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Abstract

Linear recurrence sequences are ubiquitous. They occur in
biology, economics, computer science (analysis of algorithms),
digital signal processing. We give a survey of this subject,
together with connections with linear combinations of powers,
with powers of matrices and with linear differential equations.

We give examples : Fibonacci, Lucas, balancing numbers,
Perrin, Padovan, Narayana.



Applications of linear recurrence sequences

Combinatorics

Elimination

Symmetric functions
Hypergeometric series
Language

Communication, shift registers
Finite difference equations
Logic

Approximation

Pseudo—random sequences



Applications of linear recurrence sequences

e Biology (Integrodifference equations, spatial ecology).
e Computer science (analysis of algorithms).

e Digital signal processing (infinite impulse response (IIR)
digital filters).

e Economics (time series analysis).

https://en.wikipedia.org/wiki/Recurrence_relation


https://en.wikipedia.org/wiki/Recurrence_relation

Leonardo Pisano (Fibonacci)

Fibonacci sequence (F',,)n>0,  Leonardo Pisano (Fibonacci)
0,1, 1,2, 3, 5,8, 13, 21, (1170-1250)

34, 55, 89, 144, 233, ...
is defined by
FO = 07 Fl = 17

Fn+2 = Fn+1+Fn for n Z 0.

http://oeis.org/A000045


http://oeis.org/A000045
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Linear recurrence sequence : 13787 results found.
Fibonacci sequence : http://oeis.org/A000045
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Fibonacci rabbits

Fibonacci considered the growth of a rabbit population.

A newly born pair of rabbits,

a male and a female, are put B

in a field. Rabbits are able to _ (’ﬁ*"‘“ W Generaton
mate at the age of one month =" 1 '}fofpa'm
so that at the end of its *(']?J &!’) 2 &% Mature

& Immature

second month a female can 4 633?%% (‘5‘"5 3
produce another pair of (9595 % {595 3395 % 5

rabbits ; rabbits never die and
a mating pair always produces fhﬁl’ & & 69595 E% 625% m s

one new pair (one male, one female) every month from the
second month on. The puzzle that Fibonacci posed was : how
many pairs will there be in one year?

Answer : F{o = 144.



Fibonacci's rabbits

Modelization of a population

Adult pairs Young pairs
First month
Second month
Third month
Fourth month
Fifth month

Sixth month

Sequence: 1, 1, 2, 3, 5, 8§, ...




Alfred Lotka : arctic trees

In cold countries, each branch
of some trees gives rise to
another one after the second
year of existence only.

Alfred Lotka
1880 — 1949

Alfred Lotka : American biophysicist, specialist of population dynamics
and energetics. Predator—prey model, developed simultaneously but
independently of Vito Volterra.



Fibonacci numbers in nature

Ammonite (Nautilus shape)
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Phyllotaxy

Sl il

Study of the position of leaves on a stem
and the reason for them

Number of petals of flowers: daisies,
sunflowers, aster, chicory, asteraceae,...
Spiral patern to permit optimal exposure
to sunlight

Pine-cone, pineapple, Romanesco
cawliflower, cactus




Leaf arrangements




« Université de Nice,

Laboratoire Environnement Marin Littoral,
Equipe d'Accueil "Gestion de la
Biodiversité"

http://www.unice.fr/LEML/coursJDV/tp/
tp3.htm
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Phyllotaxy

e J. Kepler (1611) uses the Fibonacci
sequence in his study of the
dodecahedron and the icosaedron, and
then of the symmetry of order 5 of the
flowers.

» Stéphane Douady and Yves Couder
Les spirales végétales
La Recherche 250 (Jan. 1993) vol. 24.
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Reflections of a ray of light

Consider three parallel sheets of glass and a ray of light which
crosses the first sheet. Each time it touches one of the sheets,
it can cross it or reflect on it.

Denote by p,, the number of different paths with the ray going
out of the system after n reflections.

0 po =1,

p1 =2,
1

p2 =3,
2

p3 = 9.

In general, p, = F,1o.



Levels of energy of an electron of an atom of
hydrogen

An atom of hydrogen can have three levels of energy, 0 at the
ground level when it does not move, 1 or 2. At each step, it
alternatively gains and looses some level of energy, either 1
or 2, without going sub 0 nor above 2. Let /,, be the number
of different possible scenarios for this electron after n steps.

electron
{1 = 2 : state 1 or 2, scenarios

| ° (ending with gain) 01 or 02.

