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Abstract

Linear recurrence sequences are ubiquitous. They occur in
biology, economics, computer science (analysis of algorithms),
digital signal processing. We give a survey of this subject,
together with connections with linear combinations of powers,
with powers of matrices and with linear differential equations.



Applications of linear recurrence sequences

Combinatorics

Elimination

Symmetric functions
Hypergeometric series
Language

Communication, shift registers
Finite difference equations
Logic

Approximation

Pseudo—random sequences



Applications of linear recurrence sequences

e Biology (Integrodifference equations, spatial ecology).
e Computer science (analysis of algorithms).

e Digital signal processing (infinite impulse response (IIR)
digital filters).

e Economics (time series analysis).

https://en.wikipedia.org/wiki/Recurrence_relation
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How many ancestors do we have ?




Geometric series up =1, upy1 = 2u,

How many ancesters do we
have?

Sequence: 1, 2, 4, 8,16 ...
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Bees genealogy

unfertilized eggs. Female |

-
honeybees are born from o] | 9
fertilized eggs. Therefore

males have only a mother, but | 9

females have both a mother

and a father. |
o}

Male honeybees are born from O7I—I—9 9 OZTQ
g
é);‘



Genealogy of a male bee (bottom — up)

Number of bees :

1,1,2,3 5... OZTQ Q O”—I-g
g

Number of females :

1

0,1, 1,2 3...

Rule :

Q4O
om{
10

Upt+2 = Upt1 T Up.



Bees genealogy u; = 1, us = 1, Upio = Upy1 + Uy,

Number of females at a given level =

total population at the previous level
Number of males at a given level=

number of females at the previous level

g g g g g
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The Lamé Series

Gabriel Lamé Edouard Lucas
1795 — 1870 1842 - 1891

In 1844 the sequence
0,1, 1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144, 233, ...

was referred to as the Lamé series, because Gabriel Lamé used
it to give an upper bound for the number of steps in the
Euclidean algorithm for the gcd.

On a trip to ltaly in 1876 Edouardf Lucas found them in a
copy of the Liber Abbaci of Leonardo da Pisa.



Leonardo Pisano (Fibonacci)

Fibonacci sequence (F,),>0, Leonardo Pisano (Fibonacci)
(1170-1250)

0,1, 1,2 3 5, 8 13, 21,
34, 55, 89, 144, 233, ...
is defined by
Fo=0, Fi =1,
Fooo=F, .1+ F, for n>0.
http://oeis.org/A000045
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Fibonacci rabbits

Fibonacci considered the growth of a rabbit population.

A newly born pair of rabbits,

a male and a female, are put e
in a field. Rabbits are able to o -
& B 2ol Paus
mate at the age of one month s o
. ~ , &J7) Mature
so that at the end of its &I : "

B Immature
second month a female can &5 w &

produce another pair of & &
rabbits ; rabbits never die and o

a mating pair always produces 9% % 5% w B w Fhe
one new pair (one male, one female) every month from the
second month on. The puzzle that Fibonacci posed was : how
many pairs will there be in one year?

Answer : Fio = 144.



Fibonacci's rabbits

Modelization of a population

Adult pairs Young pairs

First month
Second month
Third month
Fourth month
Fifth month

Sixth month

Sequence: 1, 1, 2, 3, 5, 8§, ...







Modelization of a population of mice

Exponential sequence

First month ~

Second month ” ”

Third month ~ ~ ~ ~

B B B B B B B By

Fourth month

Number of pairs: 1, 2, 4, 8, ...







Is-it a realistic model ?



Is-it a realistic model ?

The genealogy of the ancestors of a human being is not a
mathematical tree :

30 generations would give 23° ancestors, more than a billion
people, three to four times more than the total population on
earth one thousand years ago.



Is-it a realistic model ?

The genealogy of the ancestors of a human being is not a
mathematical tree :

30 generations would give ancestors, more than a billion
people, three to four times more than the total population on
earth one thousand years ago.

230

Even worse for the genealogy of bees :

In every bee hive there is one female queen bee which lays all
the eggs. If an egg is not fertilised it eventually hatches into a
male bee, called a drone. If an egg is fertilised by a male bee,
then the egg produces a female worker bee, which doesn’t lay
any eggs herself.



Alfred Lotka : arctic trees

In cold countries, each branch
of some trees gives rise to
another one after the second
year of existence only.




Fibonacci squares

FIBONACCI SQUARES

http://mathforum.org/dr.math/faq/faq.golden.ratio.html
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Geometric construction of the
Fibonacsci sequence

< >




This is a nice rectangle




Golden rectangle

This is a nice rectangle
()







Fibonacci numbers in nature

Ammonite (Nautilus shape)

s —
“
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Phyllotaxy

Sl idas

Study of the position of leaves on a stem
and the reason for them

Number of petals of flowers: daisies,
sunflowers, aster, chicory, asteraceae,...
Spiral patern to permit optimal exposure
to sunlight

Pine-cone, pineapple, Romanesco
cawliflower, cactus




Leaf arrangements

o

/<




« Université de Nice,

Laboratoire Environnement Marin Littoral,
Equipe d'Accueil "Gestion de la
Biodiversité"

©

http://www.unice.fr/LEML/coursJDV/tp/
tp3.htm




Phyllotaxy




Phyllotaxy

e J. Kepler (1611) uses the Fibonacci
sequence in his study of the
dodecahedron and the icosaedron, and
then of the symmetry of order 5 of the
flowers.

