IIT Bombay Indian Institute of Technology Institute Colloquium November 26, 2014

Multiple Zeta Values

Michel Waldschmidt
Université Pierre et Marie Curie (Paris 6) France
http://www.imj-prg.fr/~michel.waldschmidt/

Abstract

L. Euler (1707-1783) investigated the values of the numbers

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}
$$

for s a rational integer, and B. Riemann (1826-1866) extended this function to complex values of s. For s a positive even integer, $\zeta(s) / \pi^{s}$ is a rational number. Our knowledge on the values of $\zeta(s)$ for s a positive odd integer is extremely limited. Recent progress involves the wider set of numbers

$$
\zeta\left(s_{1}, \ldots, s_{k}\right)=\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \frac{1}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}
$$

for s_{1}, \ldots, s_{k} positive integers with $s_{1} \geq 2$.

Abstract (Continued)

Some Bourbaki lectures (by Pierre Cartier in March 2001 and by Pierre Deligne in January 2012) have been devoted to this question. As a matter of fact, there are three Q -algebras which are intertwined : the first one is the subalgebra of the complex numbers spanned by these multiple zeta values (MZV). Another one is the algebra of formal MZV arising from the known combinatorial relations among the multiple zeta values. The main conjecture is to prove that these two algebras are isomorphic. The solution is likely to come from the study of the third algebra, which is the algebra of motivic zeta values, arising from the pro-unipotent fundamental group, involving cohomology, mixed Tate motives. Outstanding progress (mainly by Francis Brown) has been made recently on motivic zeta values.

Harmonic series

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\cdots
$$

$$
\frac{1}{3}+\frac{1}{4}>\frac{2}{4}=\frac{1}{2} \quad \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{4}{8}=\frac{1}{2} \quad \text { Nicolas Oresme (1320 - 1382) }
$$

Nicolas Oresme (1320-1382)

$$
\begin{gathered}
\frac{1}{1}+\frac{1}{2}+\underbrace{\frac{1}{3}+\frac{1}{4}}+\underbrace{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}}+\cdots \\
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}>\frac{n}{2}
\end{gathered}
$$

Euler-Mascheroni constant

$$
\gamma=\lim _{N \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}-\log N\right)=0.5772156649 \ldots
$$

Neil J. A. Sloane - The On-Line Encyclopedia of Integer Sequences
http://oeis.org/A001620

The Basel Problem (1644) : $\sum_{n \geq 1} 1 / n^{2}$

In 1644, Pietro Mengoli (1626-1686) asked the exact value of the sum
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots=1.644934 \ldots$

Basel in 1761

The Bernoulli family was originally from Antwerp, at that time in the Spanish Netherlands, but emigrated to escape the Spanish persecution of the Huguenots. After a brief period in Frankfurt the family moved to Basel, in Switzerland.

The Bernoulli family

Jacob Bernoulli (1654-1705; also known as James or Jacques) Mathematician after whom Bernoulli numbers are named.

Johann Bernoulli (1667-1748; also known as Jean) Mathematician and early adopter of infinitesimal calculus.

The Bernoulli family (continued)

Nicolaus II Bernoulli (1695-1726) Mathematician ; worked on curves, differential equations, and probability. Daniel Bernoulli (1700-1782) Developer of

Bernoulli's principle and St. Petersburg paradox. Johann II Bernoulli (1710-1790; also known as Jean)

Mathematician and physicist. Johann III Bernoulli (1744-1807; also known as Jean) Astronomer, geographer, and mathematician. Jacob II Bernoulli (1759-1789; also known as Jacques) Physicist and mathematician.

Nicolaus II

Daniel

Johan III - Jacob

Similar series

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots=1
$$

Telescoping series

Known by Gottfried Wilhelm von Leibniz (1646-1716) and Johann Bernoulli (1667-1748)

Similar series

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots=1
$$

Telescoping series:

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
$$

Known by Gottfried Wilhelm von Leibniz (1646-1716) and Johann Bernoulli (1667-1748)

Another similar series

Example

$$
\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\frac{1}{5 \cdot 6} \cdots=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\log 2 .
$$

Another similar series

Example

$$
\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\frac{1}{5 \cdot 6} \cdots=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\log 2 .
$$

$$
\log (1+t)=\sum_{n \geq 1}(-1)^{n-1} \frac{t^{n}}{n} \quad-1<t \leq 1 .
$$

Another similar series

Example

$$
\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\frac{1}{5 \cdot 6} \cdots=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\log 2 .
$$

$$
\begin{gathered}
\log (1+t)=\sum_{n \geq 1}(-1)^{n-1} \frac{t^{n}}{n} \quad-1<t \leq 1 \\
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)(2 n+2)}=\log 2
\end{gathered}
$$

The Basel Problem : $\sum_{n \geq 1} 1 / n^{2}$

1728 Daniel Bernoulli : approximate value $8 / 5=1.6$

1728 Christian Goldbach: 1.6445 ± 0.0008

1731 Leonard Euler: 1.644934...

$\zeta(2)=\pi^{2} / 6$ by L. Euler (1707-1783)

The Basel problem, first posed by Pietro Mengoli in 1644, was solved by Leonhard Euler in 1735, when he was 28 only.

$$
\zeta(2)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=\sum_{n \geq 1} \frac{1}{n^{2}} .
$$

$$
\zeta(2)=\frac{\pi^{2}}{6} .
$$

"Proof" of $\zeta(2)=\pi^{2} / 6$, following Euler

The sum of the inverses of the roots of a polynomial f with $f(0)=1$ is $-f^{\prime}(0):$ for

$$
1+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=\left(1-\alpha_{1} z\right) \cdots\left(1-\alpha_{n} z\right)
$$

we have $\alpha_{1}+\cdots+\alpha_{n}=-a_{1}$.

Set $z=x^{2}$. The zeroes of the function
are $\pi^{2}, 4 \pi^{2}, 9 \pi^{2}, \ldots$ hence the sum of the inverses of these
numbers is

"Proof" of $\zeta(2)=\pi^{2} / 6$, following Euler

The sum of the inverses of the roots of a polynomial f with $f(0)=1$ is $-f^{\prime}(0):$ for

$$
1+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=\left(1-\alpha_{1} z\right) \cdots\left(1-\alpha_{n} z\right)
$$

we have $\alpha_{1}+\cdots+\alpha_{n}=-a_{1}$.
Write

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots
$$

Set $z=x^{2}$. The zeroes of the function
are $\pi^{2}, 4 \pi^{2}, 9 \pi^{2}$,

"Proof" of $\zeta(2)=\pi^{2} / 6$, following Euler

The sum of the inverses of the roots of a polynomial f with $f(0)=1$ is $-f^{\prime}(0)$: for

$$
1+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=\left(1-\alpha_{1} z\right) \cdots\left(1-\alpha_{n} z\right)
$$

we have $\alpha_{1}+\cdots+\alpha_{n}=-a_{1}$.
Write

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots
$$

Set $z=x^{2}$. The zeroes of the function

$$
\frac{\sin \sqrt{z}}{\sqrt{z}}=1-\frac{z}{3!}+\frac{z^{2}}{5!}-\frac{z^{3}}{7!}+\cdots
$$

are $\pi^{2}, 4 \pi^{2}, 9 \pi^{2}, \ldots$

"Proof" of $\zeta(2)=\pi^{2} / 6$, following Euler

The sum of the inverses of the roots of a polynomial f with $f(0)=1$ is $-f^{\prime}(0)$: for

$$
1+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=\left(1-\alpha_{1} z\right) \cdots\left(1-\alpha_{n} z\right)
$$

we have $\alpha_{1}+\cdots+\alpha_{n}=-a_{1}$.
Write

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots
$$

Set $z=x^{2}$. The zeroes of the function

$$
\frac{\sin \sqrt{z}}{\sqrt{z}}=1-\frac{z}{3!}+\frac{z^{2}}{5!}-\frac{z^{3}}{7!}+\cdots
$$

are $\pi^{2}, 4 \pi^{2}, 9 \pi^{2}, \ldots$ hence the sum of the inverses of these numbers is

$$
\sum_{n \geq 1} \frac{1}{n^{2} \pi^{2}}=\frac{1}{6}
$$

Remark

Let $\lambda \in \mathbf{C}$. The functions

$$
f(z)=1+a_{1} z+a_{2} z^{2}+\cdots
$$

and

$$
e^{\lambda z} f(z)=1+\left(a_{1}+\lambda\right) z+\cdots
$$

have the same zeroes, say $1 / \alpha_{i}$.

The sum $\sum_{i} \alpha_{i}$ cannot be at the same time $-a_{1}$ and $-a_{1}-\lambda$.

Remark

Let $\lambda \in \mathbf{C}$. The functions

$$
f(z)=1+a_{1} z+a_{2} z^{2}+\cdots
$$

and

$$
e^{\lambda z} f(z)=1+\left(a_{1}+\lambda\right) z+\cdots
$$

have the same zeroes, say $1 / \alpha_{i}$.

