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Abstract

Linear recurrence sequences are ubiquitous. They occur in
biology, economics, computer science (analysis of algorithms),
digital signal processing. We give a survey of this subject,
together with connections with linear combinations of powers,
with powers of matrices and with linear differential equations.

We give examples : Fibonacci, Lucas, balancing numbers,
Perrin, Padovan, Narayana.



Applications of linear recurrence sequences

Combinatorics

Elimination

Symmetric functions

Hypergeometric series

Language

Communication, shift registers

Finite difference equations

Logic

Approximation

Pseudo–random sequences



Applications of linear recurrence sequences

• Biology (Integrodifference equations, spatial ecology).

• Computer science (analysis of algorithms).

• Digital signal processing (infinite impulse response (IIR)
digital filters).

• Economics (time series analysis).

https://en.wikipedia.org/wiki/Recurrence_relation

https://en.wikipedia.org/wiki/Recurrence_relation


Leonardo Pisano (Fibonacci)

Fibonacci sequence (F n)n≥0,

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233, . . .

is defined by

F 0 = 0, F 1 = 1,

F n+2 = F n+1+F n for n ≥ 0.

http://oeis.org/A000045

Leonardo Pisano (Fibonacci)
(1170–1250)

http://oeis.org/A000045


OEIS http://oeis.org/

Neil J. A. Sloane’s encyclopaedia http://oeis.org/

Linear recurrence sequence : 13787 results found.

Fibonacci sequence : http://oeis.org/A000045

http://oeis.org/
http://oeis.org/
http://oeis.org/A000045


Fibonacci rabbits
Fibonacci considered the growth of a rabbit population.

A newly born pair of rabbits,
a male and a female, are put
in a field. Rabbits are able to
mate at the age of one month
so that at the end of its
second month a female can
produce another pair of
rabbits ; rabbits never die and
a mating pair always produces

one new pair (one male, one female) every month from the
second month on. The puzzle that Fibonacci posed was : how
many pairs will there be in one year ?

Answer : F 12 = 144.



Fibonacci’s rabbits

Modelization of a population

•  First month

•  Third month

•  Fifth month

•  Sixth month

•  Second month

•  Fourth month

Adult pairs Young pairs 

Sequence: 1,  1,  2,  3,  5,  8, … 



Alfred Lotka : arctic trees

In cold countries, each branch
of some trees gives rise to
another one after the second
year of existence only.

Alfred Lotka
1880 – 1949

Alfred Lotka : American biophysicist, specialist of population dynamics
and energetics. Predator–prey model, developed simultaneously but
independently of Vito Volterra.



Fibonacci numbers in nature

Ammonite (Nautilus shape)



Phyllotaxy
•  Study of the position of leaves on a stem 

and the reason for  them
•  Number of petals of flowers: daisies, 

sunflowers, aster, chicory, asteraceae,…
•  Spiral  patern to permit optimal exposure 

to sunlight  
•  Pine-cone, pineapple, Romanesco 

cawliflower, cactus



Leaf arrangements



http://www.unice.fr/LEML/coursJDV/tp/
tp3.htm

•  Université de Nice,
    Laboratoire Environnement Marin Littoral, 

Equipe d'Accueil "Gestion de la 
Biodiversité"



Phyllotaxy



Phyllotaxy
•  J. Kepler (1611) uses the  Fibonacci 

sequence in his study of the  
dodecahedron and the icosaedron, and 
then of the symmetry of order 5 of the 
flowers.

•  Stéphane Douady and Yves Couder            
Les spirales végétales                                 
La Recherche 250 (Jan. 1993) vol. 24.







Reflections of a ray of light

Consider three parallel sheets of glass and a ray of light which
crosses the first sheet. Each time it touches one of the sheets,
it can cross it or reflect on it.

Denote by pn the number of different paths with the ray going
out of the system after n reflections.

p0 = 1,

p1 = 2,

p2 = 3,

p3 = 5.

In general, pn = F n+2.



Levels of energy of an electron of an atom of

hydrogen
An atom of hydrogen can have three levels of energy, 0 at the
ground level when it does not move, 1 or 2. At each step, it
alternatively gains and looses some level of energy, either 1
or 2, without going sub 0 nor above 2. Let `n be the number
of different possible scenarios for this electron after n steps.

In general, `n = F n+2.

We have `0 = 1 (initial state
level 0)

`1 = 2 : state 1 or 2, scenarios
(ending with gain) 01 or 02.

