Cochin University of Science and Technology (CUSAT)

November 19, 2022

On the Ramanujan street puzzle of Prasanta Chandra Mahalanobis

Michel Waldschmidt

Professeur Émérite, Sorbonne Université Institut de Mathématiques de Jussieu Paris Rive Gauche http://www.imj-prg.fr/~michel.waldschmidt/

An interesting street number

The puzzle itself was about a street in the town of Louvain in Belgium, where houses are numbered consecutively. One of the house numbers had the peculiar property that the total of the numbers lower than it was exactly equal to the total of the numbers above it. Furthermore, the mysterious house number was greater than 50 but less than 500.

Prasanta Chandra Mahalanobis 1893 – 1972 Srinivasa Ramanujan 1887 – 1920

http://mathshistory.st-andrews.ac.uk/Biographies/Mahalanobis.html https://www.math.auckland.ac.nz/-butcher/miniature/miniature2.pdf 🔬

Street number : examples

Examples :

• House number 6 in a street with 8 houses :

1 + 2 + 3 + 4 + 5 = 15, 7 + 8 = 15.

• House number 35 in a street with 49 houses. To compute

 $S := 1 + 2 + 3 + \dots + 32 + 33 + 34$

write

$$S = 34 + 33 + 32 + \dots + 3 + 2 + 1$$

so that $2S = 34 \times 35$:

$$1 + 2 + 3 + \dots + 34 = \frac{34 \times 35}{2} = 595.$$

On the other side of the house,

$$36 + 37 + \dots + 49 = \frac{49 \times 50}{2} - \frac{35 \times 36}{2} = 1225 - 630 = 595.$$

Other solutions to the puzzle

• House number 1 in a street with 1 house.

• House number 0 in a street with 0 house. Ramanujan : *if no banana is distributed to no student, will each student get a banana* ?

The puzzle requests the house number between 50 and 500.

Street number

Let m be the house number and n the number of houses :

 $1 + 2 + 3 + \dots + (m - 1) = (m + 1) + (m + 2) + \dots + n.$

$$\frac{m(m-1)}{2} = \frac{n(n+1)}{2} - \frac{m(m+1)}{2}$$

This is $2m^2 = n(n+1)$. Complete the square on the right :

 $8m^2 = (2n+1)^2 - 1.$

Set x = 2n + 1, y = 2m. Then

$$x^2 - 2y^2 = 1.$$

Mahalanobis puzzle $x^2 - 2y^2 = 1$, x = 2n + 1, y = 2mFundamental solution : $(x_1, y_1) = (3, 2)$. Other solutions (x_{ν}, y_{ν}) with

$$x_{\nu} + y_{\nu}\sqrt{2} = (3 + 2\sqrt{2})^{\nu}.$$

• $\nu = 0$, trivial solution : x = 1, y = 0, m = n = 0. • $\nu = 1$, $x_1 = 3$, $y_1 = 2$, m = n = 1. • $\nu = 2$, $x_2 = 17$, $y_2 = 12$, n = 8, m = 6, $x_2 + y_2\sqrt{2} = (3 + 2\sqrt{2})^2 = 17 + 12\sqrt{2}$.

• $\nu = 3$, $x_3 = 99$, $y_3 = 70$, n = 49, m = 35, $x_3 + y_3\sqrt{2} = (3 + 2\sqrt{2})^3 = 99 + 70\sqrt{2}$.

Remark : $\frac{99}{70} = \frac{297}{210}$: A4 format.

Brahmagupta (628)

Brahmasphutasiddhanta : Solve in integers the equation

 $x^2 - 92u^2 = 1$

Answer : (x, y) = (1151, 120)

The continued fraction expansion of $\sqrt{92}$ is

$$\sqrt{92} = [9, \overline{1, 1, 2, 4, 2, 1, 1, 18}].$$

Compute

$$[9, 1, 1, 2, 4, 2, 1, 1] = \frac{1151}{120}$$

Indeed $1151^2 - 92 \cdot 120^2 = 1324801 - 1324800 = 1$.