The sum $\sum_{i} \alpha_{i}$ cannot be at the same time $-a_{1}$ and $-a_{1}-\lambda$.

Completing Euler's proof

$$
\frac{\sin x}{x}=\prod_{n \geq 1}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right)
$$

http://en.wikipedia.org/wiki/Basel_problem
Evaluating $\zeta(2)$. Fourteen proofs compiled by Robin Chapman.

Completing Euler's proof

$$
\begin{gathered}
\frac{\sin x}{x}=\prod_{n \geq 1}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right) \\
\frac{\sin x}{x}=1-\frac{x^{2}}{6}+\cdots \Longrightarrow \sum_{n \geq 1} \frac{1}{n^{2} \pi^{2}}=\frac{1}{6}
\end{gathered}
$$

http://en.wikipedia.org/wiki/Basel_problem
Evaluating $\zeta(2)$ Fourteen proofs compiled by Robin Chapman.

Completing Euler's proof

$$
\begin{gathered}
\frac{\sin x}{x}=\prod_{n \geq 1}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right) \\
\frac{\sin x}{x}=1-\frac{x^{2}}{6}+\cdots \Longrightarrow \sum_{n \geq 1} \frac{1}{n^{2} \pi^{2}}=\frac{1}{6}
\end{gathered}
$$

http://en.wikipedia.org/wiki/Basel_problem
Evaluating $\zeta(2)$. Fourteen proofs compiled by Robin Chapman.

Completing Euler's proof

$$
\begin{gathered}
\frac{\sin x}{x}=\prod_{n \geq 1}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right) \\
\frac{\sin x}{x}=1-\frac{x^{2}}{6}+\cdots \Longrightarrow \sum_{n \geq 1} \frac{1}{n^{2} \pi^{2}}=\frac{1}{6}
\end{gathered}
$$

http://en.wikipedia.org/wiki/Basel_problem
Evaluating $\zeta(2)$. Fourteen proofs compiled by Robin Chapman.

Another proof (Calabi)

Pierre Cartier
P. Cartier. - Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents. Sém. Bourbaki no. 885 Astérisque 282 (2002), 137-173.

Another proof (Calabi)

$$
\frac{1}{1-x^{2} y^{2}}=\sum_{n \geq 0} x^{2 n} y^{2 n}
$$

Another proof (Calabi)

$$
\begin{aligned}
\frac{1}{1-x^{2} y^{2}} & =\sum_{n \geq 0} x^{2 n} y^{2 n} \\
\int_{0}^{1} x^{2 n} d x & =\frac{1}{2 n+1}
\end{aligned}
$$

Another proof (Calabi)

$$
\begin{aligned}
& \frac{1}{1-x^{2} y^{2}}=\sum_{n \geq 0} x^{2 n} y^{2 n} \\
& \int_{0}^{1} x^{2 n} d x=\frac{1}{2 n+1} . \\
& \int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x^{2} y^{2}}=\sum_{n \geq 0} \frac{1}{(2 n+1)^{2}} .
\end{aligned}
$$

Another proof (Calabi)

$$
\begin{gathered}
\frac{1}{1-x^{2} y^{2}}=\sum_{n \geq 0} x^{2 n} y^{2 n} \\
\int_{0}^{1} x^{2 n} d x=\frac{1}{2 n+1} . \\
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x^{2} y^{2}}=\sum_{n \geq 0} \frac{1}{(2 n+1)^{2}} . \\
x=\frac{\sin u}{\cos v}, \quad y=\frac{\sin v}{\cos u},
\end{gathered}
$$

Another proof (Calabi)

$$
\begin{gathered}
\frac{1}{1-x^{2} y^{2}}=\sum_{n \geq 0} x^{2 n} y^{2 n} \\
\int_{0}^{1} x^{2 n} d x=\frac{1}{2 n+1} . \\
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x^{2} y^{2}}=\sum_{n \geq 0} \frac{1}{(2 n+1)^{2}} . \\
x=\frac{\sin u}{\cos v}, \quad y=\frac{\sin v}{\cos u}, \\
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x^{2} y^{2}}=\int_{0 \leq u \leq \pi / 2,0 \leq v \leq \pi / 2, u+v \leq \pi / 2} d u d v=\frac{\pi^{2}}{8} .
\end{gathered}
$$

Completing Calabi's proof of $\zeta(2)=\pi^{2} / 6$

From

$$
\sum_{n \geq 0} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{8}
$$

one deduces

Completing Calabi's proof of $\zeta(2)=\pi^{2} / 6$

From

$$
\sum_{n \geq 0} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{8}
$$

one deduces

$$
\sum_{n \geq 1} \frac{1}{n^{2}}=\sum_{n \geq 1} \frac{1}{(2 n)^{2}}+\sum_{n \geq 0} \frac{1}{(2 n+1)^{2}}
$$

Completing Calabi's proof of $\zeta(2)=\pi^{2} / 6$

From

$$
\sum_{n \geq 0} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{8}
$$

one deduces

$$
\begin{gathered}
\sum_{n \geq 1} \frac{1}{n^{2}}=\sum_{n \geq 1} \frac{1}{(2 n)^{2}}+\sum_{n \geq 0} \frac{1}{(2 n+1)^{2}} \\
\sum_{n \geq 1} \frac{1}{(2 n)^{2}}=\frac{1}{4} \sum_{n \geq 1} \frac{1}{n^{2}}
\end{gathered}
$$

Completing Calabi's proof of $\zeta(2)=\pi^{2} / 6$

From

$$
\sum_{n \geq 0} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{8}
$$

one deduces

$$
\begin{gathered}
\sum_{n \geq 1} \frac{1}{n^{2}}=\sum_{n \geq 1} \frac{1}{(2 n)^{2}}+\sum_{n \geq 0} \frac{1}{(2 n+1)^{2}} \\
\sum_{n \geq 1} \frac{1}{(2 n)^{2}}=\frac{1}{4} \sum_{n \geq 1} \frac{1}{n^{2}} \\
\zeta(2)=\sum_{n \geq 1} \frac{1}{n^{2}}=\frac{4}{3} \sum_{n \geq 0} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{6}
\end{gathered}
$$

Introductio in analysin infinitorum

Leonhard Euler
(1707-1783)

Introductio in analysin infinitorum

Special values of the Zeta function

$$
\begin{aligned}
& \zeta(s) \text { for } s \in \mathbf{Z}, s \geq 2 \\
& \text { Jacques Bernoulli } \\
& \quad(1654-1705) \\
& \text { Leonard Euler (1739). }
\end{aligned}
$$

$\pi^{-2 k} \zeta(2 k) \in \mathbf{Q}$ for $k \geq 1$ (Bernoulli numbers).

Bernoulli numbers

$$
\frac{t}{e^{t}-1}=1-\frac{t}{2}+\sum_{n \geq 1}(-1)^{n+1} B_{n} \frac{t^{2 n}}{(2 n)!}
$$

$$
B_{1}=\frac{1}{6}, \quad B_{2}=\frac{1}{30}, \quad B_{3}=\frac{1}{42}, \quad B_{4}=\frac{1}{30}, \quad B_{5}=\frac{5}{66} .
$$

Bernoulli numbers

$$
\begin{gathered}
\frac{t}{e^{t}-1}=1-\frac{t}{2}+\sum_{n \geq 1}(-1)^{n+1} B_{n} \frac{t^{2 n}}{(2 n)!} . \\
B_{1}=\frac{1}{6}, \quad B_{2}=\frac{1}{30}, \quad B_{3}=\frac{1}{42}, \quad B_{4}=\frac{1}{30}, \quad B_{5}=\frac{5}{66} \ldots \\
\zeta(2 n)=2^{2 n-1} \frac{B_{n}}{(2 n)!} \pi^{2 n} \quad(n \geq 1) .
\end{gathered}
$$

Bernoulli numbers

$$
\begin{gathered}
\frac{t}{e^{t}-1}=1-\frac{t}{2}+\sum_{n \geq 1}(-1)^{n+1} B_{n} \frac{t^{2 n}}{(2 n)!} . \\
B_{1}=\frac{1}{6}, \quad B_{2}=\frac{1}{30}, \quad B_{3}=\frac{1}{42}, \quad B_{4}=\frac{1}{30}, \quad B_{5}=\frac{5}{66} \ldots \\
\zeta(2 n)=2^{2 n-1} \frac{B_{n}}{(2 n)!} \pi^{2 n} \quad(n \geq 1) .
\end{gathered}
$$

Bernoulli numbers

$$
\begin{gathered}
\frac{t}{e^{t}-1}=1-\frac{t}{2}+\sum_{n \geq 1}(-1)^{n+1} B_{n} \frac{t^{2 n}}{(2 n)!} . \\
B_{1}=\frac{1}{6}, \quad B_{2}=\frac{1}{30}, \quad B_{3}=\frac{1}{42}, \quad B_{4}=\frac{1}{30}, \quad B_{5}=\frac{5}{66} \ldots \\
\zeta(2 n)=2^{2 n-1} \frac{B_{n}}{(2 n)!} \pi^{2 n} \quad(n \geq 1) . \\
\zeta(2)=\frac{\pi^{2}}{6}, \quad \zeta(4)=\frac{\pi^{4}}{90}, \quad \zeta(6)=\frac{\pi^{6}}{945}, \quad \zeta(8)=\frac{\pi^{8}}{9450} .
\end{gathered}
$$

Riemann zeta function

$$
\begin{aligned}
\zeta(s) & =\sum_{n \geq 1} \frac{1}{n^{s}} \\
& =\prod_{p} \frac{1}{1-p^{-s}}
\end{aligned}
$$

Euler : $s \in \mathbf{R}$.
Riemann : $s \in \mathbf{C}$.

