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Abstract

Linear recurrence sequences are ubiquitous. They occur in
biology, economics, computer science (analysis of algorithms),
digital signal processing. We give a survey of this subject,
together with connections with linear combinations of powers,
with powers of matrices and with linear di↵erential equations.



Applications of linear recurrence sequences

Combinatorics

Elimination

Symmetric functions

Hypergeometric series

Language

Communication, shift registers

Finite di↵erence equations

Logic

Approximation

Pseudo–random sequences



Applications of linear recurrence sequences

• Biology (Integrodi↵erence equations, spatial ecology).

• Computer science (analysis of algorithms).

• Digital signal processing (infinite impulse response (IIR)
digital filters).

• Economics (time series analysis).

https://en.wikipedia.org/wiki/Recurrence_relation

https://en.wikipedia.org/wiki/Recurrence_relation


How many ancestors do we have ?



Geometric series u0 = 1, un+1 = 2un

How many ancesters do we 
have? 

Sequence:  1,  2,  4,  8, 16 …       



Bees genealogy

Male honeybees are born from
unfertilized eggs. Female
honeybees are born from
fertilized eggs. Therefore
males have only a mother, but
females have both a mother
and a father.



Genealogy of a male bee (bottom – up)

Number of bees :

1, 1, 2, 3, 5 . . .

Number of females :

0, 1, 1, 2, 3 . . .

Rule :

un+2 = un+1 + un.



Bees genealogy u1 = 1, u2 = 1, un+2 = un+1 + un

Number of  females at a given level  =          
                                 total population at the previous  level   
Number of  males at a given level=  
                                 number of  females at the previous  level  

1 + 0 = 1 

1 + 1 = 2 

1 + 2 = 3 

2 + 3 = 5 

3 + 5 = 8 

0 + 1 = 1 



The Lamé Series

Gabriel Lamé
1795 – 1870

Edouard Lucas
1842 - 1891

In 1844 the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

was referred to as the Lamé series, because Gabriel Lamé used
it to give an upper bound for the number of steps in the
Euclidean algorithm for the gcd.
On a trip to Italy in 1876 Edouardf Lucas found them in a
copy of the Liber Abbaci of Leonardo da Pisa.



Leonardo Pisano (Fibonacci)

Fibonacci sequence (Fn)n�0,

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233, . . .

is defined by

F0 = 0, F1 = 1,

Fn+2 = Fn+1 + Fn for n � 0.

http://oeis.org/A000045

Leonardo Pisano (Fibonacci)
(1170–1250)

http://oeis.org/A000045


Fibonacci rabbits

Fibonacci considered the growth of a rabbit population.

A newly born pair of rabbits,
a male and a female, are put
in a field. Rabbits are able to
mate at the age of one month
so that at the end of its
second month a female can
produce another pair of
rabbits ; rabbits never die and
a mating pair always produces

one new pair (one male, one female) every month from the
second month on. The puzzle that Fibonacci posed was : how
many pairs will there be in one year ?

Answer : F12 = 144.



Fibonacci’s rabbits

Modelization of a population

•  First month

•  Third month

•  Fifth month

•  Sixth month

•  Second month

•  Fourth month

Adult pairs Young pairs 

Sequence: 1,  1,  2,  3,  5,  8, … 





Modelization of a population of mice

Exponential sequence 

•  First month

•  Second month

•  Third month

•  Fourth month

Number of  pairs:  1,  2,  4,  8, … 





Is-it a realistic model ?

The genealogy of the ancestors of a human being is not a
mathematical tree :
30 generations would give 230 ancestors, more than a billion
people, three to four times more than the total population on
earth one thousand years ago.

Even worse for the genealogy of bees :

In every bee hive there is one female queen bee which lays all
the eggs. If an egg is not fertilised it eventually hatches into a
male bee, called a drone. If an egg is fertilised by a male bee,
then the egg produces a female worker bee, which doesn’t lay
any eggs herself.
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Alfred Lotka : arctic trees

In cold countries, each branch
of some trees gives rise to
another one after the second
year of existence only.