`2 = 3 : scenarios (ending with
loss) 010, 021 or 020.

`3 = 5 : scenarios (ending with
gain) 0101, 0102, 0212, 0201 or
0202.



Rhythmic patterns
The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
Pingala (200 BC), Virahanka (c. 700 AD), Gopāla (c. 1135),
and the Jain scholar Hemachandra (c. 1150). studied rhythmic
patterns that are formed by concatenating one beat notes •
and double beat notes ��.
one-beat note • : short syllabe (ti in Morse Alphabet)

double beat note �� : long syllabe (ta ta in Morse)

1 beat, 1 pattern : •
2 beats, 2 patterns : • • and ��

3 beats, 3 patterns : • • • , • �� and �� •
4 beats, 5 patterns :

• • • • , �� • • , • �� • , • • ��, �� ��

n beats, F n+1 patterns.



Fibonacci sequence and the Golden ratio

For n ≥ 0, the Fibonacci number F n is the nearest integer to

1√
5

Φn,

where Φ is the Golden Ratio : http://oeis.org/A001622

Φ =
1 +
√

5

2
= lim

n→∞

F n+1

F n

= 1.6180339887499 . . .

which satisfies

Φ = 1 +
1

Φ
·

http://oeis.org/A001622


Binet’s formula

For n ≥ 0,

F n =
Φn − (−Φ)−n√

5

=
(1 +

√
5)n − (1−

√
5)n

2n
√

5
,

Jacques Philippe Marie Binet

1786–1856

Φ =
1 +
√

5

2
, −Φ−1 =

1−
√

5

2
,

X2 −X − 1 = (X − Φ)(X + Φ−1).



The so–called Binet Formula
Formula of A. De Moivre (1718, 1730), Daniel Bernoulli
(1726), L. Euler (1728, 1765), J.P.M. Binet (1843) : for n ≥ 0,

F n =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.

Abraham de
Moivre

(1667–1754)

Daniel
Bernoulli

(1700–1782)

Leonhard
Euler

(1707–1783)

Jacques P.M.
Binet

(1786–1856)

F n is the nearest integer to
1√
5

Φn.



Generating series
A single series encodes all the Fibonacci sequence :∑
n≥0

F nX
n = X +X2 + 2X3 + 3X4 + 5X5 + · · ·+F nX

n + · · ·

Fact : this series is the Taylor expansion of a rational fraction :∑
n≥0

F nX
n =

X

1−X −X2
·

Proof : the product

(X +X2 + 2X3 + 3X4 + 5X5 + 8X6 + · · · )(1−X −X2)

is a telescoping series

X +X2 + 2X3 + 3X4 + 5X5 + 8X6 + · · ·
−X2 − X3 − 2X4 − 3X5 − 5X6 − · · ·

−X3 − X4 − 2X5 − 3X6 − · · ·
= X. 2



Generating series of the Fibonacci sequence

Remark. The denominator 1−X −X2 in the right hand side
of

X +X2 + 2X3 + 3X4 + · · ·+ F nX
n + · · · = X

1−X −X2

is X2f(X−1), where f(X) = X2 −X − 1 is the irreducible
polynomial of the Golden ratio Φ.



Homogeneous linear differential equation
Consider the homogeneous linear differential equation

y′′ − y′ − y = 0.

If y = eλx is a solution, from y′ = λy and y′′ = λ2y we deduce

λ2 − λ− 1 = 0.

The two roots of the polynomial X2 −X − 1 are Φ (the
Golden ration) and Φ′ with

Φ′ = 1− Φ = − 1

Φ
·

A basis of the space of solutions is given by the two functions
eΦx and eΦ′x. Since (Binet’s formula)∑

n≥0

F n
xn

n!
=

1√
5

(
eΦx − eΦ′x

)
,

this exponential generating series of the Fibonacci sequence is
a solution of the differential equation.



Fibonacci and powers of matrices
The Fibonacci linear recurrence relation F n+2 = F n+1 + F n

for n ≥ 0 can be written(
F n+1

F n+2

)
=

(
0 1
1 1

)(
F n

F n+1

)
.

By induction one deduces, for n ≥ 0,(
F n

F n+1

)
=

(
0 1
1 1

)n(
0
1

)
.

An equivalent formula is, for n ≥ 1,(
0 1
1 1

)n
=

(
F n−1 F n

F n F n+1

)
.



