On the Ramanujan street puzzle of Prasanta Chandra Mahalanobis

Michel Waldschmidt

Professeur Émérite, Sorbonne Université Institut de Mathématiques de Jussieu Paris Rive Gauche http://www.imj-prg.fr/~michel.waldschmidt/

An interesting street number

The puzzle itself was about a street in the town of Louvain in Belgium, where houses are numbered consecutively. One of the house numbers had the peculiar property that the total of the numbers lower than it was exactly equal to the total of the numbers above it. Furthermore, the mysterious house number was greater than 50 but less than 500 .

Street number: examples

Examples:

- House number 6 in a street with 8 houses :

$$
1+2+3+4+5=15, \quad 7+8=15
$$

- House number 35 in a street with 49 houses. To compute

$$
S:=1+2+3+\cdots+32+33+34
$$

write

$$
S=34+33+32+\cdots+3+2+1
$$

so that $2 S=34 \times 35$:

$$
1+2+3+\cdots+34=\frac{34 \times 35}{2}=595
$$

On the other side of the house,
$36+37+\cdots+49=\frac{49 \times 50}{2}-\frac{35 \times 36}{2}=1225-630=595$.

Other solutions to the puzzle

- House number 1 in a street with 1 house.
- House number 0 in a street with 0 house.

Ramanujan : if no banana is distributed to no student, will each student get a banana?

The puzzle requests the house number between 50 and 500 .

Street number

Let m be the house number and n the number of houses :

$$
\begin{gathered}
1+2+3+\cdots+(m-1)=(m+1)+(m+2)+\cdots+n \\
\frac{m(m-1)}{2}=\frac{n(n+1)}{2}-\frac{m(m+1)}{2}
\end{gathered}
$$

This is $2 m^{2}=n(n+1)$. Complete the square on the right :

$$
8 m^{2}=(2 n+1)^{2}-1
$$

Set $x=2 n+1, y=2 m$. Then

$$
x^{2}-2 y^{2}=1
$$

Mahalanobis puzzle $x^{2}-2 y^{2}=1, x=2 n+1, y=2 m$

Fundamental solution : $\left(x_{1}, y_{1}\right)=(3,2)$.
Other solutions $\left(x_{\nu}, y_{\nu}\right)$ with

$$
x_{\nu}+y_{\nu} \sqrt{2}=(3+2 \sqrt{2})^{\nu}
$$

- $\nu=0, \quad$ trivial solution : $x=1, y=0, m=n=0$.
- $\nu=1, \quad x_{1}=3, y_{1}=2, \quad m=n=1$.
- $\nu=2, \quad x_{2}=17, \quad y_{2}=12, \quad n=8, \quad m=6$,

$$
x_{2}+y_{2} \sqrt{2}=(3+2 \sqrt{2})^{2}=17+12 \sqrt{2}
$$

- $\nu=3, \quad x_{3}=99, \quad y_{3}=70, \quad n=49, \quad m=35$,

$$
x_{3}+y_{3} \sqrt{2}=(3+2 \sqrt{2})^{3}=99+70 \sqrt{2}
$$

Remark : $\frac{99}{70}=\frac{297}{210}: A 4$ format.

Brahmagupta (628)

Brahmasphutasiddhanta :
Solve in integers the equation

$$
x^{2}-92 y^{2}=1
$$

Answer : $(x, y)=(1151,120)$

Brahmagupta

The continued fraction expansion of $\sqrt{92}$ is

$$
\sqrt{92}=[9, \overline{1,1,2,4,2,1,1,18}] .
$$

Compute

$$
[9,1,1,2,4,2,1,1]=\frac{1151}{120}
$$

Indeed $1151^{2}-92 \cdot 120^{2}=1324801-1324800=1$

Bhaskara II (12th Century)

Lilavati
(Bijaganita, 1150)
$x^{2}-61 y^{2}=1$
A solution is:
$x=1766319049$,
$y=226153980$.