Analytic continuation of the Riemann zeta function

The complex function which is defined for \Re es >1 by the Dirichlet series

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}
$$

has a meromorphic continuation to \mathbf{C} with a unique pole in $s=1$ of residue 1 .
B. Riemann
(1826-1866)

Analytic continuation of the Riemann zeta function

The complex function which is defined for \Re es >1 by the Dirichlet series

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}
$$

has a meromorphic continuation to \mathbf{C} with a unique pole in $s=1$ of residue 1 .

$$
\lim _{s \rightarrow 1}\left(\zeta(s)-\frac{1}{s-1}\right)=\gamma .
$$

B. Riemann
(1826-1866)

Analytic continuation of the Riemann zeta function

The complex function which is defined for $\Re e s>1$ by the Dirichlet series

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}
$$

has a meromorphic continuation to \mathbf{C} with a unique pole in $s=1$ of residue 1 .

$$
\lim _{s \rightarrow 1}\left(\zeta(s)-\frac{1}{s-1}\right)=\gamma .
$$

B. Riemann
(1826-1866)

Euler Constant :

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n\right) \\
& =0.577215664901532860606512090082 \ldots
\end{aligned}
$$

Functional equation of the Riemann zeta function

Connection between $\zeta(s)$ and $\zeta(1-s)$:

$$
\zeta(s)=2^{s} \pi^{s-1} \sin (\pi s / 2) \Gamma(1-s) \zeta(1-s)
$$

Euler Gamma function

Trivial zeroes of the Riemann zeta function $-2,-4,-6$. Riemann hypothesis:

The non trivial zeroes of the Riemann zeta function have real part $1 / 2$.

Functional equation of the Riemann zeta function

Connection between $\zeta(s)$ and $\zeta(1-s)$:

$$
\zeta(s)=2^{s} \pi^{s-1} \sin (\pi s / 2) \Gamma(1-s) \zeta(1-s)
$$

Euler Gamma function

$$
\Gamma(s)=\frac{1}{s} \prod_{n=1}^{\infty} \frac{(1+1 / n)^{s}}{1+s / n}=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

Trivial zeroes of the Riemann zeta function $-2,-4,-6$. Riemann hypothesis:

Functional equation of the Riemann zeta function

Connection between $\zeta(s)$ and $\zeta(1-s)$:

$$
\zeta(s)=2^{s} \pi^{s-1} \sin (\pi s / 2) \Gamma(1-s) \zeta(1-s)
$$

Euler Gamma function

$$
\Gamma(s)=\frac{1}{s} \prod_{n=1}^{\infty} \frac{(1+1 / n)^{s}}{1+s / n}=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

Trivial zeroes of the Riemann zeta function $-2,-4,-6 \ldots$

> The non trivial zeroes of the Riemann zeta function have real part $1 / 2$.

Functional equation of the Riemann zeta function

Connection between $\zeta(s)$ and $\zeta(1-s)$:

$$
\zeta(s)=2^{s} \pi^{s-1} \sin (\pi s / 2) \Gamma(1-s) \zeta(1-s)
$$

Euler Gamma function

$$
\Gamma(s)=\frac{1}{s} \prod_{n=1}^{\infty} \frac{(1+1 / n)^{s}}{1+s / n}=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

Trivial zeroes of the Riemann zeta function $-2,-4,-6 \ldots$ Riemann hypothesis :

The non trivial zeroes of the Riemann zeta function have real part $1 / 2$.

Values of ζ at the positive even integers

- F. Lindemann : π is a transcendental number, hence $\zeta(2 k)$ also for $k \geq 1$.
- Hermite-Lindemann :
transcendence of $\log \alpha$ and e^{β} for α and β nonzero algebraic numbers with $\log \alpha \neq 0$.

Diophantine question

Determine all algebraic relations among the numbers

$$
\zeta(2), \quad \zeta(3), \quad \zeta(5), \quad \zeta(7), \ldots
$$

Conjecture. There is no algebraic relation among these numbers : the numbers

are algebraically independent.
In particular the numbers $\zeta(2 n+1)$ and $\zeta(2 n+1) / \pi^{2 n+1}$ for
$n \geq 1$ are expected to be transcendental.

Diophantine question

Determine all algebraic relations among the numbers

$$
\zeta(2), \quad \zeta(3), \quad \zeta(5), \quad \zeta(7), \ldots
$$

Conjecture. There is no algebraic relation among these numbers : the numbers

$$
\zeta(2), \quad \zeta(3), \quad \zeta(5), \quad \zeta(7), \ldots
$$

are algebraically independent.
In particular the numbers $\zeta(2 n+1)$ and $\zeta(2 n+1) / \pi^{2 n+1}$ for $n \geq 1$ are expected to be transcendental.

Diophantine question

Determine all algebraic relations among the numbers

$$
\zeta(2), \quad \zeta(3), \quad \zeta(5), \quad \zeta(7), \ldots
$$

Conjecture. There is no algebraic relation among these numbers : the numbers

$$
\zeta(2), \quad \zeta(3), \quad \zeta(5), \quad \zeta(7), \ldots
$$

are algebraically independent.
In particular the numbers $\zeta(2 n+1)$ and $\zeta(2 n+1) / \pi^{2 n+1}$ for $n \geq 1$ are expected to be transcendental.
$\zeta(3)=1+\frac{1}{8}+\frac{1}{27}+\frac{1}{64}+\cdots \notin \mathbf{Q}$

- Roger Apéry (1978) : The number
$\zeta(3)=\sum_{n \geq 1} \frac{1}{n^{3}}=1,202056903159594285399738161511 \ldots$
is irrational.

Infinitely many odd zeta are irrational

Tanguy Rivoal (2000)

Let $\epsilon>0$. For any sufficiently large odd integer a, the dimension of the Q -vector space spanned by the numbers $1, \zeta(3), \zeta(5), \cdots, \zeta(a)$ is at least

$$
\frac{1-\epsilon}{1+\log 2} \log a
$$

Wadim Zudilin

- At least one of the four numbers
$\zeta(5), \quad \zeta(7), \quad \zeta(9), \quad \zeta(11)$
is irrational.

Stéphane Fischler and Wadim Zudilin

There exist odd integers j_{1} and j_{2} with $5 \leq j_{1} \leq 139$ and $5 \leq j_{2} \leq 1961$ such that the four numbers $1, \zeta(3), \zeta\left(j_{1}\right)$, $\zeta\left(j_{2}\right)$ are linearly independent over \mathbf{Q}.

Linearization of the problem (Euler)

The problem of algebraic independence of values of the Riemann zeta function is difficult. We show that it can be reduced to a problem of linear independence.

The product of two special values of the zeta function is a sum of multiple zeta values.

Linearization of the problem (Euler)

The problem of algebraic independence of values of the Riemann zeta function is difficult. We show that it can be reduced to a problem of linear independence.

The product of two special values of the zeta function is a sum of multiple zeta values.

Linearization of the problem (Euler)

The problem of algebraic independence of values of the Riemann zeta function is difficult. We show that it can be reduced to a problem of linear independence.

The product of two special values of the zeta function is a sum of multiple zeta values.

$$
\begin{aligned}
\sum_{n_{1} \geq 1} \frac{1}{n_{1}^{s_{1}}} \sum_{n_{2} \geq 1} \frac{1}{n_{2}^{s_{2}}} & =\sum_{n_{1}>n_{2} \geq 1} \frac{1}{n_{1}^{s_{1}} n_{2}^{s_{2}}} \\
& +\sum_{n_{2}>n_{1} \geq 1} \frac{1}{n_{2}^{s_{2}} n_{1}^{s_{1}}}+\sum_{n \geq 1} \frac{1}{n^{s_{1}+s_{2}}}
\end{aligned}
$$

Multiple zeta values (Euler)

For $s_{1} \geq 2$ and $s_{2} \geq 2$, we have

$$
\zeta\left(s_{1}\right) \zeta\left(s_{2}\right)=\zeta\left(s_{1}, s_{2}\right)+\zeta\left(s_{2}, s_{1}\right)+\zeta\left(s_{1}+s_{2}\right)
$$

with

$$
\zeta\left(s_{1}, s_{2}\right)=\sum_{n_{1}>n_{2} \geq 1} n_{1}^{-s_{1}} n_{2}^{-s_{2}}
$$

Examples

Multiple zeta values (Euler)

For $s_{1} \geq 2$ and $s_{2} \geq 2$, we have

$$
\zeta\left(s_{1}\right) \zeta\left(s_{2}\right)=\zeta\left(s_{1}, s_{2}\right)+\zeta\left(s_{2}, s_{1}\right)+\zeta\left(s_{1}+s_{2}\right)
$$

with

$$
\zeta\left(s_{1}, s_{2}\right)=\sum_{n_{1}>n_{2} \geq 1} n_{1}^{-s_{1}} n_{2}^{-s_{2}}
$$

Examples :

$$
\begin{aligned}
\zeta(2)^{2} & =2 \zeta(2,2)+\zeta(4) \\
\zeta(2) \zeta(3) & =\zeta(2,3)+\zeta(3,2)+\zeta(5)
\end{aligned}
$$

Multiple zeta values (MZV)

For k, s_{1}, \ldots, s_{k} positive integers with $s_{1} \geq 2$, we set $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ and

$$
\zeta(\underline{s})=\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \frac{1}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}} .
$$

For $k=1$ we recover the special values of ζ.
k is the depth while $n=s_{1}+\cdots+s_{k}$ is the weight.