Bhaskara II (12th Century)

Lilavati (Bijaganita, 1150) $x^2 - 61y^2 = 1$ A solution is : $x = 1\,766\,319\,049,$ $y = 226\,153\,980.$

Cyclic method (Chakravala) of Brahmagupta.

 $\sqrt{61} = [7, \overline{1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14}]$ $[7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 5] = \frac{1\,766\,319\,049}{226\,153\,980}$

Reference to Indian mathematics

André Weil

Number theory :

An approach through history. From Hammurapi to Legendre. Birkhäuser Boston, Inc., Boston, Mass., (1984) 375 pp. MR 85c:01004

Number Theory in Science and communication

M.R. Schroeder.

Number theory in science and communication :

with applications in cryptography, physics, digital information, computing and self similarity Springer series in information sciences **7** 1986. 4th ed. (2006) 367 p.

Electric networks

• The resistance of a network in series

is the sum $R_1 + R_2$.

• The resistance R of a network in parallel

satisfies

Electric networks and continued fractions

The resistance U of the circuit R $1/S_1 \ge 1/S_2 \le 1/S_$ is given by $U = \frac{1}{S_1 + \frac{1}{R + \frac{1}{S_2}}} := [0, S_1, R, S_2].$

・ロト <
同 ト <
言 ト <
言 ト ミ の へ や
12/44
</p>

A circuit for a continued fraction expansion

the resistance is given by a continued fraction expansion

Decomposition of a square in squares

Electric networks and continued fractions have been used to find the first solution to the problem of decomposing an integer square into a disjoint union of integer squares, all of which are distinct.

Squaring the square

21-square perfect square

There is a unique simple perfect square of order 21 (the lowest possible order), discovered in 1978 by A. J. W. Duijvestijn (Bouwkamp and Duijvestijn 1992). It is composed of 21 squares with total side length 112, and is illustrated above.

15/44

э

< ∃ >

Continued fraction of $\sqrt{2}$, partial quotients $\frac{x_{\nu}}{y_{\nu}}$

Trivial solution of $x^2 - 2y^2 = 1$: $x_0 = 1$, $y_0 = 0$. First non trivial solution : $x_1 = 3$, $y_1 = 2$. We have

$$\frac{x_1}{y_1} = \frac{3}{2} = 1 + \frac{1}{2} = [1, 2].$$

Second solution : $x_2 = 17$, $y_2 = 12$

$$\frac{x_2}{y_2} = \frac{17}{12} = 1 + \frac{5}{12}, \quad \frac{12}{5} = 2 + \frac{2}{5}, \quad \frac{5}{2} = 2 + \frac{1}{2},$$

hence

$$\frac{17}{12} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}} = [1, 2, 2, 2].$$

Third solution of $x^2 - 2y^2 = 1$

$$(3+2\sqrt{2})^3 = x_3 + y_3\sqrt{2}$$

 $x_3 = 99, y_3 = 70.$

$$\frac{x_3}{y_3} = \frac{99}{70} = 1 + \frac{29}{70}, \quad \frac{70}{29} = 2 + \frac{12}{29}, \quad \frac{29}{12} = 2 + \frac{5}{12}$$

with

$$\frac{12}{5} = 2 + \frac{2}{5}, \quad \frac{5}{2} = 2 + \frac{1}{2}$$

hence

$$\frac{99}{70} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}}}} = [1, 2, 2, 2, 2, 2].$$

<ロ><回><日><日><日><日><日><日><日><日><日><日><日><日><日</td>17/44

Fourth solution of $x^2 - 2y^2 = 1$ $(3 + 2\sqrt{2})^4 = x_4 + y_4\sqrt{2}$

 $577^2 - 2 \times 408^2 = 1$, $577 = 2 \times 288 + 1$, $408 = 2 \times 204$.