Characteristic polynomial

The characteristic polynomial of the matrix

A =

(
0 1
1 1

)
is

det(XI − A) = det

(
X −1
−1 X − 1

)
= X2 −X − 1,

which is the irreducible polynomial of the Golden ratio Φ.



Fibonacci sequence and the Golden ratio

(continued)

For n ≥ 1, Φn ∈ Z[Φ] = Z + ZΦ is a linear combination of 1
and Φ with integer coefficients, namely

Φn = F n−1 + F nΦ.



Fibonacci sequence and Hilbert’s 10th problem

Yuri Matiyasevich (1970) showed that there is a polynomial P
in n, m, and a number of other variables x, y, z, . . . having
the property that n = F 2m iff there exist integers x, y, z, . . .
such that P (n,m, x, y, z, . . . ) = 0.

This completed the proof of
the impossibility of the tenth
of Hilbert’s problems (does
there exist a general method
for solving Diophantine
equations ?) thanks to the
previous work of Hilary
Putnam, Julia Robinson and
Martin Davis.



The Fibonacci Quarterly

The Fibonacci sequence
satisfies a lot of very
interesting properties. Four
times a year, the Fibonacci
Quarterly publishes an issue
with new properties which
have been discovered.



Why are there so many occurrences of Fibonacci

numbers and Golden ratio in the nature ?

According to Leonid Levin,
objects with a small
algorithmic Kolmogorov
complexity (generated by a
short program) occur more
often than others.

Another example is given by Sierpinski triangles.

Reference : J-P. Delahaye.
http://cristal.univ-lille.fr/~jdelahay/pls/

http://cristal.univ-lille.fr/~jdelahay/pls/


Lucas sequence http://oeis.org/000032

The Lucas sequence (Ln)n≥0 satisfies the same recurrence
relation as the Fibonacci sequence, namely

Ln+2 = Ln+1 + Ln for n ≥ 0,

only the initial values are different :

L0 = 2, L1 = 1.

The sequence of Lucas numbers starts with

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . .

A closed form involving the Golden ratio Φ is

Ln = Φn + (−Φ)−n,

from which it follows that for n ≥ 2, Ln is the nearest integer
to Φn.

http://oeis.org/000032


François Édouard Anatole Lucas

Edouard Lucas is best known
for his results in number
theory. He studied the
Fibonacci sequence and
devised the test for Mersenne
primes still used today.

Édouard Lucas
1842 - 1891

http://www-history.mcs.st-andrews.ac.uk/history/

Mathematicians/Lucas.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lucas.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lucas.html


Generating series of the Lucas sequence

The generating series of the Lucas sequence∑
n≥0

LnX
n = 2 +X + 3X2 + 4X3 + · · ·+ LnX

n + · · ·

is nothing else than
2−X

1−X −X2
·



Homogeneous linear differential equation
We have seen that∑

n≥0

F n
xn

n!
=

1√
5

(
eΦx − eΦ′x

)
is a solution of the homogeneous linear differential equation

y′′ − y′ − y = 0.

Since ∑
n≥0

Ln
xn

n!
= eΦx + eΦ′x,

we deduce that a basis of the space of solutions is given by the
two generating series∑

n≥0

F n
xn

n!
and

∑
n≥0

Ln
xn

n!
·



The Lucas sequence and power of matrices

From the linear recurrence relation Ln+2 = Ln+1 + Ln one
deduces, (as we did for the Fibonacci sequence), for n ≥ 0,(

Ln+1

Ln+2

)
=

(
0 1
1 1

)(
Ln
Ln+1

)
,

hence (
Ln
Ln+1

)
=

(
0 1
1 1

)n(
2
1

)
.

The four sequences

(F n)n≥0, (Ln)n≥0, (Φn)n≥0,
(
(−Φ)−n

)
n≥0

span a vector space of dimension 2, any two of these four
sequences give a basis of this space.



An interesting street number
The puzzle itself was about a street in the town of Louvain in

Belgium, where houses are numbered consecutively. One of the

house numbers had the peculiar property that the total of the

numbers lower than it was exactly equal to the total of the

numbers above it. Furthermore, the mysterious house number was

greater than 50 but less than 500.