Pm“y {9 = 3 : scenarios (ending with

We have ¢y = 1 (initial state
level 0)

loss) 010, 021 or 020.
¢35 =5 : scenarios (ending with
— gain) 0101, 0102, 0212, 0201 or
In general, ¢, = F,, . 0202.



Rhythmic patterns

The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
Pingala (200 BC), Virahanka (c. 700 AD), Gopala (c. 1135),
and the Jain scholar Hemachandra (c. 1150). studied rhythmic
patterns that are formed by concatenating one beat notes e
and double beat notes mm.

one-beat note e : short syllabe (ti in Morse Alphabet)

double beat note mm : long syllabe (ta ta in Morse)

1 beat, 1 pattern : °

2 beats, 2 patterns : e ¢ and mm

3 beats, 3 patterns : e e o, emm and mm @

4 beats, 5 patterns :

006 En®O6 OEE® O Omm, ERER

n beats, F',, .1 patterns.



Fibonacci sequence and the Golden ratio

For n > 0, the Fibonacci number F',, is the nearest integer to

1

",

NG
where @ is the Golden Ratio:  http://oeis.org/A001622

o1 +2¢5 — gim ZH 1 6180330887499 .
n—oo n
which satisfies )
d=1+—

o


http://oeis.org/A001622

Binet's formula

For n > 0,
P — (— -n
P (=)
V5
(VB - (1= VB i
/5 7 Jacques Philippe Marie Binet
1786-1856
1 1-—
o +2\/5’ el 2@

X2 X—-1=X-®)(X+o1).



The so—called Binet Formula

Formula of A. De Moivre (1718, 1730), Daniel Bernoulli
(1726), L. Euler (1728, 1765), J.P.M. Binet (1843) : for n > 0,

oL 1+v5) 1 [1-Vv5)
RV 2 NG 2 '

Abraham de Daniel Leonhard Jacques P.M.
Moivre Bernoulli Euler Binet
(1667-1754)  (1700-1782) (1707-1783) (1786-1856)

> SRl oy




Generating series
A single series encodes all the Fibonacci sequence :

Y P XM= XA X2 42X 43X 45X 4 P X

n>0

Fact : this series is the Taylor expansion of a rational fraction :
X

F,X"=— " .

2 X%

Proof : the product
(X 4+ X2 +2X° +3X* +5X° +8X% +--)(1 - X — X?)
is a telescoping series
X4+ X2 4+2X34+3X* +5X° +8X6 ...
—X? - X3 —2X*-3X°—5X°%—...
—X3— Xt —2X°-3X6—...
= X. Bl



Generating series of the Fibonacci sequence

Remark. The denominator 1 — X — X2 in the right hand side
of

B X
11— X - X2

is X2f(X~1), where f(X) = X? — X — 1is the irreducible
polynomial of the Golden ratio .

X+ X2 42X +3X 4 F X" -



Homogeneous linear differential equation
Consider the homogeneous linear differential equation

y// _ y/ _ y — O
If y = e is a solution, from 3’ = \y and " = Ay we deduce
M —A—1=0.

The two roots of the polynomial X? — X — 1 are ® (the

Golden ration) and ¢’ with
1
P =1-0=——.
o
A basis of the space of solutions is given by the two functions

e®” and e®*. Since (Binet's formula)
" 1 /
Fn_:_ e@m_eéx ’
; o= el )

this exponential generating series of the Fibonacci sequence is
a solution of the differential equation.



Fibonacci and powers of matrices

The Fibonacci linear recurrence relation F, 1o = Fli1 + F,
for n > 0 can be written

Fn+1 _ 01 F”
By induction one deduces, for n > 0,
F,\ (0 1\"/0
Foii) \1 1 1/
An equivalent formula is, for n > 1,

0o 1\" (F.. F,
1 1) \F, F.u)’



Characteristic polynomial

The characteristic polynomial of the matrix
0 1
()

X —1

det(X1 — A) = det (_1 Y1

):X2—X—1,

which is the irreducible polynomial of the Golden ratio ®.