Multiple zeta values (MZV)

For k, s_{1}, \ldots, s_{k} positive integers with $s_{1} \geq 2$, we set $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ and

$$
\zeta(\underline{s})=\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \frac{1}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}
$$

For $k=1$ we recover the special values of ζ.
k is the depth while $n=s_{1}+\cdots+s_{k}$ is the weight.

The algebra of multiple zeta values

The product of two multiple zeta values is a linear combination of multiple zeta values.

Hence, the Q-vector space \mathfrak{Z} spanned by the numbers $\zeta(\underline{s})$ is also a Q-algebra.

The problem of algebraic independence becomes a problem of linear independence.

Question: which are the linear relations among these numbers $\zeta(\underline{s}) ?$

Answer : there are many of them! This algebra 3 has a rich algebraic structure, not yet fully understood.

The algebra of multiple zeta values

The product of two multiple zeta values is a linear combination of multiple zeta values.

Hence, the \mathbf{Q}-vector space \mathfrak{Z} spanned by the numbers $\zeta(\underline{s})$ is also a Q-algebra.

The problem of algebraic independence becomes a problem of linear independence.

Question : which are the linear relations among these numbers

Answer: there are many of them! This algebra \mathfrak{Z} has a rich algebraic structure, not yet fully understood.

The algebra of multiple zeta values

The product of two multiple zeta values is a linear combination of multiple zeta values.

Hence, the \mathbb{Q}-vector space \mathfrak{Z} spanned by the numbers $\zeta(\underline{s})$ is also a Q-algebra.

The problem of algebraic independence becomes a problem of linear independence.

Question
which are the linear relations among these numbers

Answer: there are many of them! This algebra \mathfrak{Z} has a rich algebraic structure, not yet fully understood.

The algebra of multiple zeta values

The product of two multiple zeta values is a linear combination of multiple zeta values.

Hence, the \mathbb{Q}-vector space \mathfrak{Z} spanned by the numbers $\zeta(\underline{s})$ is also a Q-algebra.

The problem of algebraic independence becomes a problem of linear independence.

Question : which are the linear relations among these numbers $\zeta(\underline{s})$?

Answer: there are many of them! This algebra 3 has a rich algebraic structure, not yet fully understood.

The algebra of multiple zeta values

The product of two multiple zeta values is a linear combination of multiple zeta values.

Hence, the Q -vector space \mathfrak{Z} spanned by the numbers $\zeta(\underline{s})$ is also a Q-algebra.

The problem of algebraic independence becomes a problem of linear independence.

Question : which are the linear relations among these numbers $\zeta(\underline{s}) ?$

Answer: there are many of them! This algebra \mathfrak{Z} has a rich algebraic structure, not yet fully understood.

Two main conjectures

First Conjecture : there is no linear relation among multiple zeta values of different weights.

Recall that 3 denotes the Q-subspace of R spanned by the real numbers $\zeta(\underline{s})$ with $\underline{s}=\left(s_{1}, \ldots, s_{k}\right), k \geq 1$ and $s_{1} \geq 2$.

Further, for $n \geq 2$, denote by 3_{n} the \mathbf{Q}-subspace of 3 spanned by the real numbers $\zeta(\underline{s})$ where \underline{s} has weight $s_{1}+\cdots+s_{k}=n$. Define also $3_{0}=\mathrm{Q}$ and $3_{1}=\{0\}$

The First Conjecture is

Two main conjectures

First Conjecture : there is no linear relation among multiple zeta values of different weights.

Recall that \mathfrak{Z} denotes the \mathbf{Q}-subspace of \mathbf{R} spanned by the real numbers $\zeta(\underline{s})$ with $\underline{s}=\left(s_{1}, \ldots, s_{k}\right), k \geq 1$ and $s_{1} \geq 2$.

Further, for $n \geq 2$, denote by Z_{n} the Q-subspace of 3 spanned by the real numbers $\zeta(\underline{s})$ where \underline{s} has weight

Define also $\mathcal{Z}_{0}=\mathrm{Q}$ and $\mathfrak{Z}_{1}=\{0\}$
The First Conjecture is

Two main conjectures

First Conjecture : there is no linear relation among multiple zeta values of different weights.

Recall that \mathfrak{Z} denotes the \mathbf{Q}-subspace of \mathbf{R} spanned by the real numbers $\zeta(\underline{s})$ with $\underline{s}=\left(s_{1}, \ldots, s_{k}\right), k \geq 1$ and $s_{1} \geq 2$.

Further, for $n \geq 2$, denote by \mathfrak{Z}_{n} the Q-subspace of \mathfrak{Z} spanned by the real numbers $\zeta(\underline{s})$ where \underline{s} has weight
$s_{1}+\cdots+s_{k}=n$.
Define also $\mathfrak{Z}_{0}=\mathbf{Q}$ and $\mathfrak{Z}_{1}=\{0\}$.
The First Conjecture is

Two main conjectures

First Conjecture : there is no linear relation among multiple zeta values of different weights.

Recall that \mathfrak{Z} denotes the \mathbf{Q}-subspace of \mathbf{R} spanned by the real numbers $\zeta(\underline{s})$ with $\underline{s}=\left(s_{1}, \ldots, s_{k}\right), k \geq 1$ and $s_{1} \geq 2$.

Further, for $n \geq 2$, denote by \mathfrak{Z}_{n} the Q-subspace of \mathfrak{Z} spanned by the real numbers $\zeta(\underline{s})$ where \underline{s} has weight
$s_{1}+\cdots+s_{k}=n$.
Define also $\mathfrak{Z}_{0}=\mathbf{Q}$ and $\mathfrak{Z}_{1}=\{0\}$.
The First Conjecture is

$$
\mathfrak{Z}=\bigoplus_{n \geq 0} \mathfrak{Z}_{n}
$$

The second main Conjecture

Denote by d_{n} the dimension of \mathfrak{Z}_{n}.

Conjecture (Zagier). For
$n \geq 3$, we have

$$
d_{n}=d_{n-2}+d_{n-3}
$$

Zagier's Conjecture can be written

The second main Conjecture

Denote by d_{n} the dimension of \mathfrak{Z}_{n}.

Conjecture (Zagier). For
$n \geq 3$, we have

$$
d_{n}=d_{n-2}+d_{n-3}
$$

$$
\left(d_{0}, d_{1}, d_{2}, \ldots\right)=(1,0,1,1,1,2,2, \ldots)
$$

Zagier's Conjecture can be written

$$
\sum_{n \geq 0} d_{n} X^{n}=\frac{1}{1-X^{2}-X^{3}}
$$

Small weight : $k=0,1,2,3,4$

Weight $0 \quad d_{0}=1 \quad \zeta\left(s_{1}, \ldots, s_{k}\right)=1$ for $k=0, \mathfrak{Z}_{0}=\mathbf{Q}$.

Weight $1 \quad d_{1}=0 \quad k=1, \mathfrak{Z}_{1}=\{0\}$.

Weight $2 \quad d_{2}=1$ $\zeta(2) \neq 0$

Weight $3 \quad d_{3}=1 \quad \zeta(2,1)=\zeta(3) \neq 0$

Weight $4 \quad d_{4}=1$
$\zeta(2,1,1)=\zeta(4)=\frac{2}{5} \zeta(2)^{2}$

Small weight : $k=0,1,2,3,4$

Weight $0 \quad d_{0}=1 \quad \zeta\left(s_{1}, \ldots, s_{k}\right)=1$ for $k=0, \mathfrak{Z}_{0}=\mathbf{Q}$.

Weight $1 \quad d_{1}=0 \quad k=1, \mathfrak{Z}_{1}=\{0\}$.

Weight $2 \quad d_{2}=1$

Small weight: $k=0,1,2,3,4$

Weight $0 \quad d_{0}=1 \quad \zeta\left(s_{1}, \ldots, s_{k}\right)=1$ for $k=0, \mathfrak{Z}_{0}=\mathbf{Q}$.