Cyclic method (Chakravala) of Brahmagupta.
$\sqrt{61}=[7, \overline{1,4,3,1,2,2,1,3,4,1,14}]$
$[7,1,4,3,1,2,2,1,3,4,1,14,1,4,3,1,2,2,1,3,5]=\frac{1766319049}{226153980}$

Reference to Indian mathematics

André Weil

Number theory :
An approach through history.
From Hammurapi to
Legendre.
Birkhäuser Boston, Inc.,
Boston, Mass., (1984) 375 pp.
MR 85c:01004

ANDRE WELL

Number Theory in Science and communication

M.R. Schroeder.

Number theory in science and communication :
with applications in
cryptography, physics, digital information, computing and self similarity
Springer series in information sciences 71986.
4th ed. (2006) 367 p.

Electric networks

- The resistance of a network in series

is the sum $R_{1}+R_{2}$.
- The resistance R of a network in parallel

satisfies

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Electric networks and continued fractions

The resistance U of the circuit
is given by

$$
U=\frac{1}{S_{1}+\frac{1}{R+\frac{1}{S_{2}}}}:=\left[0, S_{1}, R, S_{2}\right]
$$

A circuit for a continued fraction expansion

- For the network

the resistance is given by a continued fraction expansion

$$
R_{0}+\frac{1}{S_{1}+\frac{1}{R_{1}+\frac{1}{S_{2}+\frac{1}{\ddots}}}}:=\left[R_{0}, S_{1}, R_{1}, S_{2}, R_{2}, \ldots\right]
$$

Decomposition of a square in squares

Electric networks and continued fractions have been used to find the first solution to the problem of decomposing an integer square into a disjoint union of integer squares, all of which are distinct.

Squaring the square

There is a unique simple perfect square of order 21 (the lowest possible order), discovered in 1978 by A. J. W. Duijvestijn (Bouwkamp and Duijvestijn 1992). It is composed of 21 squares with total side length 112, and is illustrated above.

Continued fraction of $\sqrt{2}$, partial quotients $\frac{x_{\nu}}{y_{\nu}}$

Trivial solution of $x^{2}-2 y^{2}=1: x_{0}=1, y_{0}=0$.
First non trivial solution : $x_{1}=3, y_{1}=2$. We have

$$
\frac{x_{1}}{y_{1}}=\frac{3}{2}=1+\frac{1}{2}=[1,2]
$$

Second solution : $x_{2}=17, y_{2}=12$

$$
\frac{x_{2}}{y_{2}}=\frac{17}{12}=1+\frac{5}{12}, \quad \frac{12}{5}=2+\frac{2}{5}, \quad \frac{5}{2}=2+\frac{1}{2}
$$

hence

$$
\frac{17}{12}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}=[1,2,2,2]
$$

Third solution of $x^{2}-2 y^{2}=1$

$$
\begin{aligned}
& (3+2 \sqrt{2})^{3}=x_{3}+y_{3} \sqrt{2} \\
& x_{3}=99, y_{3}=70 . \\
& \frac{x_{3}}{y_{3}}=\frac{99}{70}=1+\frac{29}{70}, \quad \frac{70}{29}=2+\frac{12}{29}, \quad \frac{29}{12}=2+\frac{5}{12}
\end{aligned}
$$

with

$$
\frac{12}{5}=2+\frac{2}{5}, \quad \frac{5}{2}=2+\frac{1}{2}
$$

hence

$$
\frac{99}{70}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}}=[1,2,2,2,2,2] .
$$

Fourth solution of $x^{2}-2 y^{2}=1$

$$
(3+2 \sqrt{2})^{4}=x_{4}+y_{4} \sqrt{2}
$$

$$
[1,2,2,2,2,2,2,2]=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}}}}=\frac{577}{408}
$$

$$
577^{2}-2 \times 408^{2}=1, \quad 577=2 \times 288+1, \quad 408=2 \times 204
$$

Hence the solution to the puzzle is : the house number is 204 in a street with 288 houses :

$$
\begin{gathered}
1+2+3+4+5+\cdots+203=\frac{203 \times 204}{2}=20706 \\
205+206+\cdots+288=\frac{288 \times 289}{2}-\frac{204 \times 205}{2}=20706
\end{gathered}
$$