Fibonacci squares

http://mathforum.org/dr.math/faq/faq.golden.ratio.html

http://mathforum.org/dr.math/faq/faq.golden.ratio.html


Geometric construction of the 
Fibonacci sequence
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This is a nice rectangle



Golden rectangle
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Fibonacci numbers in nature

Ammonite (Nautilus shape)



Phyllotaxy
•  Study of the position of leaves on a stem 

and the reason for  them
•  Number of petals of flowers: daisies, 

sunflowers, aster, chicory, asteraceae,…
•  Spiral  patern to permit optimal exposure 

to sunlight  
•  Pine-cone, pineapple, Romanesco 

cawliflower, cactus



Leaf arrangements



http://www.unice.fr/LEML/coursJDV/tp/
tp3.htm

•  Université de Nice,
    Laboratoire Environnement Marin Littoral, 

Equipe d'Accueil "Gestion de la 
Biodiversité"



Phyllotaxy



Phyllotaxy
•  J. Kepler (1611) uses the  Fibonacci 

sequence in his study of the  
dodecahedron and the icosaedron, and 
then of the symmetry of order 5 of the 
flowers.

•  Stéphane Douady and Yves Couder            
Les spirales végétales                                 
La Recherche 250 (Jan. 1993) vol. 24.







Reflections of a ray of light

Consider three parallel sheets of glass and a ray of light which
crosses the first sheet. Each time it touches one of the sheets,
it can cross it or reflect on it.

Denote by pn the number of di↵erent paths with the ray going
out of the system after n reflections.

p0 = 1,

p1 = 2,

p2 = 3,

p3 = 5.

In general, pn = Fn+2.



Levels of energy of an electron of an atom of

hydrogen

An atom of hydrogen can have three levels of energy, 0 at the
ground level when it does not move, 1 or 2. At each step, it
alternatively gains and looses some level of energy, either 1
or 2, without going sub 0 nor above 2. Let `n be the number
of di↵erent possible scenarios for this electron after n steps.

In general, `n = Fn+2.

We have `0 = 1 (initial state
level 0)

`1 = 2 : state 1 or 2, scenarios
(ending with gain) 01 or 02.

`2 = 3 : scenarios (ending with
loss) 010, 021 or 020.

`3 = 5 : scenarios (ending with
gain) 0101, 0102, 0212, 0201 or
0202.



Rhythmic patterns

The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
Pingala (200 BC), Virahanka (c. 700 AD), Gopāla (c. 1135),
and the Jain scholar Hemachandra (c. 1150). studied rhythmic
patterns that are formed by concatenating one beat notes •
and double beat notes ⌅⌅.
one-beat note • : short syllabe (ti in Morse Alphabet)
double beat note ⌅⌅ : long syllabe (ta ta in Morse)

1 beat, 1 pattern : •
2 beats, 2 patterns : • • and ⌅⌅

3 beats, 3 patterns : • • • , • ⌅⌅ and ⌅⌅ •
4 beats, 5 patterns :

• • • • , ⌅⌅ • • , • ⌅⌅ • , • • ⌅⌅, ⌅⌅ ⌅⌅

n beats, Fn+1 patterns.
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Fibonacci sequence and the Golden ratio

For n � 0, the Fibonacci number Fn is the nearest integer to

1p
5
�n,

where � is the Golden Ratio : http://oeis.org/A001622

� =
1 +

p
5

2
= lim

n!1

Fn+1

Fn
= 1.6180339887499 . . .

which satisfies

� = 1 +
1

�
·

http://oeis.org/A001622


Binet’s formula

For n � 0,

Fn =
�n � (��)�n

p
5

=
(1 +

p
5)n � (1�

p
5)n

2n
p
5

,

Jacques Philippe Marie Binet
(1843)

� =
1 +

p
5

2
, ���1 =

1�
p
5

2
,

X2 �X � 1 = (X � �)(X + ��1).