» Stéphane Douady and Yves Couder
Les spirales végétales
La Recherche 250 (Jan. 1993) vol. 24.
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ON GROWTH
AND FORM

The Complete Revised Edition

DArcy Wentworth Thompson




Reflections of a ray of light

Consider three parallel sheets of glass and a ray of light which
crosses the first sheet. Each time it touches one of the sheets,
it can cross it or reflect on it.

Denote by p,, the number of different paths with the ray going
out of the system after n reflections.

po = 1,
P =2,
p2 =3,

: p3 = 5.

In general, p, = F,.o.



Levels of energy of an electron of an atom of
hydrogen

An atom of hydrogen can have three levels of energy, 0 at the
ground level when it does not move, 1 or 2. At each step, it
alternatively gains and looses some level of energy, either 1
or 2, without going sub 0 nor above 2. Let /,, be the number
of different possible scenarios for this electron after n steps.

N\ We have £y = 1 (initial state
Fele N\
/ electron \ level 0)
/ \ {1 = 2 : state 1 or 2, scenarios
" ° | (ending with gain) 01 or 02.
\ proton / Uy = 3 : scenarios (ending with
\ / loss) 010, 021 or 020.

\ / l3 =5 : scenarios (ending with

R gain) 0101, 0102, 0212, 0201 or
In general, ¢, = F), 5. 0202.



Rhythmic patterns

The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
Pingala (200 BC), Virahanka (c. 700 AD), Gopala (c. 1135),
and the Jain scholar Hemachandra (c. 1150). studied rhythmic
patterns that are formed by concatenating one beat notes e
and double beat notes mm.
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The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
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and the Jain scholar Hemachandra (c. 1150). studied rhythmic
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Rhythmic patterns

The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
Pingala (200 BC), Virahanka (c. 700 AD), Gopala (c. 1135),
and the Jain scholar Hemachandra (c. 1150). studied rhythmic
patterns that are formed by concatenating one beat notes e
and double beat notes mm.
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Rhythmic patterns

The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
Pingala (200 BC), Virahanka (c. 700 AD), Gopala (c. 1135),
and the Jain scholar Hemachandra (c. 1150). studied rhythmic
patterns that are formed by concatenating one beat notes e
and double beat notes mm.

one-beat note e : short syllabe (ti in Morse Alphabet)

double beat note mm : long syllabe (ta ta in Morse)

1 beat, 1 pattern : °
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3 beats, 3 patterns : e e o, emm and mme
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Rhythmic patterns

The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
Pingala (200 BC), Virahanka (c. 700 AD), Gopala (c. 1135),
and the Jain scholar Hemachandra (c. 1150). studied rhythmic
patterns that are formed by concatenating one beat notes e
and double beat notes mm.

one-beat note e : short syllabe (ti in Morse Alphabet)

double beat note mm : long syllabe (ta ta in Morse)

1 beat, 1 pattern : °

2 beats, 2 patterns : e e and mm

3 beats, 3 patterns : e e o, emm and mme
4 beats, 5 patterns :

©ee0e mEmoo omme O omm EEEE

n beats, F), ., patterns.



Fibonacci sequence and the Golden ratio

For n > 0, the Fibonacci number F), is the nearest integer to

1
— ",
V5
where ® is the Golden Ratio:  http://oeis.org/A001622
1 5 F,
P = TV lim — = 1.6180339887499 . . .
2 n—00 n
which satisfies )
=14+ —-

)


http://oeis.org/A001622

Binet's formula

For n >0, Jacques Philippe Marie Binet
1843
" — (=)™ ( )
r=—"
V5
L+ VE) - (L VB
2n/5 ’
1 _
o — *2\/5, g1t 2\/5,



The so—called Binet Formula

Formula of A. De Moivre (1718, 1730), Daniel Bernoulli
(1726), L. Euler (1728, 1765), J.P.M. Binet (1843) : for n > 0,

o L[4V 1 (1-vBY
" V5 2 V5 2 '
Abraham de Daniel Leonhard Jacques P.M.
Moivre Bernoulli Euler Binet

(1667-1754)  (1700-1782) (1707-1783)  (1786-1856)

- TPt )




Generating series
A single series encodes all the Fibonacci sequence :
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Generating series
A single series encodes all the Fibonacci sequence :
) FX" =X+ X? 42X 43X 45X - 4 B X"
n>0

Fact : this series is the Taylor expansion of a rational fraction :
X

FX"= ————-

2 hX =i

Proof : the product
(X 4+ X2 +2X° +3X* +5X° +8X% +--)(1 - X — X?)
is a telescoping series
X+ X% 42X? +3X* +5X° +8X0 ...
—X?— X?—2X*-3X° -5X0 ...
X3 X' _2X®-3X6 ...
= X. O



Generating series of the Fibonacci sequence

Remark. The denominator 1 — X — X2 in the right hand side
of

B X
11— X - X2

is X2f(X~1), where f(X) = X? — X — 1is the irreducible
polynomial of the Golden ratio .