Weight $1 \quad d_{1}=0 \quad k=1, \mathfrak{Z}_{1}=\{0\}$.

Weight $2 \quad d_{2}=1 \quad \zeta(2) \neq 0$

Weight $3 \quad d_{3}=1 \quad \zeta(2,1)=\zeta(3) \neq 0$

Small weight: $k=0,1,2,3,4$

Weight $0 \quad d_{0}=1 \quad \zeta\left(s_{1}, \ldots, s_{k}\right)=1$ for $k=0, \mathfrak{Z}_{0}=\mathbf{Q}$.

Weight $1 \quad d_{1}=0 \quad k=1, \mathfrak{Z}_{1}=\{0\}$.

Weight $2 \quad d_{2}=1 \quad \zeta(2) \neq 0$

Weight $3 \quad d_{3}=1 \quad \zeta(2,1)=\zeta(3) \neq 0$

Weight $4 \quad d_{4}=1 \quad \zeta(3,1)=\frac{1}{4} \zeta(4), \quad \zeta(2,2)=\frac{3}{4} \zeta(4)$,

$$
\zeta(2,1,1)=\zeta(4)=\frac{2}{5} \zeta(2)^{2}
$$

Weight 5

$d_{5}=2$?
One can check :

$$
\begin{aligned}
& \zeta(2,1,1,1)=\zeta(5), \\
& \zeta(3,1,1)=\zeta(4,1)=2 \zeta(5)-\zeta(2) \zeta(3), \\
& \zeta(2,1,2)=\zeta(2,3)=\frac{9}{2} \zeta(5)-2 \zeta(2) \zeta(3), \\
& \zeta(2,2,1)=\zeta(3,2)=3 \zeta(2) \zeta(3)-\frac{11}{2} \zeta(5),
\end{aligned}
$$

Hence $d_{5} \in\{1,2\}$. Moreover $d_{5}=2$ if and only if the number

Weight 5

$d_{5}=2$?
One can check :

$$
\begin{aligned}
& \zeta(2,1,1,1)=\zeta(5), \\
& \zeta(3,1,1)=\zeta(4,1)=2 \zeta(5)-\zeta(2) \zeta(3), \\
& \zeta(2,1,2)=\zeta(2,3)=\frac{9}{2} \zeta(5)-2 \zeta(2) \zeta(3), \\
& \zeta(2,2,1)=\zeta(3,2)=3 \zeta(2) \zeta(3)-\frac{11}{2} \zeta(5),
\end{aligned}
$$

Hence $d_{5} \in\{1,2\}$. Moreover $d_{5}=2$ if and only if the number

$$
\zeta(2) \zeta(3) / \zeta(5)
$$

is irrational.

A modular relation in weight 12

$5197 \zeta(12)=19348 \zeta(9,3)+103650 \zeta(7,5)+116088 \zeta(5,7)$.

Herbert Gangl
EZ Face
http://oldweb.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi

Broadhurst and Kreimer

A filtration of \mathfrak{Z}_{n} is $\left(\mathfrak{Z}_{n}^{\ell}\right)_{\ell \geq 0}$ where \mathfrak{Z}_{n}^{ℓ} is the space of MZV of weight n and depth $\leq \ell$

Denote by $d_{n \ell}$ the dimension of $3_{n}^{\ell} / 3_{n}^{\ell-1}$
The Conjecture of Broadhurst and Kreimer is

where

Broadhurst and Kreimer

A filtration of \mathfrak{Z}_{n} is $\left(\mathfrak{Z}_{n}^{\ell}\right)_{\ell \geq 0}$ where \mathfrak{Z}_{n}^{ℓ} is the space of MZV of weight n and depth $\leq \ell$

Denote by $d_{n \ell}$ the dimension of $\mathfrak{Z}_{n}^{\ell} / \mathfrak{Z}_{n}^{\ell-1}$.
The Conjecture of Broadhurst and Kreimer is

where

Broadhurst and Kreimer

A filtration of \mathfrak{Z}_{n} is $\left(\mathfrak{Z}_{n}^{\ell}\right)_{\ell \geq 0}$ where \mathfrak{Z}_{n}^{ℓ} is the space of MZV of weight n and depth $\leq \ell$

Denote by $d_{n \ell}$ the dimension of $\mathfrak{Z}_{n}^{\ell} / \mathfrak{Z}_{n}^{\ell-1}$.
The Conjecture of Broadhurst and Kreimer is :

$$
\sum_{n \geq 0} \sum_{\ell \geq 1} d_{n \ell} X^{n} Y^{\ell}=\frac{1+\mathbb{E}(X) Y}{1-\mathbb{O}(X) Y+\mathbb{S}(X)\left(Y^{2}-Y^{4}\right)}
$$

where

$$
\begin{gathered}
\mathbb{E}(X)=\frac{X^{2}}{1-X^{2}}, \quad \mathbb{O}(X)=\frac{X^{3}}{1-X^{2}} \\
\mathbb{S}(X)=\frac{X^{12}}{\left(1-X^{4}\right)\left(1-X^{6}\right)}
\end{gathered}
$$

Broadhurst and Kreimer imply Zagier

For $Y=1$, the Conjecture of Broadhurst and Kreimer

$$
\sum_{n \geq 0} \sum_{\ell \geq 1} d_{n \ell} X^{n} Y^{\ell}=\frac{1+\mathbb{E}(X) Y}{1-\mathbb{O}(X) Y+\mathbb{S}(X)\left(Y^{2}-Y^{4}\right)}
$$

is Zagier's conjecture

$$
\sum_{n \geq 0} d_{n} X^{n}=\frac{1}{1-X^{2}-X^{3}}
$$

Modular relations

Notice that

$$
\begin{gathered}
\mathbb{E}(X)=\frac{X^{2}}{1-X^{2}}=\sum_{k \geq 1} X^{2 k}, \\
\mathbb{O}(X)=\frac{X^{3}}{1-X^{2}}=\sum_{k \geq 1} X^{2 k+1}, \\
\mathbb{S}(X)=\frac{X^{12}}{\left(1-X^{4}\right)\left(1-X^{6}\right)}=\sum_{k \geq 0} \operatorname{dim}_{\mathbf{C}}\left(S_{k}\right) X^{k},
\end{gathered}
$$

where S_{k} is the space of parabolic modular forms of weight k.

Hoffman's remark

The number d_{n} of tuples $\left(s_{1}, \ldots, s_{k}\right)$, where each s_{i} is 2 or 3 and $s_{1}+\cdots+s_{k}=n$, satisfies Zagier's recurrence relation

$$
d_{n}=d_{n-2}+d_{n-3}
$$

with $d_{1}=0, d_{2}=d_{3}=1$.

Hoffman's Conjecture

Michael Hoffman conjectures :
A basis of \mathfrak{Z}_{n} over Q is given by the numbers $\zeta\left(s_{1}, \ldots, s_{k}\right)$,
$s_{1}+\cdots+s_{k}=n$, where each
s_{i} is 2 or 3 .

Hoffman's Conjecture for $n \leq 20$

For $n \leq 20$, Hoffman's Conjecture is compatible with known relations among MZV.

M. Kaneko, M. Noro and K. Tsurumaki. - On a conjecture for the dimension of the space of the multiple zeta values, Software for Algebraic Geometry, IMA 148 (2008), 47-58.

Francis Brown

The numbers $\zeta\left(s_{1}, \ldots, s_{k}\right), s_{1}+\cdots+s_{k}=n$, where each s_{i} is 2 or 3 , span \mathfrak{Z}_{n} over Q.

Previous upper bound for the dimension

Zagier's numbers d_{n} are upper bounds for the dimension of \mathfrak{Z}_{n}.

A.B. Goncharov - Multiple ζ-values, Galois groups and Geometry of Modular Varieties. Birkhäuser. Prog. Math. 201, 361-392 (2001).
T. Terasoma - Mixed Tate motives and Multiple Zeta Values. Invent. Math. 149, No.2, 339-369 (2002).

Motivic zeta values

From Brown's results, it follows that the algebraic independence of the numbers

$$
\zeta(2), \quad \zeta(3), \quad \zeta(5), \quad \zeta(7), \ldots
$$

is a consequence of the two main Conjectures.

There is a combinatorial description of linear relations among MZV, we do not know yet whether they provide a complete picture of the situation.

Motivic zeta values

From Brown's results, it follows that the algebraic independence of the numbers

$$
\zeta(2), \quad \zeta(3), \quad \zeta(5), \quad \zeta(7), \ldots
$$

is a consequence of the two main Conjectures.

There is a combinatorial description of linear relations among MZV, we do not know yet whether they provide a complete picture of the situation.

Problem : lower bound for the dimension

The Diophantine problem is now to prove lower bounds for the dimension.

We do not even know how to prove $d_{n} \geq 2$ for at least one value of n !

Problem : lower bound for the dimension

The Diophantine problem is now to prove lower bounds for the dimension.

We do not even know how to prove $d_{n} \geq 2$ for at least one value of n !