Fibonacci sequence and the Golden ratio
(continued)

Forn > 1, ®" € Z|®| = Z + Z®P is a linear combination of 1
and ® with integer coefficients, namely

¢" =F,,_ 1+ F,o.



Fibonacci sequence and Hilbert's 10th problem

Yuri Matiyasevich (1970) showed that there is a polynomial P
in n, m, and a number of other variables =, v, z, ... having
the property that n = F'y,,, iff there exist integers z,v, z, . ..
such that P(n,m,z,y,z,...) = 0.

This completed the proof of
the impossibility of the tenth
of Hilbert's problems (does
there exist a general method
for solving Diophantine
equations 7) thanks to the
previous work of Hilary
Putnam, Julia Robinson and
Martin Dauvis.




The Fibonacci Quarterly

The Fibonacci sequence
satisfies a lot of very
interesting properties. Four
times a year, the Fibonacci
Quarterly publishes an issue
with new properties which
have been discovered.




Why are there so many occurrences of Fibonacci
numbers and Golden ratio in the nature?

According to Leonid Levin,
objects with a small
algorithmic Kolmogorov
complexity (generated by a
short program) occur more
often than others.

Another example is given by Sierpinski triangles.

Reference : J-P. Delahaye.
http://cristal.univ-1lille.fr/~jdelahay/pls/


http://cristal.univ-lille.fr/~jdelahay/pls/

Lucas sequence http://oeis.org/000032

The Lucas sequence (L,),>o satisfies the same recurrence
relation as the Fibonacci sequence, namely

Ln+2 = Ln+1 + Ln for n Z 07
only the initial values are different :

LOIZ, L1:1

The sequence of Lucas numbers starts with

2,1, 3,4, 7, 11, 18, 29, 47, 76, 123, 199, 322,...

A closed form involving the Golden ratio ® is
L,=®"+ (=P)",

from which it follows that for n > 2, L,, is the nearest integer
to d".


http://oeis.org/000032

Francois Edouard Anatole Lucas

Edouard Lucas is best known
for his results in number
theory. He studied the
Fibonacci sequence and
devised the test for Mersenne
primes still used today.

Edouard Lucas
1842 - 1891

http://www-history.mcs.st-andrews.ac.uk/history/
Mathematicians/Lucas.html


http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lucas.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lucas.html

Generating series of the Lucas sequence

The generating series of the Lucas sequence

> L X"=24X 43X +4X 4 4 L X" 4
n>0
is nothing else than
2—-X
1—X—X?



Homogeneous linear differential equation
We have seen that

" 1 /
Fn_ — (P2 _ D=
; n! \/S(e ")

is a solution of the homogeneous linear differential equation
y' —y —y=0.

Since

n

x ’
ZLH_ — %7 _‘_equ’
n!

n>0

we deduce that a basis of the space of solutions is given by the
two generating series

" "

n>0 n>0



The Lucas sequence and power of matrices

From the linear recurrence relation L, .o = L,.1 + L, one
deduces, (as we did for the Fibonacci sequence), for n > 0,

(F) = (0 1) ()
()= (1) ()

The four sequences

(Fn)nzm (Ln)HZOa ((I)n)nZ(J? <(_(I))_n)n20

span a vector space of dimension 2, any two of these four
sequences give a basis of this space.

hence



An interesting street number

The puzzle itself was about a street in the town of Louvain in
Belgium, where houses are numbered consecutively. One of the
house numbers had the peculiar property that the total of the
numbers lower than it was exactly equal to the total of the
numbers above it. Furthermore, the mysterious house number was
greater than 50 but less than 500.

= Srinivasa Ramanujan
Prasanta Chandra Mahalanobis 1887 — 1920

1893 - 1972

http://mathshistory.st-andrews.ac.uk/Biographies/Mahalanobis.html
https://www.math.auckland.ac.nz/~butcher/miniature/miniature2.pdf


http://mathshistory.st-andrews.ac.uk/Biographies/Mahalanobis.html
https://www.math.auckland.ac.nz/~butcher/miniature/miniature2.pdf

Street number : examples

Examples :
e House number 6 in a street with 8 houses :

1+2+3+44+5=15 T7+8=15.
e House number 35 in a street with 49 houses. To compute
S =1424+3+---4+324+33+34

write
S=34+33+32+---+3+2+1

so that 25 = 34 x 35 :

34 x 35

1+2+3+---+34= = 595.