X+ X2 42X3 43X 4+ F, X" -



Homogeneous linear differential equation
Consider the homogeneous linear differential equation

y' =y —y=0.



Homogeneous linear differential equation
Consider the homogeneous linear differential equation
y' =y —y=0.
If y = e’ is a solution, from 3/ = Ay and y” = \?y we deduce
M —A—-1=0.



Homogeneous linear differential equation
Consider the homogeneous linear differential equation

" / _
y —y —y=0.

If y = e is a solution, from 3’ = \y and " = A%y we deduce
M —A—-1=0.

The two roots of the polynomial X? — X — 1 are ® (the
Golden ration) and ¢’ with

1
P=1-0=——
o



Homogeneous linear differential equation
Consider the homogeneous linear differential equation

y// _ y/ _ y — O
If y = e’ is a solution, from 3 = Ay and y" = A%y we deduce
M—A-1=0.

The two roots of the polynomial X? — X — 1 are ® (the
Golden ration) and ¢’ with
1
P=1-d=——.
o
A basis of the space of solutions is given by the two functions
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e®* and e®7,



Homogeneous linear differential equation
Consider the homogeneous linear differential equation

y// _ y/ _ y — O
If y = e is a solution, from 3’ = \y and " = A%y we deduce
M —A—-1=0.

The two roots of the polynomial X? — X — 1 are ® (the

Golden ration) and ¢’ with
1
P =1-0=——.
o
A basis of the space of solutions is given by the two functions

e®” and e®*. Since (Binet's formula)
" 1 ’
Fn_:_e‘ba:_e@x7
; = el )

this exponential generating series of the Fibonacci sequence is
a solution of the differential equation.



Fibonacci and powers of matrices

The Fibonacci linear recurrence relation F, .o = F,1 + F, for
n > 0 can be written

F.a) (01 F,
Foa) \1 1 Foi1)



Fibonacci and powers of matrices

The Fibonacci linear recurrence relation F, .o = F,1 + F, for
n > 0 can be written

Foa\ (0 1\ [ F,

By induction one deduces, for n > 0,

(2)-G 1) G)



Fibonacci and powers of matrices

The Fibonacci linear recurrence relation F, .o = F,1 + F, for
n > 0 can be written

F.a) (01 F,
Foa) \1 1 Foi1)

By induction one deduces, for n > 0,

(2)-G 1) G)

An equivalent formula is, for n > 1,

0o \" (F.. F,
1 1) "\ FE, F..)



Characteristic polynomial

The characteristic polynomial of the matrix
0 1
()

X —1

det(X 1 — A) = det (_1 Y1

):X2—X—1,

which is the irreducible polynomial of the Golden ratio ®.



Fibonacci sequence and the Golden ratio
(continued)

Forn > 1, ®" € Z[®] = Z + Z® is a linear combination of 1
and ¢ with integer coefficients



Fibonacci sequence and the Golden ratio
(continued)

Forn > 1, ®" € Z[®] = Z + Z® is a linear combination of 1
and ¢ with integer coefficients, namely

O =F, 1+ F,®.



Fibonacci sequence and Hilbert's 10th problem

Yuri Matiyasevich (1970) showed that there is a polynomial P
in n, m, and a number of other variables x, ¥, z, ... having the
property that n = F5,, iff there exist integers x, 4, z, ... such
that P(n,m,z,y,2,...) = 0.

This completed the proof of
the impossibility of the tenth
of Hilbert's problems (does
there exist a general method
for solving Diophantine
equations 7) thanks to the
previous work of Hilary
Putnam, Julia Robinson and
Martin Dauvis.




The Fibonacci Quarterly

The Fibonacci sequence
satisfies a lot of very
interesting properties. Four
times a year, the Fibonacci
Quarterly publishes an issue
with new properties which
have been discovered.




Why are there so many occurrences of Fibonacci
numbers and Golden ratio in the nature?

According to Leonid Levin,
objects with a small
algorithmic Kolmogorov
complexity (generated by a
short program) occur more
often than others.

Another example is given by Sierpinski triangles.

Reference : J-P. Delahaye.
http://cristal.univ-1lille.fr/~jdelahay/pls/

u]
o)
I
i
it
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Lucas sequence http://oeis.org/000032

The Lucas sequence (L,),>o satisfies the same recurrence
relation as the Fibonacci sequence, namely

Ln+2 - Ln—i—l + Ln for n > 07
only the initial values are different :

Lo=2 L, =1.


http://oeis.org/000032

Lucas sequence http://oeis.org/000032

The Lucas sequence (L,),>o satisfies the same recurrence
relation as the Fibonacci sequence, namely

Lpio=1Ly, 1+ L, for n>0,
only the initial values are different :
Ly=2, L =1.
The sequence of Lucas numbers starts with
2,1, 3,4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ...
A closed form involving the Golden ratio ® is
L, =®"+ (—=®)™",

from which it follows that for n > 2, L,, is the nearest integer
to d".


http://oeis.org/000032

Francois Edouard Anatole Lucas (1842 - 1891)

Edouard Lucas is best known
for his results in number
theory. He studied the
Fibonacci sequence and
devised the test for Mersenne
primes still used today.

http://www-history.mcs.st-andrews.ac.uk/history/
Mathematicians/Lucas.html


http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lucas.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lucas.html

Generating series of the Lucas sequence

The generating series of the Lucas sequence

> L X"=2+4X 43X +4X 4 4 L X" 4
n>0
is nothing else than
2 - X
1-X - X?