Prasanta Chandra Mahalanobis

1893 – 1972

Srinivasa Ramanujan

1887 – 1920

http://mathshistory.st-andrews.ac.uk/Biographies/Mahalanobis.html

https://www.math.auckland.ac.nz/~butcher/miniature/miniature2.pdf

http://mathshistory.st-andrews.ac.uk/Biographies/Mahalanobis.html
https://www.math.auckland.ac.nz/~butcher/miniature/miniature2.pdf


Street number : examples
Examples :
• House number 6 in a street with 8 houses :

1 + 2 + 3 + 4 + 5 = 15, 7 + 8 = 15.

• House number 35 in a street with 49 houses. To compute

S := 1 + 2 + 3 + · · ·+ 32 + 33 + 34

write
S = 34 + 33 + 32 + · · ·+ 3 + 2 + 1

so that 2S = 34× 35 :

1 + 2 + 3 + · · ·+ 34 =
34× 35

2
= 595.

On the other side of the house,

36 + 37 + · · ·+ 49 =
49× 50

2
− 35× 36

2
= 1225− 630 = 595.



Other solutions to the puzzle

• House number 1 in a street with 1 house.

• House number 0 in a street with 0 house.

Ramanujan : if no banana is distributed to no student, will
each student get a banana ?

The puzzle requests the house number between 50 and 500.



Street number

Let m be the house number and n the number of houses :

1 + 2 + 3 + · · ·+ (m− 1) = (m+ 1) + (m+ 2) + · · ·+ n.

m(m− 1)

2
=
n(n+ 1)

2
− m(m+ 1)

2
·

This is 2m2 = n(n+ 1). Complete the square on the right :

8m2 = (2n+ 1)2 − 1.

Set x = 2n+ 1, y = 2m. Then

x2 − 2y2 = 1.



Infinitely many solutions to the puzzle

Ramanujan said he has infinitely many solutions (but a single
one between 50 and 500).
Sequence of balancing numbers (number of the house)
https://oeis.org/A001109

0, 1, 6, 35,204, 1189, 6930, 40391, 235416, 1372105, 7997214 . . .

This is a linear recurrence sequence un+1 = 6un − un−1 with
the initial conditions u0 = 0, u1 = 1.

The number of houses is https://oeis.org/A001108

0, 1, 8, 49,288, 1681, 9800, 57121, 332928, 1940449, . . .

https://oeis.org/A001109
https://oeis.org/A001108


Balancing numbers
A balancing number is an integer B ≥ 0 such that there exists
C with

1 + 2 + 3 + · · ·+ (B − 1) = (B + 1) + (B + 2) + · · ·+ C.

Same as B2 = C(C + 1)/2 : a balancing number is an integer
B such that B2 is a triangular number (and a square !).
Sequence of balancing numbers : https://oeis.org/A001109

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214 . . .

This is a linear recurrence sequence

Bn+1 = 6Bn −Bn−1

with the initial conditions B0 = 0, B1 = 1.

https://oeis.org/A001109


Sequence (Bn)n≥0 of balancing numbers :

2Bn
2 = Cn(Cn + 1)

The corresponding sequence (Cn)n≥0 is
https://oeis.org/A001108

0, 1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, . . .

The solutions of x2 − 2y2 = 1 are given by

xn = 2Bn, yn = 2Cn + 1.

Both sequences (xn)n≥0 and (yn)n≥0 satisfy

un+1 = 6un − un−1.

with x0 = 0, x1 = 2, y0 = 1, y1 = 3.
Hence

Cn+1 = 6Cn − Cn−1 + 2.

https://oeis.org/A001108


The sequence of balancing numbers
Characteristic polynomial :
f(X) = X2 − 6X + 1 = (X − 3− 2

√
2)(X − 3 + 2

√
2).

Closed formula :

Bn =
1

4
√

2

(
(3 + 2

√
2)n − (3− 2

√
2)n
)
.

Generating series :

ϕ(X) =
∑
n≥0

BnX
n = X+6X2 +35X3 + · · · = X

1− 6X +X2
·

Exercise :
X2ϕ′ = (1−X2)ϕ2.

Takao Komatsu & Prasanta Kumar Ray. Higher-order identities for
balancing numbers. arXiv:1608.05925 [math.NT]

https://arxiv.org/abs/1608.05925


Exponential generating series of the sequence of

balancing numbers

y(x) =
∑
n≥0

Bn
xn

n!

= x+ 3x2 +
35

6
x3 + · · ·

=
1

4
√

2

(
e(3+2

√
2)x − e(3−2

√
2)x
)
.

This is a solution of the homogeneous linear differential
equation of order 2

y′′ = 6y′ − y

with the initial conditions y(0) = 0, y′(0) = 1.