Periods, following Kontsevich and Zagier

Periods,
Mathematics unlimited2001 and beyond, Springer 2001, 771-808.

A period is a complex number with real and imaginary parts given by absolutely convergent integrals of rational fractions with rational coefficients on domains of \mathbf{R}^{n} defined by (in)equalities involving polynomials with rational coefficients.
$\zeta(s)$ is a period

$$
\frac{1}{1-u}=\sum_{n \geq 1} u^{n-1}, \quad \int_{0}^{1} u^{n-1} d u=\frac{1}{n}
$$

$\zeta(s)$ is a period

$$
\begin{gathered}
\frac{1}{1-u}=\sum_{n \geq 1} u^{n-1}, \quad \int_{0}^{1} u^{n-1} d u=\frac{1}{n} \\
\frac{1}{1-u_{1} \cdots u_{s}}=\sum_{n \geq 1}\left(u_{1} \cdots u_{s}\right)^{n-1}
\end{gathered}
$$

$\zeta(s)$ is a period

$$
\begin{gathered}
\frac{1}{1-u}=\sum_{n \geq 1} u^{n-1}, \quad \int_{0}^{1} u^{n-1} d u=\frac{1}{n} \\
\frac{1}{1-u_{1} \cdots u_{s}}=\sum_{n \geq 1}\left(u_{1} \cdots u_{s}\right)^{n-1} \\
\int_{[0,1]^{s}} \frac{d u_{1} \cdots d u_{s}}{1-u_{1} \cdots u_{s}}=\sum_{n \geq 1}\left(\int_{0}^{1} u^{n-1} d u\right)^{s}=\sum_{n \geq 1} \frac{1}{n^{s}}=\zeta(s) .
\end{gathered}
$$

$\zeta(2)$ is a period

$$
\zeta(2)=\int_{0}^{1} \int_{0}^{1} \frac{d u d v}{1-u v}
$$

Another integral for $\zeta(2)$

$\zeta(2)$ is a period

$$
\zeta(2)=\int_{0}^{1} \int_{0}^{1} \frac{d u d v}{1-u v}
$$

Another integral for $\zeta(2)$:

$$
\frac{\pi^{2}}{6}=\zeta(2)=\sum_{n \geq 1} \frac{1}{n^{2}}=\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}}
$$

$\zeta(2)$ is a period

$$
\zeta(2)=\int_{0}^{1} \int_{0}^{1} \frac{d u d v}{1-u v}
$$

Another integral for $\zeta(2)$:

$$
\frac{\pi^{2}}{6}=\zeta(2)=\sum_{n \geq 1} \frac{1}{n^{2}}=\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}}
$$

$\zeta(2)$ is a period

$\zeta(2)$ is a period

$$
\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}}
$$

$=\sum_{n \geq 1} \frac{1}{n} \int_{0}^{1} t_{1}^{n-1} d t_{1}$

$$
=\sum_{n \geq 1} \frac{1}{n^{2}}=\zeta(2)
$$

$\zeta(2)$ is a period

$$
\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}}=\int_{0}^{1}\left(\int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}}\right) \frac{d t_{1}}{t_{1}}
$$

$\zeta(2)$ is a period

$$
\begin{aligned}
\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} & =\int_{0}^{1}\left(\int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}}\right) \frac{d t_{1}}{t_{1}} \\
& =\int_{0}^{1}\left(\int_{0}^{t_{1}} \sum_{n \geq 1} t_{2}^{n-1} d t_{2}\right) \frac{d t_{1}}{t_{1}} \\
& =\sum_{n \geq 1} \frac{1}{n} \int_{0}^{1} t_{1}^{n-1} d t_{1}
\end{aligned}
$$

$\zeta(2)$ is a period

$$
\begin{aligned}
\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} & =\int_{0}^{1}\left(\int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}}\right) \frac{d t_{1}}{t_{1}} \\
& =\int_{0}^{1}\left(\int_{0}^{t_{1}} \sum_{n \geq 1} t_{2}^{n-1} d t_{2}\right) \frac{d t_{1}}{t_{1}} \\
& =\sum_{n \geq 1} \frac{1}{n} \int_{0}^{1} t_{1}^{n-1} d t_{1}
\end{aligned}
$$

$\zeta(2)$ is a period

$$
\begin{aligned}
\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} & =\int_{0}^{1}\left(\int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}}\right) \frac{d t_{1}}{t_{1}} \\
& =\int_{0}^{1}\left(\int_{0}^{t_{1}} \sum_{n \geq 1} t_{2}^{n-1} d t_{2}\right) \frac{d t_{1}}{t_{1}} \\
& =\sum_{n \geq 1} \frac{1}{n} \int_{0}^{1} t_{1}^{n-1} d t_{1} \\
& =\sum_{n \geq 1} \frac{1}{n^{2}}=\zeta(2)
\end{aligned}
$$

Kontsevich-Zagier philosophy of periods

There should be a direct proof of

$$
\int_{0}^{1} \int_{0}^{1} \frac{d u_{1} d u_{2}}{1-u_{1} u_{2}}=\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}}
$$

Change of variables $t_{1}=u_{1}, t_{2}=u_{1} u_{2}$,

$$
0 \leq u_{1}, u_{2} \leq 1, \quad 0 \leq t_{2} \leq t_{1} \leq 1
$$

Kontsevich-Zagier philosophy of periods

There should be a direct proof of

$$
\int_{0}^{1} \int_{0}^{1} \frac{d u_{1} d u_{2}}{1-u_{1} u_{2}}=\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}}
$$

Change of variables $t_{1}=u_{1}, t_{2}=u_{1} u_{2}$,

$$
\begin{aligned}
0 & \leq u_{1}, u_{2} \leq 1, \quad 0 \leq t_{2} \leq t_{1} \leq 1 \\
d t_{1} d t_{2} & =u_{1} d u_{1} d u_{2}, \quad \frac{d u_{1} d u_{2}}{1-u_{1} u_{2}}=\frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}}
\end{aligned}
$$

$\zeta(s)$ is a period

For s integer ≥ 2,

$$
\zeta(s)=\int_{1>t_{1}>t_{2} \cdots>t_{s}>0} \frac{d t_{1}}{t_{1}} \cdots \frac{d t_{s-1}}{t_{s-1}} \cdot \frac{d t_{s}}{1-t_{s}}
$$

$\zeta(s)$ is a period

For s integer ≥ 2,

$$
\zeta(s)=\int_{1>t_{1}>t_{2} \cdots>t_{s}>0} \frac{d t_{1}}{t_{1}} \cdots \frac{d t_{s-1}}{t_{s-1}} \cdot \frac{d t_{s}}{1-t_{s}}
$$

Induction

$$
\int_{t_{1}>t_{2} \cdots>t_{s}>0} \frac{d t_{2}}{t_{2}} \cdots \frac{d t_{s-1}}{t_{s-1}} \cdot \frac{d t_{s}}{1-t_{s}}=\sum_{n \geq 1} \frac{t_{1}^{n-1}}{n^{s-1}}
$$

MZV are periods

$$
\zeta(2,1)=\int_{1>t_{1}>t_{2}>t_{3}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} \cdot \frac{d t_{3}}{1-t_{3}} .
$$

Proof.
We have

$$
\int_{0}^{t_{2}} \frac{d t_{3}}{1-t_{3}}=\sum_{n \geq 1} \frac{t_{2}^{n-1}}{n}
$$

and

hence

MZV are periods

$$
\zeta(2,1)=\int_{1>t_{1}>t_{2}>t_{3}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} \cdot \frac{d t_{3}}{1-t_{3}}
$$

Proof.
We have

$$
\int_{0}^{t_{2}} \frac{d t_{3}}{1-t_{3}}=\sum_{n \geq 1} \frac{t_{2}^{n-1}}{n}, \quad \text { next } \quad \int_{0}^{t_{1}} \frac{t_{2}^{n-1} d t_{2}}{t_{2}-1}=\sum_{m>n} \frac{t_{1}^{m}}{m}
$$

MZV are periods

$$
\zeta(2,1)=\int_{1>t_{1}>t_{2}>t_{3}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} \cdot \frac{d t_{3}}{1-t_{3}}
$$

Proof.
We have

$$
\int_{0}^{t_{2}} \frac{d t_{3}}{1-t_{3}}=\sum_{n \geq 1} \frac{t_{2}^{n-1}}{n}, \quad \text { next } \quad \int_{0}^{t_{1}} \frac{t_{2}^{n-1} d t_{2}}{t_{2}-1}=\sum_{m>n} \frac{t_{1}^{m}}{m}
$$

and

$$
\int_{0}^{1} t_{1}^{m-1} d t_{1}=\frac{1}{m}
$$

hence

$$
\int_{1>t_{1}>t_{2}>t_{3}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} \cdot \frac{d t_{3}}{1-t_{3}}=\sum_{m>n \geq 1} \frac{1}{m^{2} n}=\zeta(2,1)
$$

Notation

Set

$$
\omega_{0}=\frac{d t}{t}, \quad \omega_{1}=\frac{d t}{1-t} .
$$

For $s \geq 2$ we write the relation

as

This leads to a definition of a (non-commutative) product of differential forms.