Homogeneous linear differential equation
We have seen that

" 1 /
Fn_ — _— (pPz _ Pz
; n! \/3(6 ™)

is a solution of the homogeneous linear differential equation

y//_y/_y:().



Homogeneous linear differential equation
We have seen that

ZF dr e@’z)

n>0

is a solution of the homogeneous linear differential equation

y//_y/_y:().

ZL ¢x+e<1>x

n>0

Since

we deduce that a basis of the space of solutions is given by the
two generating series

Z FnZ—T and Z L”%

n>0 ’ n>0



The Lucas sequence and power of matrices

From the linear recurrence relation L, .o = L, .1 + L,, one
deduces, (as we did for the Fibonacci sequence), for n > 0,

()= () (),
()= () ()

hence



The Lucas sequence and power of matrices

From the linear recurrence relation L, o = L1 + L, one
deduces, (as we did for the Fibonacci sequence), for n > 0,

()= () (),
()= () ()

Take three of the four sequences

(Fn)nzm (Ln)n207 (‘P")nzm ((_(D)_n)nzo‘

Any one of them can be written as a linear combination of the
two others.

hence



Perrin sequence http://oeis.org/A001608

The Perrin sequence (also called skiponacci sequence) is the
linear recurrence sequence (P, ),>( defined by

Pn+3:Pn+1+Pn for nZO,
with the initial conditions

Ph=3 P =0 P =2


http://oeis.org/A001608
https://en.wikipedia.org/wiki/Perrin_number

Perrin sequence http://oeis.org/A001608

The Perrin sequence (also called skiponacci sequence) is the
linear recurrence sequence (P, ),>( defined by

Pn+3:Pn+1+Pn for nZO,
with the initial conditions

Ph=3 P =0 P =2

It starts with

3, 0,2, 3,2,5,5, 7,10, 12, 17, 22, 29, 39, 51, 68, ...

Frangois Olivier Raoul Perrin (1841-1910) :
https://en.wikipedia.org/wiki/Perrin_number


http://oeis.org/A001608
https://en.wikipedia.org/wiki/Perrin_number

Plastic (or silver) constant https://oeis.org/A060006

The ratio of successive terms in the Perrin sequence
approaches the plastic number

0=1.324717957244746 . ..

which is the minimal Pisot—Vijayaraghavan number, real root

of

22— -1
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Plastic (or silver) constant https://oeis.org/A060006

The ratio of successive terms in the Perrin sequence
approaches the plastic number

0=1.324717957244746 . ..

which is the minimal Pisot—Vijayaraghavan number, real root

of

22— -1

This constant is equal to

/108 + 124/69 + v/108 — 12v/69
Q o .
6



https://oeis.org/A060006

Perrin sequence and the plastic constant

Decompose the polynomial X3 — X — 1 into irreducible
factors over C

X=X —1=(X-0oX-p(X-D)



Perrin sequence and the plastic constant

Decompose the polynomial X3 — X — 1 into irreducible
factors over C

XP—X-1=(X-9X-p(X -
and over R

XP—X—-1=(X-09(X?+oX+07").



Perrin sequence and the plastic constant

Decompose the polynomial X3 — X — 1 into irreducible
factors over C

XP—X-1=(X-9X-p(X -
and over R
XP—X—-1=(X-09(X?+oX+07").

Hence p and 7 are the roots of X2 + pX + o~ !. Then, for
n > 0,



Perrin sequence and the plastic constant

Decompose the polynomial X3 — X — 1 into irreducible
factors over C

XP—X-1=(X-9X-p(X -
and over R
XP—X—-1=(X-09(X?+oX+07").

Hence p and 7 are the roots of X2 + pX + o~ !. Then, for
n > 0,

It follows that, for n > 0, P, is the nearest integer to o".



Generating series of the Perrin sequence

The generating series of the Perrin sequence

ZPnX":3+2X2+3X3+2X4+-~~+PnX”+-~-

n>0
is nothing else than

3— X2
1— X2 — X3



Generating series of the Perrin sequence

The generating series of the Perrin sequence

ZPnX":3+2X2+3X3+2X4+--~+PnX”+«--

n>0
is nothing else than

3— X2
1— X2 — X3

The denominator 1 — X2 — X3 is X3 f(X ') where
f(X) = X3— X — 1is the irreducible polynomial of o.



Exponential generating series of the Perrin
sequence

The power series

y@) =Y P

n>0

is the solution of the differential equation
y/// B y/ —y=0

with the initial conditions y(0) = 3, v'(0) =0, ¥”(0) = 2.