The so–called Binet Formula

Formula of A. De Moivre (1718, 1730), Daniel Bernoulli
(1726), L. Euler (1728, 1765), J.P.M. Binet (1843) : for n � 0,

Fn =
1p
5

 
1 +

p
5

2

!n

� 1p
5

 
1�

p
5

2

!n

.

Abraham de
Moivre

(1667–1754)

Daniel
Bernoulli

(1700–1782)

Leonhard
Euler

(1707–1783)

Jacques P.M.
Binet

(1786–1856)

Fn is the nearest integer to
1p
5
�n.



Generating series

A single series encodes all the Fibonacci sequence :
X

n�0

FnX
n = X +X2 + 2X3 + 3X4 + 5X5 + · · ·+ FnX

n + · · ·

Fact : this series is the Taylor expansion of a rational fraction :
X

n�0

FnX
n =

X

1�X �X2
·

Proof : the product

(X +X2 + 2X3 + 3X4 + 5X5 + 8X6 + · · · )(1�X �X2)

is a telescoping series

X +X2 + 2X3 + 3X4 + 5X5 + 8X6 + · · ·
�X2 � X3 � 2X4 � 3X5 � 5X6 � · · ·

�X3 � X4 � 2X5 � 3X6 � · · ·
= X. 2
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Generating series of the Fibonacci sequence

Remark. The denominator 1�X �X2 in the right hand side
of

X +X2 + 2X3 + 3X4 + · · ·+ FnX
n + · · · = X

1�X �X2

is X2f(X�1), where f(X) = X2 �X � 1 is the irreducible
polynomial of the Golden ratio �.



Homogeneous linear di↵erential equation

Consider the homogeneous linear di↵erential equation

y00 � y0 � y = 0.

If y = e�x is a solution, from y0 = �y and y00 = �2y we deduce

�2 � �� 1 = 0.

The two roots of the polynomial X2 �X � 1 are � (the
Golden ration) and �0 with

�0 = 1� � = � 1

�
·

A basis of the space of solutions is given by the two functions
e�x and e�

0x. Since (Binet’s formula)
X

n�0

Fn
xn

n!
=

1p
5

�
e�x � e�

0x
�
,

this exponential generating series of the Fibonacci sequence is
a solution of the di↵erential equation.
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Fibonacci and powers of matrices

The Fibonacci linear recurrence relation Fn+2 = Fn+1 + Fn for
n � 0 can be written

✓
Fn+1

Fn+2

◆
=

✓
0 1
1 1

◆✓
Fn

Fn+1

◆
.

By induction one deduces, for n � 0,

✓
Fn

Fn+1

◆
=

✓
0 1
1 1

◆n✓
0
1

◆
.

An equivalent formula is, for n � 1,

✓
0 1
1 1

◆n

=

✓
Fn�1 Fn

Fn Fn+1

◆
.
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Characteristic polynomial

The characteristic polynomial of the matrix

A =

✓
0 1
1 1

◆

is

det(XI � A) = det

✓
X �1
�1 X � 1

◆
= X2 �X � 1,

which is the irreducible polynomial of the Golden ratio �.



Fibonacci sequence and the Golden ratio

(continued)

For n � 1, �n 2 Z[�] = Z+ Z� is a linear combination of 1
and � with integer coe�cients, namely

�n = Fn�1 + Fn�.



Fibonacci sequence and the Golden ratio

(continued)

For n � 1, �n 2 Z[�] = Z+ Z� is a linear combination of 1
and � with integer coe�cients, namely

�n = Fn�1 + Fn�.



Fibonacci sequence and Hilbert’s 10th problem

Yuri Matiyasevich (1970) showed that there is a polynomial P
in n, m, and a number of other variables x, y, z, . . . having the
property that n = F2m i↵ there exist integers x, y, z, . . . such
that P (n,m, x, y, z, . . . ) = 0.

This completed the proof of
the impossibility of the tenth
of Hilbert’s problems (does
there exist a general method
for solving Diophantine
equations ?) thanks to the
previous work of Hilary
Putnam, Julia Robinson and
Martin Davis.