Hence the solution to the puzzle is : *the house number is* 204 *in a street with* 288 *houses :*

$$1 + 2 + 3 + 4 + 5 + \dots + 203 = \frac{203 \times 204}{2} = 20706,$$
$$205 + 206 + \dots + 288 = \frac{288 \times 289}{2} - \frac{204 \times 205}{2} = 20706.$$

Pell's equation $x^2 - 2y^2 = 1$ and Euclid

Euclid of Alexandria about 325 BC - about 265 BC , Elements, II \S 10

 $17^2 - 2 \cdot 12^2 = 289 - 2 \cdot 144 = 1.$

 $99^2 - 2 \cdot 70^2 = 9\,801 - 2 \cdot 4900 = 1.$

 $577^2 - 2 \cdot 408^2 = 332\,929 - 2 \cdot 166\,464 = 1.$

<ロト < 部ト < 言ト < 言ト 言 のへで 19/44

Pythagorean triples Pythagoras of Samos about 569 BC - about 475 BC

Which are the right angle triangles with integer sides such that the two sides of the right angle are consecutive integers?

$$x^2 + y^2 = z^2, \qquad y = x + 1.$$

$$2x^2 + 2x + 1 = z^2$$

$$(2x+1)^2 - 2z^2 = -1$$

 $X^2 - 2Y^2 = -1$

 $(X,Y) = (1,1), (7,5), (41,29), \dots = (20/44)$

 $x^2 - 2y^2 = \pm 1$

 $\sqrt{2} = 1,4142135623730950488016887242 \dots$

satisfies

$$\sqrt{2} = 1 + \frac{1}{\sqrt{2}+1}$$

Hence the continued fraction expansion is periodic with period length $1\,:\,$

$$\sqrt{2} = [1, 2, 2, 2, 2, 2, \ldots] = [1, \overline{2}],$$

The fundamental solution of $x^2 - 2y^2 = -1$ is $x_1 = 1$, $y_1 = 1$

$$1^2 - 2 \cdot 1^2 = -1,$$

the continued fraction expansion of x_1/y_1 is [1].

Pell's equation $x^2 - 2y^2 = -1$

The fundamental solution of

 $x^2 - 2y^2 = -1$

is x = y = 1. The norm of $1 + \sqrt{2}$ is

$$(1+\sqrt{2})(1-\sqrt{2}) = -1$$

and the norm of $(1+\sqrt{2})^{\nu}$ is $(-1)^{\nu}$, hence is -1 for ν odd.

The sequence (x_j, y_j) of solutions of $x^2 - 2y^2 = -1$ is given by the continued fractions

$$\frac{x_1}{y_1} = 1, \quad \frac{x_2}{y_2} = [1, 2, 2], \quad \frac{x_3}{y_3} = [1, 2, 2, 2, 2], \dots$$

with an even number of 2's.

$$x^2 - 2y^2 = \pm 1$$

$$(1 + \sqrt{2})^n = x_n + y_n \sqrt{2}$$
$$(1 - \sqrt{2})^n = x_n - y_n \sqrt{2}$$
$$x_n = \frac{1}{2}(1 + \sqrt{2})^n + \frac{1}{2}(1 - \sqrt{2})^n$$
$$y_n = \frac{1}{2\sqrt{2}}(1 + \sqrt{2})^n - \frac{1}{2\sqrt{2}}(1 - \sqrt{2})^n.$$
$$(x_0, y_0) = (1, 0), \quad (x_1, y_1) = (1, 1).$$
Linear recurrence sequence :

$$u_{n+2} = 2u_{n+1} + u_n$$

The space of solutions of the recurrence

The set of sequences $(u_n)_{n\geq 0}$ of complex numbers satisfying the recurrence $u_{n+2} = 2u_{n+1} + u_n$ is a vector space of dimension 2, a basis is given by the two sequences with initial conditions (0, 1) and (1, 0).