Perrin sequence and power of matrices

From
Pn+3_Pn+l+Pn
we deduce
P,y 010 P,
Pn+2 = 0 01 Pn+1
Pn+3 1 1 O Pn+2



Perrin sequence and power of matrices

From
Pn+3_Pn+l+Pn
we deduce
P,y 010 P,
Pn+2 =10 0 1 Pn+1
Poys 11 0) \ P
Hence "
P, 010 3
Pyl =10 01 0
P, 1 10 2



Characteristic polynomial

The characteristic polynomial of the matrix

010
A=10 0 1
110
is
X -1 0
det(XI —A)=det| 0 X —1|=X*-X—-1,
-1 -1 X

which is the irreducible polynomial of the plastic constant p.



Perrin's remark

1484. [19¢] La curicuse proposition d'origine chinoise
qui fait T'objet de la question 1401 fournirait, si clle éuait
exacte, un criterium plus pratique que le théoréme de
Wilson pour vérifier si un nombre donné m est premies ou
non ; il suffirait de calculer les résidus par rapport d m des
termes successifs de la suite récureente

M= gy — AWUny
avec les valeurs initiales ug=-—1, t,=o.

Fai rencontrd une aulre suile récurrente qui parolt jouir
de la méme propriété ; ¢’est celle dont le terme géaénl est

Oy = Vumy b Vo3

-7 —

avec les valeurs initiales vy=3, ¢, == 0, vy == 2. 1l est facile
de démontrer que vy est divisible par n, si 2 cst premi
J'ai vérifié qu'il ne I'est pas dans le cas contraire, jusqu'a des
valears assez élevées de n; mais il sersit intéressant de savoir
ce qu'il en est récllement, d'autant plus que la suite v, fournit
desnombres bien moins rapidement eroissants que la suite i,
(pour =17, par exemple, on teouve 1, = 131070, £y =119),
etse préte & des simplifications de caleol lorsque n cst un
grand nombre.

La méme méthode de d ion, applicable & une
des suites, Je sera sans doute & 'autre, siln propriété énoncée
est exacte pour toutes les deux : il ne s'agit que de la décou-
i, R. Pernrx.

R. Perrin L'intermédiaire des mathématiciens, Query 1484, v.6,

76-77 (1899).
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Perrin's remark

1484. [19¢] La curicuse proposition d'erigine chinoise
qui fait T'objet de la question 1401 fournirait, si clle éail
exacte, un eriterium plus pratique que le théorime de
Wilson pour vérifier si un nombre donné m est premier ou
von ; il suffirait de calculer les résidus par rapportd m des
termes successifs de la suite récureente

M= gy — AWUny
avec les valeurs initiales ug=—1, t,=o.

Fai rencontré une aulre suile récurrente qui parait jouir
de la méme propriété; c'est celle dont le terme géaéml est

Vo= Vay b Ypy

avec les valeurs initiales vy=3, ¢, == 0, vy == 2. 1l est facile
de démontrer que vy est divisible par n, si r est premier;
j'ai vérifié qu'il ne I'est pas dans le cas contraire, jusqu'a des
valears assez élevées de n; mais il sersit intéressant de savoir
ce qu'il en est récllement, d’autant plus que la suite v, fournit
desnombres bien moins rapidement eroissants que la suite i,
(pour n =17, par exemple, on trouve i, = 131070, ¢4 =119},
et se préte & des simplifications de caleol lorsque n cst un
grand nombre.

La méme méthode de démonstration, applicable & une
des suites, le sera sans doute & l'aulre, si la propriété énoncée
est exacte pour toutes les deux : il ne s'agit que de la décou-

wir, R. Pernrx.

R. Perrin L'intermédiaire des mathématiciens, Query 1484, v.6,

76-77 (1899).

The website www.Perrin088. org maintained by Richard Turk is
devoted to Perrin numbers. See OEISA113788.
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Perrin pseudoprimes https://oeis.org/A013998

If pis prime, then p divides P,.
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The number Py71441 has 33150 decimal digits (the number ¢
which satisfies 10¢ = >4 is ¢ = 271441 (log 0)/(log 10)).
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The smallest composite n such that n divides P, is

5212 = 271441,

The number Py71441 has 33150 decimal digits (the number ¢
which satisfies 10¢ = >4 is ¢ = 271441 (log 0)/(log 10)).

Also for the composite number n = 904631 = 7 x 13 x 9941,
the number n divides P,,.
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Perrin pseudoprimes https://oeis.org/A013998
If p is prime, then p divides P,.

The smallest composite n such that n divides P, is

5212 = 271441,

The number Py71441 has 33150 decimal digits (the number ¢
which satisfies 10¢ = >4 is ¢ = 271441 (log 0)/(log 10)).

Also for the composite number n = 904631 = 7 x 13 x 9941,
the number n divides P,,.

Jon Grantham has proved that there are infinitely many Perrin
pseudoprimes.


https://oeis.org/A013998

Padovan sequence https://oeis.org/A000931

The Padovan sequence (p,,),>0 satisfies the same recurrence
Pnt3 = Pnt1 1+ Pn
as the Perrin sequence but has different initial values :
po=1 pr=p2=0.
It starts with
1,0,0,1,0,1, 1,1, 2, 2, 3,4, 5, 7,9, 12, 16,...