The Fibonacci Quarterly

The Fibonacci sequence
satisfies a lot of very
interesting properties. Four
times a year, the Fibonacci
Quarterly publishes an issue
with new properties which
have been discovered.



Why are there so many occurrences of Fibonacci

numbers and Golden ratio in the nature ?

According to Leonid Levin,
objects with a small
algorithmic Kolmogorov
complexity (generated by a
short program) occur more
often than others.

Another example is given by Sierpinski triangles.

Reference : J-P. Delahaye.
http://cristal.univ-lille.fr/~jdelahay/pls/

http://cristal.univ-lille.fr/~jdelahay/pls/


Lucas sequence http://oeis.org/000032

The Lucas sequence (Ln)n�0 satisfies the same recurrence
relation as the Fibonacci sequence, namely

Ln+2 = Ln+1 + Ln for n � 0,

only the initial values are di↵erent :

L0 = 2, L1 = 1.

The sequence of Lucas numbers starts with

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . .

A closed form involving the Golden ratio � is

Ln = �n + (��)�n,

from which it follows that for n � 2, Ln is the nearest integer
to �n.

http://oeis.org/000032
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François Édouard Anatole Lucas (1842 - 1891)

Edouard Lucas is best known
for his results in number
theory. He studied the
Fibonacci sequence and
devised the test for Mersenne
primes still used today.

http://www-history.mcs.st-andrews.ac.uk/history/

Mathematicians/Lucas.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lucas.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lucas.html


Generating series of the Lucas sequence

The generating series of the Lucas sequence

X

n�0

LnX
n = 2 +X + 3X2 + 4X3 + · · ·+ LnX

n + · · ·

is nothing else than
2�X

1�X �X2
·



Homogeneous linear di↵erential equation

We have seen that
X

n�0

Fn
xn

n!
=

1p
5

�
e�x � e�

0x
�

is a solution of the homogeneous linear di↵erential equation

y00 � y0 � y = 0.

Since X

n�0

Ln
xn

n!
= e�x + e�

0x,

we deduce that a basis of the space of solutions is given by the
two generating series

X

n�0

Fn
xn

n!
and

X

n�0

Ln
xn

n!
·
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The Lucas sequence and power of matrices

From the linear recurrence relation Ln+2 = Ln+1 + Ln one
deduces, (as we did for the Fibonacci sequence), for n � 0,

✓
Ln+1

Ln+2

◆
=

✓
0 1
1 1

◆✓
Ln

Ln+1

◆
,

hence ✓
Ln

Ln+1

◆
=

✓
0 1
1 1

◆n✓
2
1

◆
.

Take three of the four sequences

(Fn)n�0, (Ln)n�0, (�n)n�0,
�
(��)�n

�
n�0

.

Any one of them can be written as a linear combination of the
two others.
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Perrin sequence http://oeis.org/A001608

The Perrin sequence (also called skiponacci sequence) is the
linear recurrence sequence (Pn)n�0 defined by

Pn+3 = Pn+1 + Pn for n � 0,

with the initial conditions

P0 = 3, P1 = 0, P2 = 2.

It starts with

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, . . .

François Olivier Raoul Perrin (1841-1910) :
https://en.wikipedia.org/wiki/Perrin_number

http://oeis.org/A001608
https://en.wikipedia.org/wiki/Perrin_number
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Plastic (or silver) constant https://oeis.org/A060006

The ratio of successive terms in the Perrin sequence
approaches the plastic number

% = 1.324 717 957 244 746 . . .

which is the minimal Pisot–Vijayaraghavan number, real root
of

x3 � x� 1.

This constant is equal to

% =
3
p
108 + 12

p
69 +

3
p

108� 12
p
69

6
·

https://oeis.org/A060006
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Perrin sequence and the plastic constant

Decompose the polynomial X3 �X � 1 into irreducible
factors over C

X3 �X � 1 = (X � %)(X � ⇢)(X � ⇢)

and over R

X3 �X � 1 = (X � %)(X2 + %X + %�1).