Pell's equation $x^{2}-2 y^{2}=1$ and Euclid

Euclid of Alexandria about 325 BC - about 265 BC , Elements, II § 10

$$
\begin{aligned}
& 17^{2}-2 \cdot 12^{2}=289-2 \cdot 144=1 \\
& 99^{2}-2 \cdot 70^{2}=9801-2 \cdot 4900=1 \\
& 577^{2}-2 \cdot 408^{2}=332929-2 \cdot 166464=1
\end{aligned}
$$

Pythagorean triples

Pythagoras of Samos
about 569 BC - about 475 BC
Which are the right angle triangles with integer sides such that the two sides of the right angle are consecutive integers?

$$
\begin{gathered}
x^{2}+y^{2}=z^{2}, \quad y=x+1 . \\
2 x^{2}+2 x+1=z^{2} \\
(2 x+1)^{2}-2 z^{2}=-1 \\
X^{2}-2 Y^{2}=-1 \\
(X, Y)=\quad(1,1), \quad(7,5), \quad(41,29),
\end{gathered}
$$

$x^{2}-2 y^{2}= \pm 1$

$$
\sqrt{2}=1,4142135623730950488016887242 \ldots
$$

satisfies

$$
\sqrt{2}=1+\frac{1}{\sqrt{2}+1}
$$

Hence the continued fraction expansion is periodic with period length 1 :

$$
\sqrt{2}=[1,2,2,2,2,2, \ldots]=[1, \overline{2}],
$$

The fundamental solution of $x^{2}-2 y^{2}=-1$ is $x_{1}=1, y_{1}=1$

$$
1^{2}-2 \cdot 1^{2}=-1,
$$

the continued fraction expansion of x_{1} / y_{1} is [1].

Pell's equation $x^{2}-2 y^{2}=-1$

The fundamental solution of

$$
x^{2}-2 y^{2}=-1
$$

is $x=y=1$. The norm of $1+\sqrt{2}$ is

$$
(1+\sqrt{2})(1-\sqrt{2})=-1
$$

and the norm of $(1+\sqrt{2})^{\nu}$ is $(-1)^{\nu}$, hence is -1 for ν odd.
The sequence $\left(x_{j}, y_{j}\right)$ of solutions of $x^{2}-2 y^{2}=-1$ is given by the continued fractions

$$
\frac{x_{1}}{y_{1}}=1, \quad \frac{x_{2}}{y_{2}}=[1,2,2], \quad \frac{x_{3}}{y_{3}}=[1,2,2,2,2], \ldots
$$

with an even number of 2 's.

$x^{2}-2 y^{2}= \pm 1$

$$
\begin{gathered}
(1+\sqrt{2})^{n}=x_{n}+y_{n} \sqrt{2} \\
(1-\sqrt{2})^{n}=x_{n}-y_{n} \sqrt{2} \\
x_{n}=\frac{1}{2}(1+\sqrt{2})^{n}+\frac{1}{2}(1-\sqrt{2})^{n} \\
y_{n}=\frac{1}{2 \sqrt{2}}(1+\sqrt{2})^{n}-\frac{1}{2 \sqrt{2}}(1-\sqrt{2})^{n} . \\
\left(x_{0}, y_{0}\right)=(1,0), \quad\left(x_{1}, y_{1}\right)=(1,1) .
\end{gathered}
$$

Linear recurrence sequence :

$$
u_{n+2}=2 u_{n+1}+u_{n}
$$

The space of solutions of the recurrence

The set of sequences $\left(u_{n}\right)_{n \geq 0}$ of complex numbers satisfying the recurrence $u_{n+2}=2 u_{n+1}+u_{n}$ is a vector space of dimension 2 , a basis is given by the two sequences with initial conditions $(0,1)$ and (1,0).

Another basis is given by the two sequences $\left(\gamma_{1}^{n}\right)_{n \geq 0}$ and $\left(\gamma_{2}^{n}\right)_{n \geq 0}$ where

$$
X^{2}-2 X-1=\left(X-\gamma_{1}\right)\left(X-\gamma_{2}\right)
$$

hence $\gamma_{1}=1+\sqrt{2}, \gamma_{2}=1-\sqrt{2}$.