Another basis is given by the two sequences $(\gamma_1^n)_{n\geq 0}$ and $(\gamma_2^n)_{n\geq 0}$ where

$$X^{2} - 2X - 1 = (X - \gamma_{1})(X - \gamma_{2}),$$

24 / 44

hence $\gamma_1 = 1 + \sqrt{2}$, $\gamma_2 = 1 - \sqrt{2}$.

The matrix associated with the recurrence The recurrence relation

$$u_{n+2} = 2u_{n+1} + u_n$$

can be written in a matrix form $\mathbf{u}_{n+1} = A\mathbf{u}_n$ with

$$\mathbf{u}_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}, \qquad A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$$

Hence

 $\mathbf{u}_n = A^n \mathbf{u}_0.$

The characteristic polynomial of the matrix A is

$$\det \begin{pmatrix} -X & 1\\ 1 & 2-X \end{pmatrix} = X^2 - 2X - 1.$$

25 / 44

イロン イロン イヨン イヨン 三日

Computing A^n : linear algebra Diagonalize the matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$: AP = PD with

$$P = \begin{pmatrix} 1 & 1 \\ \gamma_1 & \gamma_2 \end{pmatrix}, \quad D = \begin{pmatrix} \gamma_1 & 0 \\ 0 & \gamma_2 \end{pmatrix},$$

 $\gamma_1 = 1 + \sqrt{2}$, $\gamma_2 = 1 - \sqrt{2}$,

$$P^{-1} = \frac{1}{\gamma_2 - \gamma_1} \begin{pmatrix} \gamma_2 & -1 \\ -\gamma_1 & 1 \end{pmatrix}, \qquad \gamma_2 - \gamma_1 = \frac{-\sqrt{2}}{4},$$

so that

$$A^{n} = PD^{n}P^{-1} = \frac{\sqrt{2}}{4} \begin{pmatrix} \gamma_{1}^{n-1} - \gamma_{2}^{n-1} & \gamma_{1}^{n} - \gamma_{2}^{n} \\ \gamma_{1}^{n} - \gamma_{2}^{n} & \gamma_{1}^{n+1} - \gamma_{2}^{n+1} \end{pmatrix}.$$

Theorem of Cayley – Hamilton

Let A be a square $d \times d$ matrix with characteristic polynomial

$$X^d - a_1 X^{d-1} - \dots - a_{d-1} X - a_d.$$

Then

$$A^{d} = a_{1}A^{d-1} + \dots + a_{d-1}A + a_{d}I_{d}$$

where I_d is the identity $d \times d$ matrix.

Arthur Cayley 1821 – 1895

Sir William Rowan Hamilton 1805 – 1865

Computing A^n : linear recurrence

For $n \ge 0$, multiply the Cayley – Hamilton relation

$$A^{d} = a_1 A^{d-1} + \dots + a_{d-1} A + a_d I_d$$

by A^n :

$$A^{n+d} = a_1 A^{n+d-1} + \dots + a_{d-1} A^{n+1} + a_d A^n.$$

It follows that each entry $a_{ij}(n)$, $1 \le i, j \le d$ of A^n satisfies the linear recurrence relation

$$u_{n+d} = a_1 u_{n+d-1} + \dots + a_{d-1} u_{n+1} + a_d u_n.$$

 Computing A^n for $A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$

The characteristic polynomial is $X^2 - 2X - 1$, the linear recurrence is $u_{n+2} = 2u_{n+1} + u_n$, the initial conditions are

$$A^{0} = I_{d} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad A^{1} = A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix},$$

which yields

$$A^n = \begin{pmatrix} a_{n-1} & a_n \\ a_n & a_{n+1} \end{pmatrix},$$

with $a_0 = 0$, $a_1 = 1$. Hence

$$a_n = \frac{\sqrt{2}}{4}(\gamma_1^n - \gamma_2^n).$$

The generating series of the recurrence Assume

$$u_{n+2} = 2u_{n+1} + u_n$$

Consider the formal power series

$$f(t) = \sum_{n \ge 0} u_n t^n.$$

Then (telescoping series)

$$(1+2t-t^2)f(t) = u_0 + u_1t.$$

Therefore f(t) is a rational fraction, the denominator is the reciprocal of the characteristic polynomial of the recurrence.