Hence ⇢ and ⇢ are the roots of X2 + %X + %�1. Then, for
n � 0,

Pn = %n + ⇢n + ⇢n.

It follows that, for n � 0, Pn is the nearest integer to %n.
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Generating series of the Perrin sequence

The generating series of the Perrin sequence

X

n�0

PnX
n = 3 + 2X2 + 3X3 + 2X4 + · · ·+ PnX

n + · · ·

is nothing else than

3�X2

1�X2 �X3
·

The denominator 1�X2 �X3 is X3f(X�1) where
f(X) = X3 �X � 1 is the irreducible polynomial of %.
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Exponential generating series of the Perrin

sequence

The power series

y(x) =
X

n�0

Pn
xn

n!

is the solution of the di↵erential equation

y000 � y0 � y = 0

with the initial conditions y(0) = 3, y0(0) = 0, y00(0) = 2.



Perrin sequence and power of matrices

From
Pn+3 = Pn+1 + Pn

we deduce
0

@
Pn+1

Pn+2

Pn+3

1

A =

0

@
0 1 0
0 0 1
1 1 0

1

A

0

@
Pn

Pn+1

Pn+2

1

A .

Hence 0

@
Pn

Pn+1

Pn+2

1

A =

0

@
0 1 0
0 0 1
1 1 0

1

A
n0

@
3
0
2

1

A .



Perrin sequence and power of matrices
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3
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Characteristic polynomial

The characteristic polynomial of the matrix

A =

0

@
0 1 0
0 0 1
1 1 0

1

A

is

det(XI � A) = det

0

@
X �1 0
0 X �1
�1 �1 X

1

A = X3 �X � 1,

which is the irreducible polynomial of the plastic constant %.



Perrin’s remark

R. Perrin L’intermédiaire des mathématiciens, Query 1484, v.6,
76–77 (1899).

The website www.Perrin088.org maintained by Richard Turk is
devoted to Perrin numbers. See OEISA113788.

www.Perrin088.org
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Perrin pseudoprimes https://oeis.org/A013998

If p is prime, then p divides Pp.

The smallest composite n such that n divides Pn is
5212 = 271441.
The number P271441 has 33 150 decimal digits (the number c
which satisfies 10c = %271441 is c = 271441(log %)/(log 10)).

Also for the composite number n = 904631 = 7⇥ 13⇥ 9941,
the number n divides Pn.

Jon Grantham has proved that there are infinitely many Perrin
pseudoprimes.

https://oeis.org/A013998
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Padovan sequence https://oeis.org/A000931

The Padovan sequence (pn)n�0 satisfies the same recurrence

pn+3 = pn+1 + pn

as the Perrin sequence but has di↵erent initial values :

p0 = 1, p1 = p2 = 0.

It starts with

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, . . .

Richard Padovan
http://mathworld.wolfram.com/LinearRecurrenceEquation.html

https://oeis.org/A000931
http://mathworld.wolfram.com/LinearRecurrenceEquation.html


Generating series and power of matrices

1 +X3 +X5 + · · ·+ pnX
n + · · · = 1�X2

1�X2 �X3
·

For n � 0,
0

@
pn
pn+1

pn+2

1

A =

0

@
0 1 0
0 0 1
1 1 0

1

A
n0

@
1
0
0

1

A .



Generating series and power of matrices

1 +X3 +X5 + · · ·+ pnX
n + · · · = 1�X2

1�X2 �X3
·

For n � 0,
0

@
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pn+1
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1
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1 1 0

1

A
n0

@
1
0
0

1

A .



Padovan triangles

pn = pn�2 + pn�3

pn�1 = pn�3 + pn�4

pn�2 = pn�4 + pn�5

Hence

pn � pn�1 = pn�5

pn = pn�1 + pn�5



Padovan triangles



Fibonacci squares vs Padovan triangles

Both are C1 curve, not C2



Padovan, Euler, Zagier and Brown

For n � 0, the number of compositions s = (s1, . . . , sk) with
si 2 {2, 3} and s1 + · · ·+ sk = n is pn+3. This is (an upper
bound for) the dimension of the space spanned by the multiple
zeta values of weight n of Euler and Zagier.