Richard Padovan

http://mathworld.wolfram.com/LinearRecurrenceEquation.html


https://oeis.org/A000931
http://mathworld.wolfram.com/LinearRecurrenceEquation.html

Generating series and power of matrices

11— X?

14+ X34+ X2 4 ... WX = —
+ + +--+p + = X2 _ X3



Generating series and power of matrices

11— X?

14+ X34+ X2 4 ... WX = —
+ + +--+p + = X2 _ X3

For n > 0,
D 01 0\" /1
Pn+1 - 0 0 1 0
Pn+2 1 10 0



Padovan triangles

pn - pn_Q _|_pn_3

Pn—1 = Pn-3 + Pn-a

Pn—2 = Pn—4 + Pn—s
Hence

pn - pn_l — pn_5
pn - pn_1 +pn_5



Padovan triangles

Q>



Fibonacci squares vs Padovan triangles

Both are C'! curve, not C?




Padovan, Euler, Zagier and Brown

For n > 0, the number of compositions s = (s, ..., ;) with
s; € {2,3} and 51 + -+ + S = n is p,y3. Thisis (an upper
bound for) the dimension of the space spanned by the multiple
zeta values of weight n of Euler and Zagier.




Naraya na sequence https://oeis.org/A000930

Narayana sequence is defined by the recurrence relation
Cn+3 = Cn+2 + Cn

with the initial values Cy = 2, C; = 3, Cy = 4.
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Narayana sequence is defined by the recurrence relation
Cn+3 = Cn+2 + Cn

with the initial values Cy = 2, C; = 3, Cy = 4.

It starts with

2,3, 4, 6,9, 13, 19, 28, 41, 60, 88, 129, 189, 277, ...
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Naraya na sequence https://oeis.org/A000930

Narayana sequence is defined by the recurrence relation
Cn+3 = Cn+2 + Cn

with the initial values Cy = 2, C; = 3, Cy = 4.

It starts with

2,3, 4, 6,9, 13, 19, 28, 41, 60, 88, 129, 189, 277, ...

Real root of 23 — 22 — 1

2 29 — 31/93
5 9+3@+3 ‘/_+1
2 2
3

= 1.465571231876768 . . .



https://oeis.org/A000930

Generating series and power of matrices

B 24+ X + X?

X +4X? X3 ... Xy =2 T
2+3X + +6X° 4 -+ C + =¥ — X3



Generating series and power of matrices

B 24+ X + X?

X +4X? X3 ... Xy =2 T
2+3X + +6X° 4 -+ C + =¥ — X3

/

Differential equation : v —y" —y = 0;
initial conditions : y(0) =2, ¥/(0) = 3, ¥”(0) = 4.



Generating series and power of matrices

B 24+ X + X?

X +4X? X3 ... Xy =2 T
2+3X + +6X° 4 -+ C + =¥ — X3

/

Differential equation : v —y" —y = 0;
initial conditions : y(0) =2, ¥/(0) = 3, ¥”(0) = 4.

For n > 0,
C, 01 0\" /2
Cosi | =10 01 3
Chio 101 4



Narayana's cows

Narayana was an Indian mathematician in the 14th century
who proposed the following problem :

A cow produces one calf every year. Beginning in its fourth
year each calf produces one calf at the beginning of each year.
How many calves are there altogether after, for example, 17

years ?



Music : http://www.pogus.com/21033.html

In working this out, Tom Johnson found a way to translate
this into a composition called Narayana's Cows.

Music : Tom Johnson

Saxophones : Daniel Kientzy

Tom Johnson

Les Vaches de Narayana
Narayana’s Cows
Narayanas Kiihe

Las vacas de Narayana

KIENTZY plays JOHNSON



http://www.pogus.com/21033.html







Narayana's cows

http://www.math. jussieu.fr/~michel.waldschmidt/

seneration



http://www.math.jussieu.fr/~michel.waldschmidt/




Jean-Paul Allouche and Tom Johnson

http://www.math. jussieu.fr/~jean-paul.allouche/
bibliorecente.html
http://www.math. jussieu.fr/~allouche/johnsonl.pdf


http://www.math.jussieu.fr/~jean-paul.allouche/bibliorecente.html
http://www.math.jussieu.fr/~jean-paul.allouche/bibliorecente.html
http://www.math.jussieu.fr/~allouche/johnson1.pdf

Cows, music and morphisms

Jean-Paul Allouche and Tom Johnson

e Narayana's Cows and Delayed Morphisms

In 3emes Journées d'Informatique Musicale (JIM '96), lle de
Tatihou, Les Cahiers du GREYC (1996 no. 4), pages 2-7, May
1996.

http://kalvos.org/johnessl.html

e Finite automata and morphisms in assisted musical
composition,

Journal of New Music Research, no. 24 (1995), 97 — 108.
http://www.tandfonline.com/doi/abs/10.1080/
09298219508570676
http://web.archive.org/web/19990128092059/www . swets.
nl/jnmr/vol24_2.html


http://kalvos.org/johness1.html
http://www.tandfonline.com/doi/abs/10.1080/09298219508570676
http://www.tandfonline.com/doi/abs/10.1080/09298219508570676
http://web.archive.org/web/19990128092059/www.swets.nl/jnmr/vol24_2.html
http://web.archive.org/web/19990128092059/www.swets.nl/jnmr/vol24_2.html