On the other side of the house,

49 x50 35 x 36

cee 449 =
36 +37+---+ 5 5

= 1225 — 630 = 595.




Other solutions to the puzzle

e House number 1 in a street with 1 house.

e House number 0 in a street with 0 house.

Ramanujan : if no banana is distributed to no student, will
each student get a banana ?

The puzzle requests the house number between 50 and 500.



Street number
Let m be the house number and n the number of houses :

1+243+--+(m—-1)=m+1)+(m+2)+---+n.

m(m—1) nn+1) m(m+1)

2 2 2
This is 2m? = n(n + 1). Complete the square on the right :

8m* = (2n+1)* - 1.
Set v =2n+1, y = 2m. Then

x? — 2% = 1.



Infinitely many solutions to the puzzle

Ramanujan said he has infinitely many solutions (but a single
one between 50 and 500).

Sequence of balancing numbers (number of the house)
https://oeis.org/A001109

0,1,6,35,204, 1189, 6930, 40391, 235416, 1372105, 7997214 . ..

This is a linear recurrence sequence u,, 1 = 6u,, — u,_1 with
the initial conditions ug = 0, u; = 1.

The number of houses is https://oeis.org/A001108

0,1,8,49,288,1681,9800, 57121, 332928, 1940449, . ..


https://oeis.org/A001109
https://oeis.org/A001108

Balancing numbers

A balancing number is an integer B > 0 such that there exists
C' with

14+243+---+(B-1)=B+1)+(B+2)+---+C.

Same as B* = C(C + 1)/2 : a balancing number is an integer
B such that B? is a triangular number (and a square!).
Sequence of balancing numbers : https://oeis.org/A001109

0,1,6,35,204, 1189, 6930, 40391, 235416, 1372105, 7997214 . ..

This is a linear recurrence sequence
Bn,+1 - 6Bn - B'n,—l

with the initial conditions By = 0, By = 1.


https://oeis.org/A001109

Sequence (B,,),>o of balancing numbers :
2B,% = C,(C, +1)

The corresponding sequence (C',),,>0 is
https://oeis.org/A001108

0,1,8,49,288, 1681, 9800, 57121, 332928, 1940449, . . .

The solutions of 22 — 2y = 1 are given by
Tn =2B,, vy,=2C,+1.
Both sequences (2,,),>0 and (yy,,),>0 satisfy
Upy1 = OUy — Up_1.

with o =0, 21 =2, yo = 1, y1 = 3.
Hence
Cn+1 = 6Cn - Cnfl + 2.


https://oeis.org/A001108

The sequence of balancing numbers

Characteristic polynomial :
f(X)=X2—6X +1=(X—-3-2V2)(X —3+2V2).
Closed formula :

1 n n
B, = m((3+2¢§) —(3-2V2)").

Generating series :

X
X) = B, X"=X+46X24+35X3+... = — .
P(X) ; oA T T ey T X
Exercise :

X2 = (1 - X?)?

Takao Komatsu & Prasanta Kumar Ray. Higher-order identities for
balancing numbers. arXiv:1608.05925 [math.NT]


https://arxiv.org/abs/1608.05925

Exponential generating series of the sequence of
balancing numbers

n>0
35
:x+3:1:2+€$3+---
1 (6(3+2\/§)x _ 6(3—2\/§)z) .

T2

This is a solution of the homogeneous linear differential
equation of order 2

y' =6y —y
with the initial conditions y(0) =0, ¥'(0) = 1.



Balancing numbers and the matrix A = (

(gZ:> N (—01 é) (;;L) (n>0).

Powers of A :
0 1\" —B, B
= >
<—1 6> <—Bn+1 Bn+2> (n=0).
Characteristic polynomial :

X -1

det(Xl'—A):det(1 X6

):X2—6X+1.

0 1
—1 6

)



Perrin sequence http://oeis.org/A001608

The Perrin sequence (also called skiponacci sequence) is the
linear recurrence sequence (P,,),>o defined by

P, 3s=P,1+P, for n>0,
with the initial conditions

P0:3, P1:0, P2:2

It starts with

3, 0,2, 3,2,5, 5,7, 10, 12, 17, 22, 29, 39, 51, 68, ...