Narayana sequence https://oeis.org/A000930

Narayana sequence is defined by the recurrence relation

Cn+3 = Cn+2 + Cn

with the initial values C0 = 2, C1 = 3, C2 = 4.

It starts with

2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, . . .

Real root of x3 � x2 � 1

3

s
29 + 3

p
93

2
+

3

s
29� 3

p
93

2
+ 1

3
= 1.465571231876768 . . .

https://oeis.org/A000930
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Generating series and power of matrices

2 + 3X + 4X2 + 6X3 + · · ·+ CnX
n + · · · = 2 +X +X2

1�X �X3
·

Di↵erential equation : y000 � y00 � y = 0 ;
initial conditions : y(0) = 2, y0(0) = 3, y00(0) = 4.

For n � 0,
0

@
Cn

Cn+1

Cn+2

1

A =

0

@
0 1 0
0 0 1
1 0 1
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A
n0

@
2
3
4

1
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Narayana’s cows

Narayana was an Indian mathematician in the 14th century
who proposed the following problem :
A cow produces one calf every year. Beginning in its fourth
year each calf produces one calf at the beginning of each year.
How many calves are there altogether after, for example, 17
years ?



Music : http://www.pogus.com/21033.html

In working this out, Tom Johnson found a way to translate
this into a composition called Narayana’s Cows.
Music : Tom Johnson
Saxophones : Daniel Kientzy

http://www.pogus.com/21033.html


Year 1 2 3 4 

= + 



Year 2 3 4 5 

= + 



Narayana’s cows

http://www.math.jussieu.fr/~michel.waldschmidt/

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Original 
Cow 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Second 
generation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Third 
generation 0 0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105

Fourth 
generation 0 0 0 0 0 0 1 4 10 20 35 56 84 120 165 220 286

Fifth 
generation 0 0 0 0 0 0 0 0 0 1 5 15 35 70 126 210 330

Sixth 
generation 0 0 0 0 0 0 0 0 0 0 0 0 1 6 21 56 126

Seventh 
generation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7

Total 2 3 4 6 9 13 19 28 41 60 88 129 189 277 406 595 872

http://www.math.jussieu.fr/~michel.waldschmidt/


17th year: 872 cows 



Jean-Paul Allouche and Tom Johnson

http://www.math.jussieu.fr/~jean-paul.allouche/
bibliorecente.html
http://www.math.jussieu.fr/~allouche/johnson1.pdf

http://www.math.jussieu.fr/~jean-paul.allouche/bibliorecente.html
http://www.math.jussieu.fr/~jean-paul.allouche/bibliorecente.html
http://www.math.jussieu.fr/~allouche/johnson1.pdf


Cows, music and morphisms

Jean-Paul Allouche and Tom Johnson

• Narayana’s Cows and Delayed Morphisms
In 3èmes Journées d’Informatique Musicale (JIM ’96), Ile de
Tatihou, Les Cahiers du GREYC (1996 no. 4), pages 2-7, May
1996.
http://kalvos.org/johness1.html

• Finite automata and morphisms in assisted musical
composition,
Journal of New Music Research, no. 24 (1995), 97 – 108.
http://www.tandfonline.com/doi/abs/10.1080/

09298219508570676

http://web.archive.org/web/19990128092059/www.swets.

nl/jnmr/vol24_2.html

http://kalvos.org/johness1.html
http://www.tandfonline.com/doi/abs/10.1080/09298219508570676
http://www.tandfonline.com/doi/abs/10.1080/09298219508570676
http://web.archive.org/web/19990128092059/www.swets.nl/jnmr/vol24_2.html
http://web.archive.org/web/19990128092059/www.swets.nl/jnmr/vol24_2.html