The matrix associated with the recurrence

The recurrence relation

$$
u_{n+2}=2 u_{n+1}+u_{n}
$$

can be written in a matrix form $\mathbf{u}_{n+1}=A \mathbf{u}_{n}$ with

$$
\mathbf{u}_{n}=\binom{u_{n}}{u_{n+1}}, \quad A=\left(\begin{array}{cc}
0 & 1 \\
1 & 2
\end{array}\right)
$$

Hence

$$
\mathbf{u}_{n}=A^{n} \mathbf{u}_{0}
$$

The characteristic polynomial of the matrix A is

$$
\operatorname{det}\left(\begin{array}{cc}
-X & 1 \\
1 & 2-X
\end{array}\right)=X^{2}-2 X-1
$$

Computing A^{n} : linear algebra

Diagonalize the matrix $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right): A P=P D$ with

$$
\begin{gathered}
P=\left(\begin{array}{cc}
1 & 1 \\
\gamma_{1} & \gamma_{2}
\end{array}\right), \quad D=\left(\begin{array}{cc}
\gamma_{1} & 0 \\
0 & \gamma_{2}
\end{array}\right), \\
\gamma_{1}=1+\sqrt{2}, \gamma_{2}=1-\sqrt{2} \\
P^{-1}=\frac{1}{\gamma_{2}-\gamma_{1}}\left(\begin{array}{cc}
\gamma_{2} & -1 \\
-\gamma_{1} & 1
\end{array}\right), \quad \gamma_{2}-\gamma_{1}=\frac{-\sqrt{2}}{4},
\end{gathered}
$$

so that

$$
A^{n}=P D^{n} P^{-1}=\frac{\sqrt{2}}{4}\left(\begin{array}{cc}
\gamma_{1}^{n-1}-\gamma_{2}^{n-1} & \gamma_{1}^{n}-\gamma_{2}^{n} \\
\gamma_{1}^{n}-\gamma_{2}^{n} & \gamma_{1}^{n+1}-\gamma_{2}^{n+1}
\end{array}\right)
$$

Theorem of Cayley - Hamilton

Let A be a square $d \times d$ matrix with characteristic polynomial

$$
X^{d}-a_{1} X^{d-1}-\cdots-a_{d-1} X-a_{d}
$$

Then

$$
A^{d}=a_{1} A^{d-1}+\cdots+a_{d-1} A+a_{d} I_{d}
$$

where I_{d} is the identity $d \times d$ matrix.

Arthur Cayley
1821-1895

Sir William Rowan Hamilton

$$
1805-1865
$$

Computing A^{n} : linear recurrence

For $n \geq 0$, multiply the Cayley - Hamilton relation

$$
A^{d}=a_{1} A^{d-1}+\cdots+a_{d-1} A+a_{d} I_{d}
$$

by A^{n} :

$$
A^{n+d}=a_{1} A^{n+d-1}+\cdots+a_{d-1} A^{n+1}+a_{d} A^{n}
$$

It follows that each entry $a_{i j}(n), 1 \leq i, j \leq d$ of A^{n} satisfies the linear recurrence relation

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d-1} u_{n+1}+a_{d} u_{n}
$$

The characteristic polynomial is $X^{2}-2 X-1$, the linear recurrence is $u_{n+2}=2 u_{n+1}+u_{n}$, the initial conditions are

$$
A^{0}=I_{d}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad A^{1}=A=\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right)
$$

which yields

$$
A^{n}=\left(\begin{array}{cc}
a_{n-1} & a_{n} \\
a_{n} & a_{n+1}
\end{array}\right)
$$

with $a_{0}=0, a_{1}=1$. Hence

$$
a_{n}=\frac{\sqrt{2}}{4}\left(\gamma_{1}^{n}-\gamma_{2}^{n}\right)
$$

The generating series of the recurrence

Assume

$$
u_{n+2}=2 u_{n+1}+u_{n}
$$

Consider the formal power series

$$
f(t)=\sum_{n \geq 0} u_{n} t^{n}
$$

Then (telescoping series)

$$
\left(1+2 t-t^{2}\right) f(t)=u_{0}+u_{1} t
$$

Therefore $f(t)$ is a rational fraction, the denominator is the reciprocal of the characteristic polynomial of the recurrence.