Balancing numbers and the matrix A =

(
0 1

−1 6

)
(
Bn+1

Bn+2

)
=

(
0 1
−1 6

)(
Bn

Bn+1

)
(n ≥ 0).

Powers of A :(
0 1
−1 6

)n
=

(
−Bn Bn+1

−Bn+1 Bn+2

)
(n ≥ 0).

Characteristic polynomial :

det(XI − A) = det

(
X −1
1 X − 6

)
= X2 − 6X + 1.



Perrin sequence http://oeis.org/A001608

The Perrin sequence (also called skiponacci sequence) is the
linear recurrence sequence (P n)n≥0 defined by

P n+3 = P n+1 + P n for n ≥ 0,

with the initial conditions

P 0 = 3, P 1 = 0, P 2 = 2.

It starts with

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, . . .

François Olivier Raoul Perrin (1841-1910) :
https://en.wikipedia.org/wiki/Perrin_number

http://oeis.org/A001608
https://en.wikipedia.org/wiki/Perrin_number


Plastic (or silver) constant https://oeis.org/A060006

The ratio of successive terms in the Perrin sequence tends to
the plastic number

% = 1.324 717 957 244 746 . . .

which is the minimal Pisot–Vijayaraghavan number, real root
of

x3 − x− 1.

This constant is equal to

% =
3
√

108 + 12
√

69 +
3
√

108− 12
√

69

6
·

https://oeis.org/A060006


Perrin sequence and the plastic constant

Decompose the polynomial X3 −X − 1 into irreducible
factors over C

X3 −X − 1 = (X − %)(X − ρ)(X − ρ)

and over R

X3 −X − 1 = (X − %)(X2 + %X + %−1).

Hence ρ and ρ are the roots of X2 + %X + %−1. Then, for
n ≥ 0,

P n = %n + ρn + ρn.

It follows that, for n ≥ 0, P n is the nearest integer to %n.



Generating series of the Perrin sequence

The generating series of the Perrin sequence∑
n≥0

P nX
n = 3 + 2X2 + 3X3 + 2X4 + · · ·+ P nX

n + · · ·

is nothing else than

3−X2

1−X2 −X3
·

The denominator 1−X2 −X3 is X3f(X−1) where
f(X) = X3 −X − 1 is the irreducible polynomial of %.



Exponential generating series of the Perrin

sequence

The power series

y(x) =
∑
n≥0

P n
xn

n!

is a solution of the differential equation

y′′′ − y′ − y = 0

with the initial conditions y(0) = 3, y′(0) = 0, y′′(0) = 2.



Perrin sequence and power of matrices

From
P n+3 = P n+1 + P n

we deduce P n+1

P n+2

P n+3

 =

0 1 0
0 0 1
1 1 0

 P n

P n+1

P n+2

 .

Hence  P n

P n+1

P n+2

 =

0 1 0
0 0 1
1 1 0

n3
0
2

 .



Characteristic polynomial

The characteristic polynomial of the matrix

A =

0 1 0
0 0 1
1 1 0


is

det(XI − A) = det

X −1 0
0 X −1
−1 −1 X

 = X3 −X − 1,

which is the irreducible polynomial of the plastic constant %.



Perrin’s remark

R. Perrin L’intermédiaire des mathématiciens, Query 1484, v.6,
76–77 (1899).

The website www.Perrin088.org maintained by Richard Turk is
devoted to Perrin numbers. See OEISA113788.

www.Perrin088.org
OEIS A113788


Perrin pseudoprimes https://oeis.org/A013998

If p is prime, then p divides P p.

The smallest composite n such that n divides P n is
5212 = 271441.
The number P 271441 has 33 150 decimal digits (the number c
which satisfies 10c = %271441 is c = 271441(log %)/(log 10)).

Also for the composite number n = 904631 = 7× 13× 9941,
the number n divides P n.

Jon Grantham has proved in 2010 that there are infinitely
many Perrin pseudoprimes.

https://oeis.org/A013998


Padovan sequence https://oeis.org/A000931

The Padovan sequence (pn)n≥0 satisfies the same recurrence

pn+3 = pn+1 + pn

as the Perrin sequence but has different initial values :

p0 = 1, p1 = p2 = 0.

It starts with

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, . . .