Music and the Fibonacci 
sequence

•  Dufay, XVème siècle
•  Roland de Lassus
•  Debussy, Bartok, Ravel, Webern
•  Stockhausen
•  Xenakis
•  Tom Johnson Automatic Music for six 

percussionists



Some recent work

Christian Ballot
On a family of recurrences
that includes the Fibonacci
and the Narayana recurrences.
arXiv:1704.04476 [math.NT]

We survey and prove properties a family of recurrences bears
in relation to integer representations, compositions, the Pascal
triangle, sums of digits, Nim games and Beatty sequences.

https://arxiv.org/abs/1704.04476


Linear recurrence sequences : examples

q � 1 ; initial conditions u0 = u1 = · · · = uq�2 = 0, uq�1 = 1.

Xq �Xq�1 � 1 :

q = 1, X � 2, exponential un = 2n

q = 2, X2 �X � 1, Fibonacci un = Fn

q = 3, X3 �X � 1, Narayana un = Cn

Xq �Xq�1 �Xq�2 � · · ·�X � 1 :

q = 1, X � 1, constant sequence un = 1
q = 2, X2 �X � 1, Fibonacci un = Fn

q = 3, X3 �X2 �X � 1, Tribonacci

Xq �X � 1 :

q = 2, X2 �X � 1, Fibonacci un = Fn

q = 3, X3 �X � 1, Padovan un = pn
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Xq �X � 1 :

q = 2, X2 �X � 1, Fibonacci un = Fn

q = 3, X3 �X � 1, Padovan un = pn



Linear recurrence sequences : definitions

A linear recurrence sequence is a sequence of numbers
u = (u0, u1, u2, . . . ) for which there exist a positive integer d
together with numbers a1, . . . , ad with ad 6= 0 such that, for
n � 0,

(?) un+d = a1un+d�1 + · · ·+ adun.

Here, a number means an element of a field K of zero
characteristic.
Given a = (a1, . . . , ad) 2 Kd, the set of linear recurrence
sequences u = (un)n�0 satisfying (?) is a K–vector subspace
of dimension d of the space KN of all sequences.
The characteristic (or companion) polynomial of the linear
recurrence is

f(X) = Xd � a1X
d�1 � · · ·� ad.



Linear recurrence sequences : definitions

A linear recurrence sequence is a sequence of numbers
u = (u0, u1, u2, . . . ) for which there exist a positive integer d
together with numbers a1, . . . , ad with ad 6= 0 such that, for
n � 0,

(?) un+d = a1un+d�1 + · · ·+ adun.

Here, a number means an element of a field K of zero
characteristic.
Given a = (a1, . . . , ad) 2 Kd, the set of linear recurrence
sequences u = (un)n�0 satisfying (?) is a K–vector subspace
of dimension d of the space KN of all sequences.
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Linear recurrence sequences : examples

• Constant (not zero) sequence : un = u0.
Linear recurrence sequence of order 1 : un+1 = un.
Characteristic polynomial : f(X) = X � 1.

Generating series :
X

n�0

Xn =
u0

1�X
·

Di↵erential equation : y0 = y.

• Geometric progression : un = u0�n.
Linear recurrence sequence of order 1 : un = �un�1.
Characteristic polynomial : f(X) = X � �.

Generating series :
X

n�0

u0�
nXn =

u0

1� �X
·

Di↵erential equation : y0 = �y.
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Linear recurrence sequences : examples

• The sequence un = n is a linear recurrence sequence of
order 2 :

n+ 2 = 2(n+ 1)� n.

Characteristic polynomial

f(X) = X2 � 2X + 1 = (X � 1)2.

Generating series
X

n�0

nXn =
1

1� 2X +X2
·

Di↵erential equation y00 � 2y0 + y = 0.
Power of matrices :

✓
0 1
�1 2

◆n

=

✓
�n+ 1 n
�n n+ 1

◆
.



Linear recurrence sequences : examples

• The sequence un = f(n), where f is a polynomial of degree
d, is a linear recurrence sequence of order d+ 1.