Notation

Set

$$
\omega_{0}=\frac{d t}{t}, \quad \omega_{1}=\frac{d t}{1-t} .
$$

For $s \geq 2$ we write the relation

$$
\zeta(s)=\int_{1>t_{1}>\cdots>t_{s}>0} \frac{d t_{1}}{t_{1}} \cdots \frac{d t_{s-1}}{t_{s-1}} \cdot \frac{d t_{s}}{1-t_{s}}
$$

as

$$
\zeta(s)=\int_{0}^{1} \omega_{0}^{s-1} \omega_{1} .
$$

This leads to a definition of a (non-commutative) product of differential forms.

Notation

Set

$$
\omega_{0}=\frac{d t}{t}, \quad \omega_{1}=\frac{d t}{1-t} .
$$

For $s \geq 2$ we write the relation

$$
\zeta(s)=\int_{1>t_{1}>\cdots>t_{s}>0} \frac{d t_{1}}{t_{1}} \cdots \frac{d t_{s-1}}{t_{s-1}} \cdot \frac{d t_{s}}{1-t_{s}}
$$

as

$$
\zeta(s)=\int_{0}^{1} \omega_{0}^{s-1} \omega_{1}
$$

This leads to a definition of a (non-commutative) product of differential forms.

Chen iterated integrals

When φ is a holomorphic 1-form,

$$
\int_{0}^{z} \varphi
$$

is the primitive of φ which vanishes at $z=0$.
When $\varphi_{1}, \ldots, \varphi_{k}$ are holomorphic 1-forms, we define inductively

$$
\int_{0}^{z} \varphi_{1} \cdots \varphi_{k}:=\int_{0}^{z} \varphi_{1}(t) \int_{0}^{t} \varphi_{2} \cdots \varphi_{k}
$$

Chen iterated integrals

$$
\int_{0}^{z} \varphi_{1} \cdots \varphi_{k}:=\int_{0}^{z} \varphi_{1}(t) \int_{0}^{t} \varphi_{2} \cdots \varphi_{k} .
$$

If $\varphi_{1}(t)=\psi_{1}(t) d t$, then

for $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$, set

Then

Chen iterated integrals

$$
\int_{0}^{z} \varphi_{1} \cdots \varphi_{k}:=\int_{0}^{z} \varphi_{1}(t) \int_{0}^{t} \varphi_{2} \cdots \varphi_{k} .
$$

If $\varphi_{1}(t)=\psi_{1}(t) d t$, then

$$
\frac{d}{d z} \int_{0}^{z} \varphi_{1} \cdots \varphi_{k}=\psi_{1}(z) \int_{0}^{z} \varphi_{2} \cdots \varphi_{k}
$$

for $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$, set

Then

Chen iterated integrals

$$
\int_{0}^{z} \varphi_{1} \cdots \varphi_{k}:=\int_{0}^{z} \varphi_{1}(t) \int_{0}^{t} \varphi_{2} \cdots \varphi_{k}
$$

If $\varphi_{1}(t)=\psi_{1}(t) d t$, then

$$
\frac{d}{d z} \int_{0}^{z} \varphi_{1} \cdots \varphi_{k}=\psi_{1}(z) \int_{0}^{z} \varphi_{2} \cdots \varphi_{k}
$$

for $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$, set

$$
\omega_{\underline{s}}=\omega_{s_{1}} \cdots \omega_{s_{k}}=\omega_{0}^{s_{1}-1} \omega_{1} \cdots \omega_{0}^{s_{k}-1} \omega_{1} .
$$

Then

$$
\zeta(\underline{s})=\int_{0}^{1} \omega_{\underline{s}} .
$$

Coding MZV

$$
\underline{s}=\left(s_{1}, \ldots, s_{k}\right) \quad \omega_{\underline{s}}=\omega_{0}^{s_{1}-1} \omega_{1} \cdots \omega_{0}^{s_{k}-1} \omega_{1}
$$

- ends with ω_{1}
- starts with $\omega_{0} \quad\left(s_{1} \geq 2\right)$.

Weight : $n=s_{1}+\cdots+s_{k}$ is the number of factors Depth: k is the number of ω_{1}

Depth 1
Examples in depth 2

Coding MZV

$$
\underline{s}=\left(s_{1}, \ldots, s_{k}\right) \quad \omega_{\underline{s}}=\omega_{0}^{s_{1}-1} \omega_{1} \cdots \omega_{0}^{s_{k}-1} \omega_{1}
$$

- ends with ω_{1}
- starts with $\omega_{0} \quad\left(s_{1} \geq 2\right)$.

Weight : $n=s_{1}+\cdots+s_{k}$ is the number of factors Depth: k is the number of ω_{1}

Depth 1 :

weight s
Examples in depth 2
$\omega_{4,3}=\omega_{0}^{3} \omega_{1} \omega_{0}^{2} \omega_{1}$ weight 7

Coding MZV

$$
\underline{s}=\left(s_{1}, \ldots, s_{k}\right) \quad \omega_{\underline{s}}=\omega_{0}^{s_{1}-1} \omega_{1} \cdots \omega_{0}^{s_{k}-1} \omega_{1}
$$

- ends with ω_{1}
- starts with $\omega_{0} \quad\left(s_{1} \geq 2\right)$.

Weight : $n=s_{1}+\cdots+s_{k}$ is the number of factors
Depth: k is the number of ω_{1}

Depth 1 :

$$
\text { for } s \geq 2, \quad \omega_{s}=\omega_{0}^{s-1} \omega_{1} \text { weight } s
$$

Coding MZV

$$
\underline{s}=\left(s_{1}, \ldots, s_{k}\right) \quad \omega_{\underline{s}}=\omega_{0}^{s_{1}-1} \omega_{1} \cdots \omega_{0}^{s_{k}-1} \omega_{1}
$$

- ends with ω_{1}
- starts with $\omega_{0} \quad\left(s_{1} \geq 2\right)$.

Weight: $n=s_{1}+\cdots+s_{k}$ is the number of factors
Depth: k is the number of ω_{1}

Depth 1 :
Examples in depth 2 :

$$
\text { for } s \geq 2, \quad \omega_{s}=\omega_{0}^{s-1} \omega_{1} \text { weight } s \text { } \begin{array}{r}
\omega_{2,1}=\omega_{0} \omega_{1}^{2} \text { weight } 3 \\
\omega_{4,3}=\omega_{0}^{3} \omega_{1} \omega_{0}^{2} \omega_{1} \text { weight } 7
\end{array}
$$

Multiple zeta values are periods

$$
\underline{s}=\left(s_{1}, \ldots, s_{k}\right), s_{1} \geq 2, p=s_{1}+\cdots+s_{k}
$$

$$
\zeta(\underline{s})=\int_{1>t_{1}>t_{2}>\cdots>t_{p}>0} \omega_{0}^{s_{1}-1} \omega_{1} \cdots \omega_{0}^{s_{k}-1} \omega_{1}
$$

Example

Multiple zeta values are periods

$$
\underline{s}=\left(s_{1}, \ldots, s_{k}\right), s_{1} \geq 2, p=s_{1}+\cdots+s_{k}
$$

$$
\zeta(\underline{s})=\int_{1>t_{1}>t_{2}>\cdots>t_{p}>0} \omega_{0}^{s_{1}-1} \omega_{1} \cdots \omega_{0}^{s_{k}-1} \omega_{1}
$$

Example

$$
\zeta(2,1)=\int_{1>t_{1}>t_{2}>t_{3}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} \cdot \frac{d t_{3}}{1-t_{3}}=\int_{0}^{1} \omega_{0} \omega_{1}^{2}
$$

Quadratic relations

The product of two multiple zeta values is a linear combination, with positive integer coefficients, of multiple zeta values.

Besides, there are two essentially different ways of writing such a product as a linear combination of MZV : one of them arises from the product as series
the other one arises from the integral representation

Quadratic relations

The product of two multiple zeta values is a linear combination, with positive integer coefficients, of multiple zeta values.