The exponential generating series of the recurrence

Assume

$$
u_{n+2}=2 u_{n+1}+u_{n}
$$

The formal power series

$$
y(x)=\sum_{n \geq 0} u_{n} \frac{x^{n}}{n!}
$$

satisfies the differential equation

$$
y^{\prime \prime}-2 y^{\prime}-y=0
$$

A basis of the space of solutions of the differential equation $y^{\prime \prime}-2 y^{\prime}-y=0$ is given by $e^{\gamma_{1} x}$ and $e^{\gamma_{2} x}$ where γ_{1} and γ_{2} are the roots of the characteristic polynomial $X^{2}-2 X-1$.

The binary recurrence sequence $u_{n+2}=2 u_{n+1}+u_{n}$

Exercise (Pierre Arnoux) :

$u_{n+2}=2 u_{n+1}+u_{n}$,
$u_{0}=1, u_{1}=1-\sqrt{2}$.
Use a calculator to estimate
u_{100}.

Pierre Arnoux
http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/Ariane5VI.pdf PARI GP : https://pari.math.u-bordeaux.fr/

$$
u_{n+2}=2 u_{n+1}+u_{n}, n=0,1, \ldots, 22
$$

0	1
1	$-0,4142135624$
2	0,1715728753
3	$-0,0710678119$
4	0,0294372515
5	$-0,0121933088$
6	0,0050506339
7	$-0,0000920411$
8	0,008665518
9	$-0,0003589375$
10	0,0001486768
11	$-0,0000615839$
12	0,0000255089
13	$-0,0000105661$
14	0,000043766
15	$-0,0000018129$
16	0,0000007509
17	$-0,0000003111$
18	0,0000001286
19	$-0,0000000540$
20	0,00000020
21	$-0,0000000129$
22	$-0,0000000052$

$u_{n+2}=2 u_{n+1}+u_{n}, n=22, \ldots, 100$

20	0,0000000206
21	$-0,0000000129$
22	$-0,0000000052$
23	$-0,000000233$
24	$-0,0000000519$
25	$-0,0000001271$
26	$-0,0000003060$
27	$-0,0000007391$
28	$-0,0000017843$
29	$-0,0000043078$
30	$-0,0000103999$
31	$-0,0000251077$
32	$-0,0000606152$
33	$-0,0001463381$
34	$-0,0003532915$
35	$-0,0008529212$
36	$-0,0020591338$
37	$-0,0049711888$
38	$-0,0120015115$
39	$-0,0289742118$
40	$-0,0699499351$
41	$-0,1688740819$
42	$-0,4076980989$
43	$-0,9842702797$
44	$-2,376238583$
45	$-5,736745963$
46	$-13,8497338509$

47	$-33,4362152981$
48	$-80,7221644471$
49	$-194,8805441923$
50	$-470,4832528317$
51	$-1135,8470498557$
52	$-2742,1773525431$
53	$-6620,2017549419$
54	$-15982,5808624269$
55	$-38585,3634797957$
56	$-93153,3078220182$
57	$-224891,9791238320$
58	$-542937,2660696820$
59	$-1310766,5112632000$
60	$-3164470,2885960800$
61	$-7639707,0884553500$
62	$-18443884,4655068000$
63	$-44527476,0194689000$
64	$-107498836,5044450000$
65	$-259525149,0283580000$
66	$-626549134,5611610000$
67	$-1512623418,1506800000$
68	$-3651795970,8625200000$
69	$-8816215359,8757200000$
70	$-2128426690,6140000000$
71	$-51384688741,1036000000$
72	$-12405364172,8210000000$
73	$-299491797086,7460000000$