The exponential generating series of the recurrence

Assume

$$u_{n+2} = 2u_{n+1} + u_n$$

The formal power series

$$y(x) = \sum_{n \ge 0} u_n \frac{x^n}{n!}$$

satisfies the differential equation

$$y'' - 2y' - y = 0.$$

A basis of the space of solutions of the differential equation y'' - 2y' - y = 0 is given by $e^{\gamma_1 x}$ and $e^{\gamma_2 x}$ where γ_1 and γ_2 are the roots of the characteristic polynomial $X_{2,2}^2 - 2X_{2,2} = 1$.

The binary recurrence sequence $u_{n+2} = 2u_{n+1} + u_n$

Exercise (Pierre Arnoux) : $u_{n+2} = 2u_{n+1} + u_n$, $u_0 = 1$, $u_1 = 1 - \sqrt{2}$. Use a calculator to estimate u_{100} .

Pierre Arnoux

イロト 不得下 イヨト イヨト 二日

32 / 44

http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/Ariane5VI.pdf
PARI GP : https://pari.math.u-bordeaux.fr/

$$u_{n+2} = 2u_{n+1} + u_n, \ n = 0, 1, \dots, 22$$

0	1
1	-0,4142135624
2	0,1715728753
3	-0,0710678119
4	0,0294372515
5	-0,0121933088
6	0,0050506339
7	-0,0020920411
8	0,0008665518
9	-0,0003589375
10	0,0001486768
11	-0,0000615839
12	0,0000255089
13	-0,0000105661
14	0,0000043766
15	-0,0000018129
16	0,000007509
17	-0,0000003111
18	0,0000001286
19	-0,000000540
20	0,000000206
21	-0,0000000129
22	-0,000000052

 $u_{n+2} = 2u_{n+1} + u_n$, $n = 22, \dots, 100$

4-

2981	74	-723037158346,31300
1471	75	-1745566113779,37000
1923	76	-4214169385905,06000
3317	77	-10173904885589,50000
3557	78	-24561979157084,00000
5431	79	-59297863199757,60000
9419	80	-143157705556599,00000
1269	81	-345613274312956,00000
7957	82	-834384254182511,00000
)182	83	-2014381782677980,00000
3320	84	-4863147819538470,00000
6820	85	-11740677421754900,00000
2000	86	-28344502663048300,00000
0080	87	-68429682747851500,00000
3500	88	-165203868158751000,00000
3000	89	-398837419065354000,00000
9000	90	-962878706289460000,00000
0000	91	-2324594831644270000,00000
0000	92	-5612068369578010000,00000
0000	93	-13548731570800300000,00000
0000	94	-32709531511178600000,00000
0000	95	-78967794593157400000,00000
0000	96	-190645120697493000000,00000
0000	97	-460258035988144000000,00000
0000	98	-1111161192673780000000,00000
0000	99	-2682580421335710000000,00000
0000	100	-6476322035345200000000.00000

47	-33,4302152981	
48	-80,7221644471	
49	-194,8805441923	
50	-470,4832528317	
51	-1135,8470498557	
52	-2742,1773525431	
53	-6620,2017549419	
54	-15982,5808624269	
55	-38585,3634797957	
56	-93153,3078220182	
57	-224891,9791238320	
58	-542937,2660696820	
59	-1310766,5112632000	
60	-3164470,2885960800	
61	-7639707,0884553500	
62	-18443884,4655068000	
63	-44527476,0194689000	
64	-107498836,5044450000	
65	-259525149,0283580000	
66	-626549134,5611610000	
67	-1512623418,1506800000	
68	-3651795970,8625200000	
69	-8816215359,8757200000	
70	-21284226690,6140000000	
71	-51384668741,1036000000	
72	-124053564172,8210000000	
73	-299491797086,7460000000	

