, 0 \leq i \leq t_{j}-1\right)
$$

take prescribed values.

Interpolation

Let $\gamma_{j}(1 \leq j \leq \ell)$ be distinct elements in $\mathbb{K}, t_{j}(1 \leq j \leq \ell)$ be positive integers, $\eta_{i j}\left(1 \leq j \leq \ell, 0 \leq i \leq t_{j}-1\right)$ be elements in \mathbb{K}. Set $d=t_{1}+\cdots+t_{\ell}$. There exists a unique polynomial $f \in \mathbb{K}[z]$ of degree $<d$ satisfying

$$
\frac{\mathrm{d}^{i} f}{\mathrm{~d} z^{i}}\left(\gamma_{j}\right)=\eta_{i j}, \quad\left(1 \leq j \leq \ell, 0 \leq i \leq t_{j}-1\right)
$$

Truncated Taylor expansion

Let $g \in \mathbb{K}(z)$, let $z_{0} \in \mathbb{K}$ and let $t \geq 1$. Assume z_{0} is not a pole of g. We set

$$
T_{g, z_{0}, t}(z)=\sum_{i=0}^{t-1} \frac{\mathrm{~d}^{i} g}{\mathrm{~d} z^{i}}\left(z_{0}\right) \frac{\left(z-z_{0}\right)^{i}}{i!}
$$

In other words, $T_{g, z_{0}, t}$ is the unique polynomial in $\mathbb{K}[z]$ of degree $<t$ such that there exists $r(z) \in \mathbb{K}(z)$ having no pole at z_{0} with

$$
g(z)=T_{g, z_{0}, t}(z)+\left(z-z_{0}\right)^{t} r(z) .
$$

Notice that if g is a polynomial of degree $<t$, then $g=T_{g, z_{0}, t}$ for any $z_{0} \in \mathbb{K}$.

Truncated Taylor expansion

Let $g \in \mathbb{K}(z)$, let $z_{0} \in \mathbb{K}$ and let $t \geq 1$. Assume z_{0} is not a pole of g. We set

$$
T_{g, z_{0}, t}(z)=\sum_{i=0}^{t-1} \frac{\mathrm{~d}^{i} g}{\mathrm{~d} z^{i}}\left(z_{0}\right) \frac{\left(z-z_{0}\right)^{i}}{i!}
$$

In other words, $T_{g, z_{0}, t}$ is the unique polynomial in $\mathbb{K}[z]$ of degree $<t$ such that there exists $r(z) \in \mathbb{K}(z)$ having no pole at z_{0} with

$$
g(z)=T_{g, z_{0}, t}(z)+\left(z-z_{0}\right)^{t} r(z)
$$

Notice that if g is a polynomial of degree $<t$, then $g=T_{g, z_{0}, t}$

Truncated Taylor expansion

Let $g \in \mathbb{K}(z)$, let $z_{0} \in \mathbb{K}$ and let $t \geq 1$. Assume z_{0} is not a pole of g. We set

$$
T_{g, z_{0}, t}(z)=\sum_{i=0}^{t-1} \frac{\mathrm{~d}^{i} g}{\mathrm{~d} z^{i}}\left(z_{0}\right) \frac{\left(z-z_{0}\right)^{i}}{i!}
$$

In other words, $T_{g, z_{0}, t}$ is the unique polynomial in $\mathbb{K}[z]$ of degree $<t$ such that there exists $r(z) \in \mathbb{K}(z)$ having no pole at z_{0} with

$$
g(z)=T_{g, z_{0}, t}(z)+\left(z-z_{0}\right)^{t} r(z)
$$

Notice that if g is a polynomial of degree $<t$, then $g=T_{g, z_{0}, t}$ for any $z_{0} \in \mathbb{K}$.

Explicit solution to the interpolation problem

For $j=1, \ldots, \ell$, define

$$
h_{j}(z)=\prod_{\substack{1 \leq k \leqslant e \\ k \neq j}}\left(\frac{z-\gamma_{k}}{\gamma_{j}-\gamma_{k}}\right)^{t_{k}} \quad \text { and } \quad p_{j}(z)=\sum_{i=0}^{t_{j}-1} \eta_{i j} \frac{\left(z-\gamma_{j}\right)^{i}}{i!} .
$$

Then the solution f of the interpolation problem

Explicit solution to the interpolation problem

For $j=1, \ldots, \ell$, define

$$
h_{j}(z)=\prod_{\substack{1 \leq k \leq \ell \\ k \neq j}}\left(\frac{z-\gamma_{k}}{\gamma_{j}-\gamma_{k}}\right)^{t_{k}} \quad \text { and } \quad p_{j}(z)=\sum_{i=0}^{t_{j}-1} \eta_{i j} \frac{\left(z-\gamma_{j}\right)^{i}}{i!}
$$

Then the solution f of the interpolation problem

$$
\frac{\mathrm{d}^{i} f}{\mathrm{~d} z^{i}}\left(\gamma_{j}\right)=\eta_{i j}, \quad\left(1 \leq j \leq \ell, 0 \leq i \leq t_{j}-1\right)
$$

is given by

$$
f=\sum_{j=1}^{\ell} h_{j} T_{\frac{p_{j}}{h_{j}}, \gamma_{j}, t_{j}}
$$

Linear recurrence sequences, exponential polynomials and Diophantine approximation

Michel Waldschmidt

Institut de Mathématiques de Jussieu - Paris VI http://webusers.imj-prg.fr/~michel.waldschmidt/