74	$-723037158346,31300$
75	$-1745566113799,37000$
76	$-4214169385905,06000$
77	$-10173904885589,50000$
78	$-24561979157084,0000$
79	$-5929786319975,6000$
80	$-143157705556599,0000$
81	$-345613274312956,00000$
82	$-834384254182511,00000$
83	$-2014381782677980,00000$
84	$-4863147819538470,00000$
85	$-11740677421754900,00000$
86	$-28344502663048300,00000$
87	$-68429682747851500,00000$
88	$-165203868158751000,00000$
89	$-398837419065354000,00000$
90	$-962878706289460000,00000$
91	$-2324594831644270000,00000$
92	$-5612068369578010000,00000$
93	$-13548731570800300000,00000$
94	$-32709531511178600000,00000$
95	$-78967794593157400000,00000$
96	$-190645120697493000000,00000$
97	$-460258035988144000000,00000$
98	$-1111161192673780000000,00000$
99	$-2682580421335710000000,00000$
100	$-647632203534520000000,0000$

The linear recurrence sequence $u_{n+2}=2 u_{n+1}+u_{n}$

A basis of the space of solutions is $\left(\left(\gamma_{1}^{n}\right)_{n \geq 0}, \quad\left(\gamma_{2}^{n}\right)_{n \geq 0}\right)$ with

$$
\gamma_{1}=1+\sqrt{2}, \quad \gamma_{2}=1-\sqrt{2} .
$$

The general solution is

$$
u_{n}=a \gamma_{1}^{n}+b \gamma_{2}^{n}
$$

Notice that $\gamma_{1}>1>\left|\gamma_{2}\right|$.
If $a \neq 0$, then $u_{n} \sim a \gamma_{1}^{n} \rightarrow \infty$ as $n \rightarrow \infty$.
If $a=0$, then $u_{n}=b \gamma_{2}^{n} \rightarrow 0$.

If two consecutive terms are of the same sign, then $a \neq 0$, all the next ones have the same sign and $\left|u_{n}\right|$ tends to infinity.
$u_{n+2}=2 u_{n+1}+u_{n}$ with $u_{0}=1, u_{1}=1-\sqrt{2}$
The value of u_{100} is $(1-\sqrt{2})^{100}$.
$1-\sqrt{2}=-0.4142135624 \ldots \quad \log (\sqrt{2}-1)=-0.881373587 \ldots$

$$
(1-\sqrt{2})^{100}=\mathrm{e}^{-88.1373587 \ldots}=5.277 \cdot 10^{-39} .
$$

For $u_{0}=1$ and $u_{1}=1-\sqrt{2}+\eta$, we have

$$
u_{n}=\frac{1}{4} \eta \sqrt{2}(1+\sqrt{2})^{n}+\left(1-\frac{1}{4} \eta \sqrt{2}\right)(1-\sqrt{2})^{n} ;
$$

hence $u_{n} \rightarrow 0$ if and only if $\eta=0$.

Infinitely many solutions to the puzzle

Ramanujan said he has infinitely many solutions (but a single one between 50 and 500).
Sequence of balancing numbers (number of the house)
https://oeis.org/A001109
$0,1,6,35, \mathbf{2 0 4}, 1189,6930,40391,235416,1372105,7997214 \ldots$
This is a linear recurrence sequence $u_{n+2}=6 u_{n+1}-u_{n}$ with the initial conditions $u_{0}=0, u_{1}=1$.

The number of houses is
https://oeis.org/A001108
$0,1,8,49,288,1681,9800,57121,332928,1940449, \ldots$

OEIS

The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.
013627 THE ON-LINE ENCYCLOPEDIA
O_{12}^{20} OF INTEGER SEQUENCES ${ }^{(6)}$
10221121
founded in 1964 by N. J. A. Sloane

Neil J. A. Sloane

Neil J. A. Sloane's encyclopaedia
http://oeis.org/A001109
http://oeis.org/A001108
The puzzle is attributed to David Gales in the Puzzles Column of the Emissary MSRI https://www.msri.org/attachments/media/news/emissary/EmissaryFall2005.pdf

Balancing numbers

A balancing number is an integer $B \geq 0$ such that there exists
C with

$$
1+2+3+\cdots+(B-1)=(B+1)+(B+2)+\cdots+C
$$

Same as $B^{2}=C(C+1) / 2$: a balancing number is an integer B such that B^{2} is a triangular number (and a square!).
Sequence of balancing numbers : https://oeis.org/A001109
$0,1,6,35,204,1189,6930,40391,235416,1372105,7997214 \ldots$

This is a linear recurrence sequence

$$
B_{n+1}=6 B_{n}-B_{n-1}
$$

with the initial conditions $B_{0}=0, B_{1}=1$.