Music and the Fibonacci
sequence
 Dufay, XVe™e siecle
* Roland de Lassus

* Debussy, Bartok, Ravel, Webern
e Stockhausen

e Xenakis

e Tom Johnson Automatic Music for six
percussionists




Some recent work

Christian Ballot
On a family of recurrences
that includes the Fibonacci

and the Narayana recurrences.
arXiv:1704.04476 [math.NT]

We survey and prove properties a family of recurrences bears
in relation to integer representations, compositions, the Pascal
triangle, sums of digits, Nim games and Beatty sequences.


https://arxiv.org/abs/1704.04476

Linear recurrence sequences : examples

g > 1; initial conditions ug = uy = - -+ = uq_2 =0, ug—1 = 1.

(X9 — xr 11

qg=1, X — 2, exponential u,, = 2"
qg=2, X? - X —1, Fibonacci u,, = F,
g=3, X?— X —1, Narayana u,, = C,



Linear recurrence sequences : examples

g > 1; initial conditions ug = uy = - -+ = uq_2 =0, ug—1 = 1.

(X9 — xr 11

qg=1, X — 2, exponential u,, = 2"
qg=2, X? - X —1, Fibonacci u,, = F,
g=3, X?— X —1, Narayana u,, = C,

X7 Xo X712 ... X —1:

qg=1, X —1, constant sequence u, =1
g=2, X?— X —1, Fibonacci u,, = F,
g=3, X3 — X? - X — 1, Tribonacci

X7 - X — 1

qg=2, X? - X —1, Fibonacci u, = F,
g=3, X?— X —1, Padovan u,, = p,




Linear recurrence sequences : definitions

A linear recurrence sequence is a sequence of numbers
u = (ug, uy, us, ... ) for which there exist a positive integer d

together with numbers ay, ..., ay with a; # 0 such that, for
n > 0,

(%) Uptd = QUpgd—1 + -+ Aqliy,.
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Given a = (ay,...,ay) € K, the set of linear recurrence
sequences u = (uy,),>o satisfying (%) is a K—vector subspace
of dimension d of the space K" of all sequences.



Linear recurrence sequences : definitions

A linear recurrence sequence is a sequence of numbers
u = (ug, uy, us, ... ) for which there exist a positive integer d

together with numbers ay, ..., ay with a; # 0 such that, for
n > 0,
(%) Uptd = A Uptd—1 + =+ + Aqliy,.

Here, a number means an element of a field K of zero
characteristic.

Given a = (ay,...,ay) € K, the set of linear recurrence
sequences u = (uy,),>o satisfying (%) is a K—vector subspace
of dimension d of the space K" of all sequences.

The characteristic (or companion) polynomial of the linear
recurrence is

fX)=X4—a; X' — . —ay.



Linear recurrence sequences : examples

e Constant (not zero) sequence : u,, = uo.
Linear recurrence sequence of order 1 : w11 = uy,.
Characteristic polynomial : f(X) = X — 1.

. . u
Generating series : ZX" = OX'
n>0

Differential equation : v = v.




Linear recurrence sequences : examples

e Constant (not zero) sequence : u,, = uo.
Linear recurrence sequence of order 1 : w11 = uy,.
Characteristic polynomial : f(X) = X — 1.

. . u
Generating series : ZX" = OX'
n>0

Differential equation : v = v.

e Geometric progression : u, = uyy".
Linear recurrence sequence of order 1 : u,, = Y, 1.
Characteristic polynomial : f(X) = X — ~.

. . U
Generating series : Zuofy"X" = .
= 1—~X

Differential equation : 3/ = ~yy.




Linear recurrence sequences : examples

e The sequence u,, = n is a linear recurrence sequence of
order 2 :
n+2=2n+1)—n.

Characteristic polynomial

fX)=X?—2X +1=(X 1)~
Generating series ZnX” = ;
BEENSS 2N T N X

Differential equation y” — 2y' + 3y = 0.
Power of matrices :

0 1 n_ -n+1 n
-1 2/ -n  n4+1)



Linear recurrence sequences : examples

e The sequence u,, = f(n), where f is a polynomial of degree
d, is a linear recurrence sequence of order d + 1.



Linear recurrence sequences : examples

e The sequence u,, = f(n), where f is a polynomial of degree
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Proof. The sequences
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are K-linearly independent in K" for k = d — 1 and linearly
dependent for k = d.
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Linear recurrence sequences : examples

e The sequence u,, = f(n), where f is a polynomial of degree
d, is a linear recurrence sequence of order d + 1.

Proof. The sequences

(f(n)nz0,  (fF(R+1)nz0, -++5 (f(n+E))nxo

are K-linearly independent in KN for k = d — 1 and linearly
dependent for k = d.

A basis of the space of polynomials of degree d is given by the
d 4 1 polynomials

f(X), IX+1), ..., f(X+4).