Frangois Olivier Raoul Perrin (1841-1910) :
https://en.wikipedia.org/wiki/Perrin_number


http://oeis.org/A001608
https://en.wikipedia.org/wiki/Perrin_number

Plastic (or silver) constant  https://oeis.org/a060006

The ratio of successive terms in the Perrin sequence tends to
the plastic number

0=1.324717957244746. ..

which is the minimal Pisot—Vijayaraghavan number, real root

of

2 —r—1.

This constant is equal to

/108 4+ 12/69 + v/108 — 121/69
Q o .
6



https://oeis.org/A060006

Perrin sequence and the plastic constant

Decompose the polynomial X3 — X — 1 into irreducible
factors over C

XP—X-1=(X-9X-p(X -
and over R
XP—X—-1=(X-09(X?+0oX+07").

Hence p and 7 are the roots of X2 + pX + o~ !. Then, for
n > 0,

It follows that, for n > 0, P,, is the nearest integer to o".



Generating series of the Perrin sequence

The generating series of the Perrin sequence

ZPnX”:3+2X2+3X3+2X4+--~+PnX”+~--

n>0
is nothing else than

3— X2
1— X2 — X3

The denominator 1 — X2 — X3 is X3 f(X 1) where
f(X)=X3— X — 1is the irreducible polynomial of o.



Exponential generating series of the Perrin
sequence

The power series

y(a) = Y Pus

n>0

is a solution of the differential equation
y/// B y/ —y=0

with the initial conditions y(0) = 3, ¥'(0) =0, ¥”(0) = 2.



Perrin sequence and power of matrices

From
Pn+3:Pn+1+Pn
we deduce
P, 010 P,
Pn+2 - O O 1 Pn+1
P,i3 1 10 P
Hence "
P, 010 3
P,o1| =10 0 1 0
P 1 10 2



Characteristic polynomial

The characteristic polynomial of the matrix

010
A=10 0 1
110
is
X -1 0
det(XI —A)=det| 0 X —1|=X*-X—-1,
-1 -1 X

which is the irreducible polynomial of the plastic constant p.



Perrin's remark

148%4. [I9¢] La curieuse proposition d’origine chinoise
qui fait Tobjet de la question 1401 fournirait, si clle élait
exacte, un criterium plus pratique que le théoréme de
Wilson pour vérifier si un nombre donné m est premier ou
non ; il suffirait de calculer les résidus par rapport im des
termes successifs de la suite récurrente

Up=3Up-1— 2Un—2
avec les valeurs initiales ¢y=—1, v, = o.

Pai rencontré une aulre suile récurrente qui parait jouir

de la méme propriété; cest celle dont le terme général est

+Ou—3

— 11—
avec les valeurs initiales vo=3, ¢, = o0, ¢y == . Il est facile
de démontrer que ¢, est div si nest premier;
jrai vérifié qu'il ne Uest pas davs le cas contraire, jusqu’a des
valeurs assez élevées de 72; maisil serait intéressant de savoir
ce qu'il en est réellement, d’autant plus que la suitc o, fournit
des nombres bien moins rapidement croissants que la suite w,
(pourn =17, par exemple, on Lrouve 1, = 131070, ¢, =1 19),
eLse préte & des simplifications de caleul lorsque 2 est un
grand nombre.

La méme méthode de démonstration, applicable & I'une
des suites, le sera sans doute a l'autre, sila propriété ¢noncée
est exacte pour toutes les deux : il ne s’agit que de Ja décou-
wrir. R. Pennrx.

isible par n,

R. Perrin L’intermédiaire des mathématiciens, Query 1484, v.6,

76-77 (1899).

The website www.Perrin088. org maintained by Richard Turk is
devoted to Perrin numbers. See OEISA113788.


www.Perrin088.org
OEIS A113788

Perrin pseudoprimes https://oeis.org/A013998
If p is prime, then p divides P,.

The smallest composite n such that n divides P,, is

5212 = 271441,

The number Pa71441 has 33 150 decimal digits (the number ¢
which satisfies 10¢ = >4 is ¢ = 271441 (log 0)/(log 10)).