Proof. The sequences

(f(n))n�0, (f(n+ 1))n�0, · · · , (f(n+ k))n�0

are K–linearly independent in KN for k = d� 1 and linearly
dependent for k = d.

A basis of the space of polynomials of degree d is given by the
d+ 1 polynomials

f(X), f(X + 1), . . . , f(X + d). 2

Exercise : what is the characteristic polynomial of the
sequence un = f(n) ?
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Generating series of a linear recurrence sequence

A sequence u = (un)n�0 satisfies the linear recurrence relation

(?) un+d = a1un+d�1 + · · ·+ adun for n � 0

if and only if its generating series can be written

1X

n=0

unX
n =

B(X)

A(X)
,

where
A(X) = 1� a1X � · · ·� adX

d,

while B(X) is a polynomial of degree less than d.



Exponential generating series and homogeneous

linear di↵erential equations

A sequence (un)n�0 satisfies the linear recurrence sequence

(?) un+d = a1un+d�1 + · · ·+ adun for n � 0

if and only if its exponential power series

y(x) =
X

n�0

un
xn

n!

satisfies the homogeneous linear di↵erential equations

y(d) � a1y
(d�1) � a2y

(d�2) � · · ·� ad�1y
0 � ady = 0.



Matrix notation for a linear recurrence sequence

The linear recurrence sequence

(?) un+d = a1un+d�1 + · · ·+ adun for n � 0

can be written

0

BBB@

un+1

un+2
...

un+d

1

CCCA
=

0

BBBBB@

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ad ad�1 ad�2 · · · a1

1

CCCCCA

0

BBB@

un

un+1
...

un+d�1

1

CCCA
.



Matrix notation for a linear recurrence sequence

Un+1 = AUn

with

Un =

0

BBB@

un

un+1
...

un+d�1

1

CCCA
, A =

0

BBBBB@

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ad ad�1 ad�2 · · · a1

1

CCCCCA
.

Characteristic polynomial of A :

det(IdX � A) = Xd � a1X
d�1 � · · ·� ad.

By induction
Un = AnU0.
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Powers of matrices

Let A = (aij)1i,jd 2 GLd⇥d(K) be a d⇥ d matrix with
coe�cients in K and nonzero determinant. For n � 0, let

An =
�
a(n)ij

�
1i,jd

.

Then each of the d2 sequences
�
a(n)ij

�
n�0

, (1  i, j  d) is a
linear recurrence sequence.
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Conversely :

Given a linear recurrence sequence u 2 KN, there exist an
integer d � 1 and a matrix A 2 GLd(K) such that, for each
n � 0,

un = a(n)11 .

The characteristic polynomial of A is the characteristic
polynomial of the linear recurrence sequence.

Everest G., van der Poorten A., Shparlinski I., Ward T. –
Recurrence sequences, Mathematical Surveys and Monographs (AMS,
2003), volume 104.
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Polynomial combinations of powers

Given polynomials p1, . . . , p` in K[X] and elements �1, . . . , �`
in K⇥, the sequence

�
p1(n)�

n
1 + · · ·+ p`(n)�

n
`

�
n�0

is a linear recurrence sequence, the minimal polynomial of
which is of the form

Xd � a1X
d�1 � · · ·� ad =

Ỳ

i=1

(X � �i)
ti ,

Fact : any linear recurrence sequence is of this form.

Consequence : the sum and the product of any two linear
recurrence sequences are linear recurrence sequences.
The set of all linear recurrence sequences with coe�cients in
K is a sub–K–algebra of KN.
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Conclusion

The same mathematical object occurs in a di↵erent guise :

• Linear recurrence sequences

un+d = a1un+d�1 + · · ·+ adun.

• Linear combinations with polynomial coe�cients of powers

p1(n)�
n
1 + · · ·+ p`(n)�

n
` .

• Taylor coe�cients of rational functions.

• Coe�cients of power series which are solutions of
homogeneous linear di↵erential equations.

• Sequence of coe�cients of powers of a matrix.
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