Richard Padovan
http://mathworld.wolfram.com/LinearRecurrenceEquation.html

https://oeis.org/A000931
http://mathworld.wolfram.com/LinearRecurrenceEquation.html


Generating series and power of matrices

1 +X3 +X5 + · · ·+ pnX
n + · · · = 1−X2

1−X2 −X3
·

For n ≥ 0,  pn
pn+1

pn+2

 =

0 1 0
0 0 1
1 1 0

n1
0
0

 .



Padovan triangles

pn = pn−2 + pn−3

pn−1 = pn−3 + pn−4

pn−2 = pn−4 + pn−5

Hence

pn − pn−1 = pn−5

pn = pn−1 + pn−5



Padovan triangles



Fibonacci squares vs Padovan triangles

Both are C1 curve, not C2



Padovan, Euler, Zagier, Goncharov and Brown
For n ≥ 0, the number of compositions s = (s1, . . . , sk) with
si ∈ {2, 3} and s1 + · · ·+ sk = n is pn+3. This is (an upper
bound for) the dimension of the space spanned by the multiple
zeta values of weight n of Euler and Zagier.

Leonhard Euler Don Zagier

Alexander Goncharov Francis Brown

https://opc.mfo.de/detail?photo_id=16858


Narayana sequence https://oeis.org/A000930

Narayana sequence is defined by the recurrence relation

Cn+3 = Cn+2 + Cn

with the initial values C0 = 2, C1 = 3, C2 = 4.

It starts with

2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, . . .

Real root of x3 − x2 − 1

3

√
29 + 3

√
93

2
+

3

√
29− 3

√
93

2
+ 1

3
= 1.465571231876768 . . .

https://oeis.org/A000930


Generating series and power of matrices

2 + 3X + 4X2 + 6X3 + · · ·+ CnX
n + · · · = 2 +X +X2

1−X −X3
·

Differential equation : y′′′ − y′′ − y = 0 ;
initial conditions : y(0) = 2, y′(0) = 3, y′′(0) = 4.

For n ≥ 0,  Cn

Cn+1

Cn+2

 =

0 1 0
0 0 1
1 0 1

n2
3
4

 .



Narayana’s cows

Narayana was an Indian mathematician in the 14th century
who proposed the following problem :
A cow produces one calf every year. Beginning in its fourth
year each calf produces one calf at the beginning of each year.
How many calves are there altogether after, for example, 17
years ?



Music : http://www.pogus.com/21033.html

In working this out, Tom Johnson found a way to translate
this into a composition called Narayana’s Cows.
Music : Tom Johnson
Saxophones : Daniel Kientzy

http://www.pogus.com/21033.html


Year 1 2 3 4 

= + 



Year 2 3 4 5 

= + 



Narayana’s cows

http://www.math.jussieu.fr/~michel.waldschmidt/

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Original 
Cow 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Second 
generation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Third 
generation 0 0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105

Fourth 
generation 0 0 0 0 0 0 1 4 10 20 35 56 84 120 165 220 286

Fifth 
generation 0 0 0 0 0 0 0 0 0 1 5 15 35 70 126 210 330

Sixth 
generation 0 0 0 0 0 0 0 0 0 0 0 0 1 6 21 56 126

Seventh 
generation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7

Total 2 3 4 6 9 13 19 28 41 60 88 129 189 277 406 595 872

http://www.math.jussieu.fr/~michel.waldschmidt/


17th year: 872 cows 



Jean-Paul Allouche and Tom Johnson

http://www.math.jussieu.fr/~jean-paul.allouche/

bibliorecente.html

http://www.math.jussieu.fr/~allouche/johnson1.pdf

http://www.math.jussieu.fr/~jean-paul.allouche/bibliorecente.html
http://www.math.jussieu.fr/~jean-paul.allouche/bibliorecente.html
http://www.math.jussieu.fr/~allouche/johnson1.pdf


Cows, music and morphisms

Jean-Paul Allouche and Tom Johnson

• Narayana’s Cows and Delayed Morphisms
In 3èmes Journées d’Informatique Musicale (JIM ’96), Ile de
Tatihou, Les Cahiers du GREYC (1996 no. 4), pages 2-7, May
1996.

http://kalvos.org/johness1.html

• Finite automata and morphisms in assisted musical
composition,
Journal of New Music Research, no. 24 (1995), 97 – 108.
http://www.tandfonline.com/doi/abs/10.1080/

09298219508570676

http://web.archive.org/web/19990128092059/www.swets.