Besides, there are two essentially different ways of writing such a product as a linear combination of MZV : one of them arises from the product as series

$$
\zeta(\underline{s})=\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \frac{1}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}
$$

the other one arises from the integral representation

$$
\zeta(\underline{s})=\int_{0}^{1} \omega_{\underline{s}}
$$

Products of integrals

$$
\begin{gathered}
\zeta(2)=\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} \\
\zeta(2)^{2}=\int_{\substack{1>t_{1}>t_{2}>0 \\
1>u_{1}>u_{2}>0}} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} \cdot \frac{d u_{1}}{u_{1}} \cdot \frac{d u_{2}}{1-u_{2}}
\end{gathered}
$$

We decompose the cartesian product of two simplices

$$
\left\{1>t_{1}>t_{2}>0\right\} \times\left\{1>u_{1}>u_{2}>0\right\}
$$

as a union, essentially disjoint (up to subsets of zero measure), of 6 simplices, which yields

$$
\zeta(2)^{2}=4 \zeta(3,1)+2 \zeta(2,2)
$$

$\left\{1>t_{1}>t_{2}>0\right\} \times\left\{1>u_{1}>u_{2}>0\right\}$

$$
\begin{array}{ll}
1>t_{1}>t_{2}>u_{1}>u_{2}>0 & \frac{1}{t_{1}} \cdot \frac{1}{1-t_{2}} \cdot \frac{1}{u_{1}} \cdot \frac{1}{1-u_{2}} \\
1>t_{1}>u_{1}>t_{2}>u_{2}>0 & \frac{1}{t_{1}} \cdot \frac{1}{u_{1}} \cdot \frac{1}{1-t_{2}} \cdot \frac{1}{1-u_{2}} \\
1>t_{1}>u_{1}>u_{2}>t_{2}>0 & \frac{1}{t_{1}} \cdot \frac{1}{u_{1}} \cdot \frac{1}{1-u_{2}} \cdot \frac{1}{1-t_{2}} \\
1>u_{1}>t_{1}>t_{2}>u_{2}>0 & \frac{1}{u_{1}} \cdot \frac{1}{t_{1}} \cdot \frac{1}{1-t_{2}} \cdot \frac{1}{1-u_{2}} \\
1>u_{1}>t_{1}>u_{2}>t_{2}>0 & \frac{1}{u_{1}} \cdot \frac{1}{t_{1}} \cdot \frac{1}{1-u_{2}} \cdot \frac{1}{1-t_{2}} \\
1>u_{1}>u_{2}>t_{1}>t_{2}>0 & \frac{1}{u_{1}} \cdot \frac{1}{1-u_{2}} \cdot \frac{1}{t_{1}} \cdot \frac{1}{1-t_{2}}
\end{array}
$$

Linear relations among MZV

As a consequence, multiple zeta values satisfy a lot of independent linear relations with integer coefficients.

Example

Product of series :

$$
\zeta(2)^{2}=2 \zeta(2,2)+\zeta(4)
$$

Product of integrals :

$$
\zeta(2)^{2}=2 \zeta(2,2)+4 \zeta(3,1)
$$

Hence

$$
\zeta(4)=4 \zeta(3,1)
$$

The algebras \mathcal{P} of multiple zeta periods

Recall that \mathfrak{Z} is the subalgebra of \mathbf{R} over \mathbf{Q} spanned by the numbers $\zeta(\underline{s})$, where $\underline{s}=\left(s_{1}, \ldots, s_{k}\right), s_{1} \geq 2$.

Let \mathcal{P} be the Q-algebra defined by generators $Z_{\underline{s}}$, $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ with $s_{1} \geq 2$, and the relations among $M Z V$ arising from the products of series and integrals.

There is a homomorphism $\mathrm{ev}: \mathcal{P} \rightarrow \mathrm{R}$ (think of elements of \mathcal{P} as equivalence classes of programs and $e v$ as the "exec" command). It should be expected that ev is an injective map.

The algebras \mathcal{P} of multiple zeta periods

Recall that \mathfrak{Z} is the subalgebra of R over Q spanned by the numbers $\zeta(\underline{s})$, where $\underline{s}=\left(s_{1}, \ldots, s_{k}\right), s_{1} \geq 2$.

Let \mathcal{P} be the Q -algebra defined by generators $Z_{\underline{s}}$, $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ with $s_{1} \geq 2$, and the relations among MZV arising from the products of series and integrals.

There is a homomorphism ev : $\mathcal{P} \rightarrow \mathbf{R}$ (think of elements of \mathcal{P} as equivalence classes of programs and $e v$ as the "exec" command). It should be expected that ev is an injective map.

The algebras \mathcal{P} of multiple zeta periods

Recall that \mathfrak{Z} is the subalgebra of \mathbf{R} over \mathbf{Q} spanned by the numbers $\zeta(\underline{s})$, where $\underline{s}=\left(s_{1}, \ldots, s_{k}\right), s_{1} \geq 2$.

Let \mathcal{P} be the Q -algebra defined by generators $Z_{\underline{s}}$, $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ with $s_{1} \geq 2$, and the relations among MZV arising from the products of series and integrals.

There is a homomorphism $e v: \mathcal{P} \rightarrow \mathbf{R}$ (think of elements of \mathcal{P} as equivalence classes of programs and $e v$ as the "exec" command). It should be expected that $e v$ is an injective map.

The algebras \mathfrak{M} of motivic zeta values

The third algebra is the algebra \mathfrak{M} of motivic zeta values. \mathfrak{M} is a graded algebra generated by homogeneous elements $\zeta^{\mathfrak{m}}(\underline{s})$.

There is also an evaluation map $e v^{\mathfrak{m}}: \mathfrak{M} \rightarrow \mathbf{R}$, such that $e v^{\mathrm{m}}\left(\zeta^{\mathrm{m}}(\underline{s})\right)=\zeta(\underline{s})$, and a commutative diagram
F. Brown has shown that a basis of \mathfrak{M} as a Q -vector space is given by the $\zeta^{\mathfrak{m}}(\underline{s})$ where $s_{i} \in\{2,3\}(i=1, \ldots, k)$.

The algebras \mathfrak{M} of motivic zeta values

The third algebra is the algebra \mathfrak{M} of motivic zeta values. \mathfrak{M} is a graded algebra generated by homogeneous elements $\zeta^{\mathfrak{m}}(\underline{s})$.

There is also an evaluation map $e v^{\mathfrak{m}}: \mathfrak{M} \rightarrow \mathbf{R}$, such that $e v^{\mathfrak{m}}\left(\zeta^{\mathfrak{m}}(\underline{s})\right)=\zeta(\underline{s})$, and a commutative diagram

F. Brown has shown that a basis of \mathfrak{M} as a Q -vector space is given by the $\zeta^{\mathfrak{m}}(\underline{s})$ where $s_{i} \in\{2,3\}(i=1, \ldots, k)$.

The algebras \mathfrak{M} of motivic zeta values

The third algebra is the algebra \mathfrak{M} of motivic zeta values. \mathfrak{M} is a graded algebra generated by homogeneous elements $\zeta^{\mathfrak{m}}(\underline{s})$.

There is also an evaluation map $e v^{\mathfrak{m}}: \mathfrak{M} \rightarrow \mathbf{R}$, such that $e v^{\mathfrak{m}}\left(\zeta^{\mathfrak{m}}(\underline{s})\right)=\zeta(\underline{s})$, and a commutative diagram

F. Brown has shown that a basis of \mathfrak{M} as a Q -vector space is given by the $\zeta^{\mathfrak{m}}(\underline{s})$ where $s_{i} \in\{2,3\}(i=1, \ldots, k)$.

The motivic Galois group

Thanks to the work of F. Brown, we control the automorphism group of \mathfrak{M}.
F. Brown deduces that the category of mixed Tate motives of \mathbf{Z} is generated by the fundamental group of $\mathbf{P}^{1} \backslash\{0,1, \infty\}$ Ref.: Bourbaki seminar by P. Deligne in 2012.

We expect the evaluation map from \mathfrak{M} to \mathbf{R} to be injective. This would imply for instance that the numbers
> are transcendental and algebraically independent. According to
> P. Cartier, this wild dream is to be fulfilled around 2040 !.

The motivic Galois group

Thanks to the work of F . Brown, we control the automorphism group of \mathfrak{M}.
F. Brown deduces that the category of mixed Tate motives of \mathbf{Z} is generated by the fundamental group of $\mathbf{P}^{1} \backslash\{0,1, \infty\}$. Ref.: Bourbaki seminar by P. Deligne in 2012.

We expect the evaluation map from \mathfrak{N} to R to be injective. This would imply for instance that the numbers
> are transcendental and algebraically independent. According to P. Cartier, this wild dream is to be fulfilled around 2040 !.

The motivic Galois group

Thanks to the work of F. Brown, we control the automorphism group of \mathfrak{M}.
F. Brown deduces that the category of mixed Tate motives of \mathbf{Z} is generated by the fundamental group of $\mathbf{P}^{1} \backslash\{0,1, \infty\}$. Ref.: Bourbaki seminar by P. Deligne in 2012.

We expect the evaluation map from \mathfrak{M} to \mathbf{R} to be injective. This would imply for instance that the numbers

$$
\pi, \zeta(3), \zeta(5) \ldots
$$

are transcendental and algebraically independent. According to P. Cartier, this wild dream is to be fulfilled around 2040 !.

Connection with works by

Connection with works by

Connection with works by

Jacky Cresson

Hidekazu Furusho

Connection with works by

References on MZV

- Link to Michael Hoffman's MZV website
http://www.usna.edu/Users/math/meh/biblio.html
- Thesis of Samuel Baumard
http://tel.archives-ouvertes.fr/docs/01/01/70/22/PDF/these.pdf

IIT Bombay Indian Institute of Technology Institute Colloquium November 26, 2014

Multiple Zeta Values

Michel Waldschmidt
Université Pierre et Marie Curie (Paris 6) France
http://www.imj-prg.fr/~michel.waldschmidt/