100015

20	0,000000206
21	-0,000000129
22	-0,000000052
23	-0,000000233
24	-0,000000519
25	-0,0000001271
26	-0,000003060
27	-0,0000007391
28	-0,0000017843
29	-0,0000043078
30	-0,0000103999
31	-0,0000251077
32	-0,0000606152
33	-0,0001463381
34	-0,0003532915
35	-0,0008529212
36	-0,0020591338
37	-0,0049711888
38	-0,0120015115
39	-0,0289742118
40	-0,0699499351
41	-0,1688740819
42	-0,4076980989
43	-0,9842702797
44	-2,3762386583
45	-5,7367475963
46	-13.8497338509

The linear recurrence sequence $u_{n+2} = 2u_{n+1} + u_n$

A basis of the space of solutions is $((\gamma_1^n)_{n\geq 0}, (\gamma_2^n)_{n\geq 0})$ with

$$\gamma_1 = 1 + \sqrt{2}, \quad \gamma_2 = 1 - \sqrt{2}.$$

The general solution is

$$u_n = a\gamma_1^n + b\gamma_2^n.$$

Notice that $\gamma_1 > 1 > |\gamma_2|$. If $a \neq 0$, then $u_n \sim a\gamma_1^n \to \infty$ as $n \to \infty$. If a = 0, then $u_n = b\gamma_2^n \to 0$.

If two consecutive terms are of the same sign, then $a \neq 0$, all the next ones have the same sign and $|u_n|$ tends to infinity.

 $u_{n+2} = 2u_{n+1} + u_n$ with $u_0 = 1$, $u_1 = 1 - \sqrt{2}$

The value of u_{100} is $(1 - \sqrt{2})^{100}$.

 $1 - \sqrt{2} = -0.4142135624...$ $\log(\sqrt{2} - 1) = -0.881373587...$

$$(1 - \sqrt{2})^{100} = e^{-88.1373587...} = 5.277 \cdot 10^{-39}.$$

For $u_0 = 1$ and $u_1 = 1 - \sqrt{2} + \eta$, we have

$$u_n = \frac{1}{4}\eta\sqrt{2}(1+\sqrt{2})^n + \left(1-\frac{1}{4}\eta\sqrt{2}\right)(1-\sqrt{2})^n;$$

we $u_n \to 0$ if and only if $\eta = 0.$

hence $u_n \to 0$ if and only if $\eta = 0$.

Infinitely many solutions to the puzzle

Ramanujan said he has infinitely many solutions (but a single one between 50 and 500). Sequence of balancing numbers (number of the house) https://oeis.org/A001109

 $0, 1, 6, 35, \mathbf{204}, 1189, 6930, 40391, 235416, 1372105, 7997214...$

This is a linear recurrence sequence $u_{n+2} = 6u_{n+1} - u_n$ with the initial conditions $u_0 = 0$, $u_1 = 1$.

The number of houses is https://oeis.org/A001108

 $0, 1, 8, 49, \mathbf{288}, 1681, 9800, 57121, 332928, 1940449, \ldots$

The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

OI3627 THE ON-LINE ENCYCLOPEDIA OE13 23 JS 12 OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

Neil J. A. Sloane

Neil J. A. Sloane's encyclopaedia

http://oeis.org/A001109

http://oeis.org/A001108

The puzzle is attributed to David Gales in the Puzzles Column of the Emissary MSRI https://www.msri.org/attachments/media/news/emissary/EmissaryFall2005.pdf