nl/jnmr/vol24_2.html

http://kalvos.org/johness1.html
http://www.tandfonline.com/doi/abs/10.1080/09298219508570676
http://www.tandfonline.com/doi/abs/10.1080/09298219508570676
http://web.archive.org/web/19990128092059/www.swets.nl/jnmr/vol24_2.html
http://web.archive.org/web/19990128092059/www.swets.nl/jnmr/vol24_2.html


Music and the Fibonacci 
sequence

•  Dufay, XVème siècle
•  Roland de Lassus
•  Debussy, Bartok, Ravel, Webern
•  Stockhausen
•  Xenakis
•  Tom Johnson Automatic Music for six 

percussionists



Some recent work

Christian Ballot
On a family of recurrences
that includes the Fibonacci
and the Narayana recurrences.
arXiv:1704.04476 [math.NT]

We survey and prove properties a family of recurrences bears
in relation to integer representations, compositions, the Pascal
triangle, sums of digits, Nim games and Beatty sequences.

https://arxiv.org/abs/1704.04476


Linear recurrence sequences : examples
q ≥ 1 ; initial conditions u0 = u1 = · · · = uq−2 = 0, uq−1 = 1.

Xq −Xq−1 − 1 :

q = 1, X − 2, exponential un = 2n

q = 2, X2 −X − 1, Fibonacci un = Fn

q = 3, X3 −X2 − 1, Narayana un = Cn

Xq −Xq−1 −Xq−2 − · · · −X − 1 :

q = 1, X − 1, constant sequence un = 1
q = 2, X2 −X − 1, Fibonacci un = Fn

q = 3, X3 −X2 −X − 1, Tribonacci

Xq −X − 1 :

q = 2, X2 −X − 1, Fibonacci un = Fn

q = 3, X3 −X − 1, Padovan un = pn



Summary
The same mathematical object occurs in a different guise :

• Linear recurrence sequences

un+d = a1un+d−1 + · · ·+ adun.

• Linear combinations with polynomial coefficients of powers

p1(n)γ1
n + · · ·+ p`(n)γn` .

• Taylor coefficients of rational functions.

• Coefficients of power series which are solutions of
homogeneous linear differential equations.

• Sequence of coefficients of powers of a matrix.



Polynomial combinations of powers
Given polynomials p1, . . . , p` in C[X] and elements γ1, . . . , γ`
in C×, the sequence(

p1(n)γ1
n + · · ·+ p`(n)γn`

)
n≥0

is a linear recurrence sequence, the minimal polynomial of
which is of the form

Xd − a1X
d−1 − · · · − ad =

∏̀
i=1

(X − γi)ti ,

Fact : any linear recurrence sequence is of this form.

Consequence : the sum and the product of any two linear
recurrence sequences are linear recurrence sequences.
The set of all linear recurrence sequences with coefficients in
C is a sub–C–algebra of CN.



Sum of polynomial combinations of powers

For u = (un)n≥0 and v = (vn)n≥0,

u + v = (un + vn)n≥0.

If u1 and u2 are two linear recurrence sequences of
characteristic polynomials f 1 and f 2 respectively, then u1 + u2

satisfies the linear recurrence, the characteristic polynomial of
which is

f 1f 2

gcd(f 1, f 2)
·



Product of polynomial combinations of powers
For u = (un)n≥0 and v = (vn)n≥0,

uv = (unvn)n≥0.

If the characteristic polynomials of the two linear recurrence
sequences u1 and u2 are respectively

f 1(T ) =
∏̀
j=1

(T − γj)tj and f 2(T ) =
`′∏
k=1

(T − γ′k)t
′
k ,

then u1u2 satisfies the linear recurrence, the characteristic
polynomial of which is

∏̀
j=1

`′∏
k=1

(T − γjγ′k)tj+t′k−1.



Linear recurrence sequences and

Brahmagupta–Pell–Fermat Equation

Let d be a positive integer, not a square. The solutions
(x, y) ∈ Z× Z of the Brahmagupta–Pell–Fermat Equation

x2 − dy2 = ±1

form a sequence (xn, yn)n∈Z defined by

xn +
√
dyn = (x1 +

√
dy1)n.

From
2xn = (x1 +

√
dy1)n + (x1 −

√
dy1)n

we deduce that (xn)n≥0 is a linear recurrence sequence. Same
for yn, and also for n ≥ 0.



Doubly infinite linear recurrence sequences

A sequence (un)n∈Z indexed by Z is a linear recurrence
sequence if it satisfies

(?) un+d = a1un+d−1 + · · ·+ adun.

for all n ∈ Z.