Exercise : what is the characteristic polynomial of the
sequence u,, = f(n) ?



Generating series of a linear recurrence sequence

A sequence u = (u,),>o satisfies the linear recurrence relation

(%) Uptd = A Upig—1 + -+ + aqu, for n >0

if and only if its generating series can be written

. n _ B(X)
2 X" = F5y

where
AX)=1—a1 X — - —agX?,

while B(X) is a polynomial of degree less than d.



Exponential generating series and homogeneous
linear differential equations

A sequence (u,),>o satisfies the linear recurrence sequence
(%) Untpd = QiUnia-1 + -+ aqu, for  n >0

if and only if its exponential power series

n>0
satisfies the homogeneous linear differential equations

(d) (d-1) (d-2) _ |

Yy —ay — a2y T ad—ﬂJ, —aqy = 0.



Matrix notation for a linear recurrence sequence

The linear recurrence sequence

(*) Unyd = G Unid—1 + -+ agu, for n>0

can be written

@)
—
o
)

Yn1 0 0 1 - 0 n

Un+-2 . . . . . . Unp+1
0 0 o --- 1

Un+d Up+d—1

aq Qq—1 Qq—2 -+ a1



Matrix notation for a linear recurrence sequence

with
Un
un+1
Un - .
Un+d—1

Un+1 = AUn
0 1 0 0
0 0 1 0
A= : :
0 0 0 1

aq Qg—1 Qg—2 - Qi



Matrix notation for a linear recurrence sequence

Un+1 = AUn
with
u 0 1 0 0
u " 0 0 1 0
Un = n.+1 , A= : : o
L 0 0 0 - 1
e Qg Qg1 gy @

Characteristic polynomial of A :

det(IX — A) = X4 — ¢, X1 — ... _q,



Matrix notation for a linear recurrence sequence

Un+1 - AUn
with
w 0 1 0 0
Y " 0 0 1 0
Un = n-H . A= : : U
w ' 0 0 0 I |
s aq Qg—1 Qg—2 - Qi

Characteristic polynomial of A :
det(IuX —A) = X4 —a, X — - —ay.

By induction
Un — AnUo.



Powers of matrices

Let A= (aij)1§i7j§d € GLdXd(K) be a d x d matrix with
coefficients in K and nonzero determinant. For n > 0, let

A" = (a(n)

ij )1§i,j§d'



Powers of matrices

Let A= (aij)1§i7j§d € GLdXd(K) be a d x d matrix with
coefficients in K and nonzero determinant. For n > 0, let

A" = (a(n)

ij )1§i,j§d'

Then each of the d? sequences o™ (1<i.5<d)is a
) ) /n>0 »J
linear recurrence sequence.



Conversely :

Given a linear recurrence sequence u € KV, there exist an
integer d > 1 and a matrix A € GL4(K) such that, for each
n > 0,

— "



Conversely :

Given a linear recurrence sequence u € KV, there exist an
integer d > 1 and a matrix A € GL4(K) such that, for each
n > 0,

— "

The characteristic polynomial of A is the characteristic
polynomial of the linear recurrence sequence.

EVEREST G., VAN DER POORTEN A., SHPARLINSKI [., WARD T. -
Recurrence sequences, Mathematical Surveys and Monographs (AMS,
2003), volume 104,



Polynomial combinations of powers

Given polynomials py, ..., p, in K[X] and elements 74, ..
in K*, the sequence

(L) + - + pe(”)’V?)nzo

is a linear recurrence sequence, the minimal polynomial of
which is of the form

J4
Xd_ale—l — =g = H(X_/yl)t,y

i=1

< Ve



Polynomial combinations of powers

Given polynomials py, ..., p, in K[X]| and elements 71, ..., v
in K*, the sequence

(pl(n>’}/? +et pf(n)’y?)nzo
is a linear recurrence sequence, the minimal polynomial of
which is of the form

J4
Xd_ale—l — =g = H(X_/yl)t,y

i=1

Fact : any linear recurrence sequence is of this form.
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which is of the form

J4
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Fact : any linear recurrence sequence is of this form.

Consequence : the sum and the product of any two linear
recurrence sequences are linear recurrence sequences.



Polynomial combinations of powers

Given polynomials py, ..., p, in K[X]| and elements 71, ..., v
in K*, the sequence

(pl(n>’}/? +et pf(n)’y?)nzo

is a linear recurrence sequence, the minimal polynomial of
which is of the form

J4
Xd_ale—l — =g = H(X_,yz)t,y

i=1

Fact : any linear recurrence sequence is of this form.
Consequence : the sum and the product of any two linear
recurrence sequences are linear recurrence sequences.

The set of all linear recurrence sequences with coefficients in
K is a sub—K-algebra of K.



Conclusion

The same mathematical object occurs in a different guise :

e Linear recurrence sequences

Uptrd = A Upyrg—1 T -+ AUy,

e Linear combinations with polynomial coefficients of powers
PV + -+ pe(n)yg.

e Taylor coefficients of rational functions.

e Coefficients of power series which are solutions of
homogeneous linear differential equations.

e Sequence of coefficients of powers of a matrix.
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