Balancing numbers and the matrix $A=$

$$
\binom{B_{n+1}}{B_{n+2}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 6
\end{array}\right)\binom{B_{n}}{B_{n+1}} \quad(n \geq 0)
$$

Powers of A :

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 6
\end{array}\right)^{n}=\left(\begin{array}{cc}
-B_{n} & B_{n+1} \\
-B_{n+1} & B_{n+2}
\end{array}\right) \quad(n \geq 0)
$$

Characteristic polynomial :

$$
\operatorname{det}(X I-A)=\operatorname{det}\left(\begin{array}{cc}
X & -1 \\
1 & X-6
\end{array}\right)=X^{2}-6 X+1
$$

The sequence of balancing numbers

Characteristic polynomial :

$$
f(X)=X^{2}-6 X+1=(X-3-2 \sqrt{2})(X-3+2 \sqrt{2}) .
$$

Closed formula :

$$
B_{n}=\frac{1}{4 \sqrt{2}}\left((3+2 \sqrt{2})^{n}-(3-2 \sqrt{2})^{n}\right) .
$$

Generating series :

$$
\varphi(t)=\sum_{n \geq 0} B_{n} t^{n}=t+6 t^{2}+35 t^{3}+\cdots=\frac{t}{1-6 t+t^{2}} .
$$

Exercise:

$$
t^{2} \varphi^{\prime}=\left(1-t^{2}\right) \varphi^{2} .
$$

Takao Komatsu \& Prasanta Kumar Ray. Higher-order identities for balancing numbers.
arXiv:1608.05925 [math. NT]

Exponential generating series of the sequence of

 balancing numbers$$
\begin{aligned}
y(x) & =\sum_{n \geq 0} B_{n} \frac{x^{n}}{n!} \\
& =x+3 x^{2}+\frac{35}{6} x^{3}+\cdots \\
& =\frac{1}{4 \sqrt{2}}\left(e^{(3+2 \sqrt{2}) x}-e^{(3-2 \sqrt{2}) x}\right)
\end{aligned}
$$

This is a solution of the homogeneous linear differential equation of order 2

$$
y^{\prime \prime}=6 y^{\prime}-y
$$

with the initial conditions $y(0)=0, y^{\prime}(0)=1$.

The sequence $\left(C_{n}\right)_{n \geq 0}$

$$
2 B_{n}^{2}=C_{n}\left(C_{n}+1\right)
$$

The corresponding sequence $\left(C_{n}\right)_{n \geq 0}$ is
https://oeis.org/A001108

$$
0,1,8,49,288,1681,9800,57121,332928,1940449, \ldots
$$

The solutions of $x^{2}-2 y^{2}=1$ are given by

$$
x_{n}=2 B_{n}, \quad y_{n}=2 C_{n}+1
$$

Both sequences $\left(x_{n}\right)_{n \geq 0}$ and $\left(y_{n}\right)_{n \geq 0}$ satisfy

$$
u_{n+2}=6 u_{n+1}-u_{n}
$$

with $x_{0}=0, x_{1}=2, y_{0}=1, y_{1}=3$.
Hence

$$
C_{n+1}=6 C_{n}-C_{n-1}+2 .
$$

On the Ramanujan street puzzle of Prasanta Chandra Mahalanobis

Michel Waldschmidt

Professeur Émérite, Sorbonne Université Institut de Mathématiques de Jussieu Paris Rive Gauche http://www.imj-prg.fr/~michel.waldschmidt/