Recall ad 6= 0.

Such a sequence is determined by d consecutive values.



Signed Fibonacci numbers

http://oeis.org/A039834

The Fibonacci sequence extended to negative indices.

. . . ,−21, 13,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

The sequence

1, 1, 0, 1,−1, 2,−3, 5,−8, 13,−21, 34,−55, 89,−144, 233, . . .

is a linear recurrent sequence un+2 = −un+1 + un.
The ratio of successive terms converges to −1/φ.

http://oeis.org/A039834


Example of a doubly infinite sequence
The sequence of Lucas numbers beginning at (2, 1) is given by
un = Φn + Φ̃n, n ≥ 0 http://oeis.org/A000032

2, 1, 3, 4, 7, 11, . . .

The Fibonacci-type sequence based on subtraction of
http://oeis.org/A061084

u−n = Φ−n + Φ̃−n = (−1)n(Φn + Φ̃n), n ≥ 0

starts with
2,−1, 3,−4, 7,−11, . . .

This gives the doubly infinite linear recurrence sequence

. . . ,−11, 7,−4, 3,−1, 2, 1, 3, 4, 7, 11, . . .

http://oeis.org/A000032
http://oeis.org/A061084


Discrete version of linear differential equations

A sequence u ∈ CN can be viewed as a linear map N −→ C.
Define the discrete derivative D by

Du : N −→ C
n 7−→ un+1 − un.

A sequence u ∈ CN is a linear recurrence sequence if and only
if there exists Q ∈ C[T ] with Q(1) 6= 1 such that

Q(D)u = 0.

Linear recurrence sequences are a discrete version of linear
differential equations with constant coefficients.

The condition Q(1) 6= 0 reflects ad 6= 0 – otherwise one gets ultimately
recurrent sequences.



Skolem – Mahler – Lech Theorem

Theorem (Skolem 1934 – Mahler 1935 – Lech 1953). Given a
linear recurrence sequence, the set of indices n ≥ 0 such that
un = 0 is a finite union of arithmetic progressions.

Thoralf Albert Skolem Kurt Mahler Christer Lech
(1887 – 1963) (1903 – 1988)

An arithmetic progression is a set of positive integers of the
form {n0, n0 + k, n0 + 2k, . . .}. Here, we allow k = 0.



A dynamical system

Let V be a finite dimensional vector space over a field of zero
characteristic, H an hyperplane of V , f : V → V an
endomorphism (linear map) and x an element in V .

Theorem. If there exist infinitely many n ≥ 1 such that
fn(x) ∈ H, then there is an (infinite) arithmetic progression of
n for which it is so.

A. J. Parameswaran S.G. Dani



A dynamical system

Let V be a finite dimensional vector space over a field of zero
characteristic, W a subspace of V , f : V → V an
endomorphism (linear map) and x an element in V .

Corollary of the Skolem – Mahler – Lech Theorem. The
set of n ≥ 0 such that fn(x) ∈ W is a finite union of
arithmetic progressions.

By induction, it suffices to consider the case where W = H is
an hyperplane of V .



Proof of the corollary

Choose a basis of V . The endomorphism f is given by a
square d× d matrix A, where d is the dimension of V .
Consider the characteristic polynomial of A, say

Xd − a1X
d−1 − · · · − ad−1X − ad.

By the Theorem of Cayley – Hamilton,

Ad = a1A
d−1 + · · ·+ ad−1A+ adId

where Id is the identity d× d matrix.



Hyperplane membership

Let b1x1 + · · ·+ bdxd = 0 be an equation of the hyperplane H
in the selected basis of V . Let tb denote the 1× d matrix
(b1, . . . , bd) (transpose of a column matrix b). Using the
notation v for the d× 1 (column) matrix given by the
coordinates of an element v in V , the condition v ∈ H can be
written tb v = 0.

Let x be an element in V and x the d× 1 (column) matrix
given by its coordinates. The condition fn(x) ∈ H can now be
written

tbAnx = 0.

The entry un of the 1× 1 matrix tbAnx satisfies a linear
recurrence relation, hence, the Skolem – Mahler – Lech
Theorem applies.



Remark on the theorem of Skolem–Mahler–Lech

T.A. Skolem treated the case K = Q of in 1934.

K. Mahler the case K = Q, the algebraic closure of Q, in
1935.

The general case was settled by C. Lech in 1953.
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