Balancing numbers

A balancing number is an integer $B \geq 0$ such that there exists C with

 $1 + 2 + 3 + \dots + (B - 1) = (B + 1) + (B + 2) + \dots + C.$

Same as $B^2 = C(C+1)/2$: a balancing number is an integer B such that B^2 is a triangular number (and a square !). Sequence of balancing numbers : https://oeis.org/A001109

 $0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214 \ldots$

This is a linear recurrence sequence

$$B_{n+1} = 6B_n - B_{n-1}$$

with the initial conditions $B_0 = 0$, $B_1 = 1$, where A = 0 and A = 0

Balancing numbers and the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 6 \end{pmatrix}$

$$\begin{pmatrix} B_{n+1} \\ B_{n+2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 6 \end{pmatrix} \begin{pmatrix} B_n \\ B_{n+1} \end{pmatrix} \quad (n \ge 0).$$

Powers of A:

$$\begin{pmatrix} 0 & 1 \\ -1 & 6 \end{pmatrix}^n = \begin{pmatrix} -B_n & B_{n+1} \\ -B_{n+1} & B_{n+2} \end{pmatrix} \quad (n \ge 0).$$

Characteristic polynomial :

$$\det(XI - A) = \det \begin{pmatrix} X & -1 \\ 1 & X - 6 \end{pmatrix} = X^2 - 6X + 1.$$

・ロト <
同 ト <
言 ト <
言 ト 、
言 や へ
の へ
の 40 / 44
</p>

The sequence of balancing numbers

Characteristic polynomial :

 $f(X) = X^2 - 6X + 1 = (X - 3 - 2\sqrt{2})(X - 3 + 2\sqrt{2}).$ Closed formula :

$$B_n = \frac{1}{4\sqrt{2}} \left((3 + 2\sqrt{2})^n - (3 - 2\sqrt{2})^n \right).$$

Generating series :

$$\varphi(t) = \sum_{n \ge 0} B_n t^n = t + 6t^2 + 35t^3 + \dots = \frac{t}{1 - 6t + t^2}.$$

Exercise :

$$t^2\varphi' = (1-t^2)\varphi^2$$

Takao Komatsu & Prasanta Kumar Ray. Higher-order identities forbalancing numbers.arXiv:1608.05925 [math.NT]

Exponential generating series of the sequence of balancing numbers

$$y(x) = \sum_{n \ge 0} B_n \frac{x^n}{n!}$$

= $x + 3x^2 + \frac{35}{6}x^3 + \cdots$
= $\frac{1}{4\sqrt{2}} \left(e^{(3+2\sqrt{2})x} - e^{(3-2\sqrt{2})x} \right)$

This is a solution of the homogeneous linear differential equation of order 2

$$y'' = 6y' - y$$

with the initial conditions y(0) = 0, y'(0) = 1.

The sequence $(C_n)_{n\geq 0}$

 $2B_n^2 = C_n(C_n + 1)$

The corresponding sequence $(C_n)_{n\geq 0}$ is https://oeis.org/A001108 $0, 1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, \ldots$

The solutions of $x^2 - 2y^2 = 1$ are given by $x_n = 2B_n, \quad y_n = 2C_n + 1.$ Both sequences $(x_n)_{n\geq 0}$ and $(y_n)_{n\geq 0}$ satisfy $u_{n+2} = 6u_{n+1} - u_n.$ with $x_0 = 0, x_1 = 2, y_0 = 1, y_1 = 3.$ Hence

$$C_{n+1}=6C_n-C_{n-1}+2$$
 , and the formula \mathbb{R} and \mathbb{R}

Cochin University of Science and Technology (CUSAT)

November 19, 2022

On the Ramanujan street puzzle of Prasanta Chandra Mahalanobis

Michel Waldschmidt

Professeur Émérite, Sorbonne Université Institut de Mathématiques de Jussieu Paris Rive Gauche http://www.imj-prg.fr/~michel.waldschmidt/