Also for the composite number n = 904631 = 7 x 13 x 9941,
the number n divides P,,.

Jon Grantham has proved in 2010 that there are infinitely
many Perrin pseudoprimes.


https://oeis.org/A013998

Padovan sequence https://oeis.org/A000931
The Padovan sequence (p,),>o satisfies the same recurrence
Pn4+3 = Pnt1 Tt Pn
as the Perrin sequence but has different initial values :
po=1, p1=p2=0.
It starts with

1,0,0,1,0,1, 1, 1,2 2, 3,4, 5 7,9, 12, 16,...

Richard Padovan

http://mathworld.wolfram.com/LinearRecurrenceEquation.html


https://oeis.org/A000931
http://mathworld.wolfram.com/LinearRecurrenceEquation.html

Generating series and power of matrices

1—X?
14+ X34+ X5 4... WX —
+ + + +p + [ xX2_ X3
For n > 0,
P 01 0\"/1
Prte 110/ \0



Padovan triangles

Pn = Pn—2+ Pn-3

Prn-1=DPn-3+ DPn-s

Pn—2 = Pn—4+ DPn—s

Hence

Pn — Pn—1 = Pn—5

Pn = Pn—1 1+ DPn—s



Padovan triangles

«Or «Fr «=r (=) = AR



Fibonacci squares vs Padovan triangles

Both are C'! curve, not C?

/

A 4



Padovan, Euler, Zagier, Goncharov and Brown

For n > 0, the number of compositions s = (sq,. .., s;) with
s; €{2,3} and s1+ -+ + sg = n is ppy3. This is (an upper
bound for) the dimension of the space spanned by the multiple
zeta values of weight n of Euler and Zagier.

Alexander Goncharov Francis Brown


https://opc.mfo.de/detail?photo_id=16858

Naraya na sequence https://oeis.org/A000930

Narayana sequence is defined by the recurrence relation
On+3 = Cn+2 + On

with the initial values Cy =2, ¢, = 3, Cy = 4.
It starts with

2, 3,4,6,9, 13, 19, 28, 41, 60, 88, 129, 189, 277,...

Real root of 23 — 22 — 1

29 + 3v93 29 — 3v93
3 +—+ 3 2975V Ly
2 2
3

= 1.465571231876768 . ..



https://oeis.org/A000930

Generating series and power of matrices

- 24+ X + X?

X 4+4X2 X3 ... WX =2 T
2+3X + +6X°+---+C + T X — x5

/)

Differential equation : v — " —y =0;
initial conditions : y(0) =2, ¥/(0) = 3, ¥”(0) = 4.

For n > 0,
C, 01 0\" /2
Coi ] =10 01 3
Clrio 10 1 4



Narayana's cows

Narayana was an Indian mathematician in the 14th century
who proposed the following problem :

A cow produces one calf every year. Beginning in its fourth
year each calf produces one calf at the beginning of each year.
How many calves are there altogether after, for example, 17

years ?



Music : http://www.pogus.com/21033.html

In working this out, Tom Johnson found a way to translate
this into a composition called Narayana’s Cows.

Music : Tom Johnson

Saxophones : Daniel Kientzy

Tom Johnson -
Les Vaches de Narayana K|ENTZY meS JDHNSON ‘

Narayana’s Cows
Narayanas Kiihe
Las vacas de Narayana



http://www.pogus.com/21033.html







Narayana's cows

http://www.math. jussieu.fr/~michel.waldschmidt/

seneration



http://www.math.jussieu.fr/~michel.waldschmidt/




Jean-Paul Allouche and Tom Johnson

http://www.math. jussieu.fr/~jean-paul.allouche/
bibliorecente.html
http://www.math. jussieu.fr/~allouche/johnsonl.pdf


http://www.math.jussieu.fr/~jean-paul.allouche/bibliorecente.html
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Cows, music and morphisms

Jean-Paul Allouche and Tom Johnson

e Narayana's Cows and Delayed Morphisms

In 3emes Journées d'Informatique Musicale (JIM '96), lle de
Tatihou, Les Cahiers du GREYC (1996 no. 4), pages 2-7, May
1996.

http://kalvos.org/johnessl.html

e Finite automata and morphisms in assisted musical
composition,

Journal of New Music Research, no. 24 (1995), 97 — 108.
http://www.tandfonline.com/doi/abs/10.1080/
09298219508570676
http://web.archive.org/web/19990128092059/www . swets.
nl/jnmr/vol24_2.html


http://kalvos.org/johness1.html
http://www.tandfonline.com/doi/abs/10.1080/09298219508570676
http://www.tandfonline.com/doi/abs/10.1080/09298219508570676
http://web.archive.org/web/19990128092059/www.swets.nl/jnmr/vol24_2.html
http://web.archive.org/web/19990128092059/www.swets.nl/jnmr/vol24_2.html

Music and the Fibonacci
sequence
 Dufay, XVe™e siecle
* Roland de Lassus

* Debussy, Bartok, Ravel, Webern
e Stockhausen

e Xenakis

e Tom Johnson Automatic Music for six
percussionists




Some recent work

Christian Ballot
On a family of recurrences
that includes the Fibonacci

and the Narayana recurrences.
arXiv:1704.04476 [math.NT]

We survey and prove properties a family of recurrences bears
in relation to integer representations, compositions, the Pascal
triangle, sums of digits, Nim games and Beatty sequences.


https://arxiv.org/abs/1704.04476

Linear recurrence sequences : examples

g > 1; initial conditions ug = uy = -+ = ug_2 =0, ug—1 = 1.

| X7 — X9 1 — 1]

q=1, X — 2, exponential u,, = 2"
g=2, X?—-X —1, Fibonacci u, = F,,
g=3, X3 —X2_1, Narayana u,, = C,,

X7 X0l X092 _ ... _X_1:

q=1, X — 1, constant sequence u,, = 1
g=2, X?> - X — 1, Fibonacci u,, = F,,
q=3, X3 — X2 - X — 1, Tribonacci

X1—X—1:

g=2, X? - X —1, Fibonacci u,, = F,
g=3, X3 —X —1, Padovan u,, = p,



Summary
The same mathematical object occurs in a different guise :

e Linear recurrence sequences

Uptd = A Upyd—1 T+ + AUy,

e Linear combinations with polynomial coefficients of powers

pi(n)n" + -+ pe(n)yy.

e Taylor coefficients of rational functions.

e Coefficients of power series which are solutions of
homogeneous linear differential equations.

e Sequence of coefficients of powers of a matrix.



Polynomial combinations of powers

Given polynomials py, ..., p, in C[X] and elements 1, ..., v
in C*, the sequence

(p1 (n)%” -+ +p£(n)7?)n20

is a linear recurrence sequence, the minimal polynomial of
which is of the form

¢
Xt X - —ay = H(X — )4,

i=1

Fact : any linear recurrence sequence is of this form.
Consequence : the sum and the product of any two linear
recurrence sequences are linear recurrence sequences.

The set of all linear recurrence sequences with coefficients in
C is a sub—C—algebra of C".



Sum of polynomial combinations of powers

For u = (u,)n>0 and v = (v,,)n>0,

u+ v = (U, + Vy)n>0-

If u; and uy are two linear recurrence sequences of
characteristic polynomials f; and f, respectively, then u; + u,
satisfies the linear recurrence, the characteristic polynomial of
which is

ffs

ged(f1, f2)



Product of polynomial combinations of powers

For u = (u,)n>0 and v = (v,,)n>0,

uv = (UpUp)n>0-

If the characteristic polynomials of the two linear recurrence
sequences u; and u, are respectively

L v

AT =TT =) and  fo(T) = [[(T = )%,

j=1 k=1
then u u, satisfies the linear recurrence, the characteristic
polynomial of which is

e

TTTIT =iyt

j=1k=1



Linear recurrence sequences and
Brahmagupta—Pell-Fermat Equation

Let d be a positive integer, not a square. The solutions
(x,y) € Z x Z of the Brahmagupta—Pell-Fermat Equation

22— dy? = +1
form a sequence (2, Y )nez defined by
T + Vdy, = (1 + Vdy,)".

From

22, = (1 + Vdy))" + (21 — Vdy,)"

we deduce that (z,),>0 is a linear recurrence sequence. Same
for v, and also for n > 0.



Doubly infinite linear recurrence sequences

A sequence (u,),cz indexed by Z is a linear recurrence
sequence if it satisfies

(%) Upid = G Upig—1 + -+ Qqly.
for all n € Z.
Recall a4 # 0.

Such a sequence is determined by d consecutive values.



Signed Fibonacci numbers

http://oeis.org/A039834
The Fibonacci sequence extended to negative indices.

...,—21,13,-8,5,-3,2,—1,1,0,1,1,2,3,5,8,13,21, . ..

The sequence

1,1,0,1,—1,2,—3,5, —8,13, —21, 34, —55,89, —144, 233, . ..

is a linear recurrent sequence ,, 1o = —Upi1 + Us,.
The ratio of successive terms converges to —1/¢.


http://oeis.org/A039834

Example of a doubly infinite sequence

The sequence of Lucas numbers beginning at (2, 1) is given by
Uy, = D"+ D", n>0 http://oeis.org/A000032

2,1,3,4,7,11, . ..

The Fibonacci-type sequence based on subtraction of
http://oeis.org/A061084

Uy =D+ DT = (=1)(P" + D), n>0
starts with
2,-1,3,-4,7,—11, ...
This gives the doubly infinite linear recurrence sequence

o —11,7,-4,3,-1,2,1,3,4,7,11, . ..


http://oeis.org/A000032
http://oeis.org/A061084

Discrete version of linear differential equations

A sequence u € C" can be viewed as a linear map N — C.
Define the discrete derivative D by

Du: N — C
n > Uppp — Up.

A sequence u € C" is a linear recurrence sequence if and only
if there exists ) € C[T'] with Q(1) # 1 such that

Q(D)u = 0.

Linear recurrence sequences are a discrete version of linear
differential equations with constant coefficients.

The condition Q(1) # 0 reflects a; # 0 — otherwise one gets ultimately
recurrent sequences.



Skolem — Mahler — Lech Theorem

Theorem (Skolem 1934 — Mahler 1935 — Lech 1953). Given a
linear recurrence sequence, the set of indices n > 0 such that
u, = 0 is a finite union of arithmetic progressions.

Thoralf Albert Skolem Kurt Mahler Christer Lech
(1887 — 1963) (1903 — 1988)

@t Cn

An arithmetic progression is a set of positive integers of the
form {ng, no + k,ng + 2k, ...}. Here, we allow k& = 0.



A dynamical system

Let V' be a finite dimensional vector space over a field of zero
characteristic, H an hyperplane of V', f:V — V an
endomorphism (linear map) and = an element in V.

Theorem. If there exist infinitely many n > 1 such that
f™(x) € H, then there is an (infinite) arithmetic progression of
n for which it is so.

S.G. Dani




A dynamical system

Let V' be a finite dimensional vector space over a field of zero
characteristic, W a subspace of V, f: V — V an
endomorphism (linear map) and x an element in V.

Corollary of the Skolem — Mahler — Lech Theorem. The
set of n. > 0 such that f"(x) € W is a finite union of
arithmetic progressions.

By induction, it suffices to consider the case where W = H is
an hyperplane of V.



Proof of the corollary

Choose a basis of V. The endomorphism f is given by a
square d x d matrix A, where d is the dimension of V.
Consider the characteristic polynomial of A, say

X — g X — gy 1 X —ay.
By the Theorem of Cayley — Hamilton,
Ad = CllAd_l + -t CLd_lA + CLdId

where [ is the identity d x d matrix.



Hyperplane membership

Let byxy + - -+ + bgry = 0 be an equation of the hyperplane H
in the selected basis of V. Let 'b denote the 1 x d matrix

(b1, ...,bq) (transpose of a column matrix b). Using the
notation v for the d x 1 (column) matrix given by the
coordinates of an element v in V, the condition v € H can be
written ‘bv = 0.

Let = be an element in V' and z the d x 1 (column) matrix
given by its coordinates. The condition f™(xz) € H can now be

written
A"z = 0.

The entry u, of the 1 x 1 matrix ‘bA™z satisfies a linear
recurrence relation, hence, the Skolem — Mahler — Lech
Theorem applies.



Remark on the theorem of Skolem—Mahler—Lech

T.A. Skolem treated the case K = QQ of in 1934.

K. Mahler the case K = Q, the algebraic closure of Q, in
1935.

The general case was settled by C. Lech in 1953.
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