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Abstract. Let f (x) = P0(x)αx
0 + · · · + Pk(x)αx

k
be an exponential polynomial over a

field of zero characteristic. Assume that for each pairi, j with i 6= j , αi/αj is not a root of

unity. Define1 = ∑k
j=0(degPj +1). We introduce a partition of

{
α0, . . . , αk

}
into subsets{

αi0, . . . , αiki

}
(1 ≤ i ≤ m), which induces a decomposition off intof = f1+· · ·+fm,

so that, for 1≤ i ≤ m,
(
αi0 : · · · : αiki

) ∈ Pki
(Q), while for 1 ≤ i 6= u ≤ m, the number

αi0/αu0 either is transcendental or else is algebraic with not too small a height. Then we
show that for all but at most exp

(
1(51)51

)
solutionsx ∈ Z of f (x) = 0, we have

f1(x) = · · · = fm(x) = 0.

1. Introduction

Let K be a field of zero characteristic,α1, . . . , αk be non-zero elements of
K andP1, . . . , Pk non-zero polynomials with coefficients inK. Consider
an exponential polynomial

f (x) =
k∑

j=0

Pj(x)αx
j .

We study the equation
f (x) = 0 (1.1)

in x ∈ Z. We suppose that for each pairi, j with i 6= j ,

αi/αj is not a root of unity. (1.2)
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We set

1(f ) =
k∑

j=0

(degPj + 1).

It is well known that
(
f (0), f (1), . . .

)
is a linear recurrence sequence of

order 1(f ), which is “non-degenerate”. Vice versa, any non-degenerate
linear recurrence sequence

(
u0, u1, . . .

)
of elements ofK of orderq has

some representationun = f (n), wheref is an exponential polynomial as
above satisfying (1.2) and with1(f ) = q. For more details, cf. e.g. [8].
So in studying (1.1) we study the zeros of linear recurrence sequences. An
old conjecture says that the number of solutionsx ∈ Z of equation (1.1) is
bounded above by a function that depends only upon1(f ). Let us briefly
review what is known so far in this context1.

Forq = 1, equation (1.1) reduces to

a0α
x
0 = 0

and clearly there is no solutionx at all.
Forq = 2, we have one of the following two equations

(a0 + a1x)αx
0 = 0 or a0α

x
0 + a1α

x
1 = 0.

In either case, in view of our assumption (1.2) on non-degeneracy, we clearly
do not have more than one solutionx.

The first non-trivial case isq = 3. Here, Schlickewei [4] proved the con-
jecture to be true. His bound has been improved by Beukers and Schlickewei
[1]. They showed that forq = 3 equation (1.1) does not have more than 61
solutions.

Now supposeq ≥ 4. In a recent paper [3], Evertse, Schlickewei and
Schmidt proved the following:Suppose that in (1.1) the polynomialsfi for
i = 0, . . . , k are constant. Then equation (1.1) does not have more than
exp

(
(7k)3k

)
solutions.As in this situationq = k + 1, we see that when the

polynomialsfi in (1.1) are all constant, the conjecture is true.
There remains the case whenq ≥ 4 and when not allfi ’s are constant.

Now obviously in (1.1) we may suppose without loss of generality that
α0 = 1. With this normalization, Schlickewei [5] proved the following:
Suppose thatα1, . . . , αk are algebraic and that[Q(α1, . . . , αk) : Q] ≤ d.
Then the number of solutions of equation (1.1) is bounded in terms ofq and
d only. (A bound was given explicitly). Schlickewei and Schmidt [6] later
on established the bound(2q)35q3

d6q2
.

1 After the present paper was written, the second author [7] settled this conjecture.
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We denote byQ the algebraic closure ofQ in K (this is the field of
algebraic elements inK). We define an equivalence relation on the setK×
of non-zero elements ofK by the condition

z1 ∼ z2 ⇐⇒ z1/z2 is algebraic.

This relation induces a partition of
{
α0, . . . , αk

}
:{

α0, . . . , αk

} =
m⋃

i=1

{
αi0, . . . , αiki

}
,

where, for 1≤ i ≤ m, (
αi0 : · · · : αiki

) ∈ Pki
(Q),

while for 1 ≤ i 6= u ≤ m, the numberαi0/αu0 is transcendental. Accord-
ingly, f is decomposed into

f = f1 + · · · + fm, (1.3)

with
fi(x) = Pi0(x)αx

i0 + · · · + Piki
(x)αx

iki
(1 ≤ i ≤ m).

We prove

Theorem 1.1. Suppose we have (1.2). Define1 = 1(f ) and

F(1) = exp
(
1(51)51

)
.

Then for all but at mostF(1) solutionsx ∈ Z of (1.1), we have

f1(x) = · · · = fm(x) = 0. (1.4)

Our result, in other words, says that the only case when the conjec-
ture possibly could fail to be true arises from the algebraic case, i.e. when
α0, . . . , αk are inQ. Moreover we shall see that the conjecture would follow
from the special case whereα0, . . . , αk are algebraic and eachαi/αj has a
small height. Actually our method of proof gives a result of the type stated
in the Theorem also under the assumption that the quotientsαi/αu are not
transcendental but have logarithmic height bounded away from zero (for
more details, see the final remark in Sect. 6).

We mention that our proof was inspired by a similar result forq = 3 by
Beukers and Tijdeman [2]. They showed:

Let α andβ be non-zero elements ofK. Suppose thatα, β andα/β are
not roots of unity. Leta andb be non-zero elements ofK. Suppose that
the equation

aαx + bβx = 1

has at least4 solutionsx ∈ Z. Thenα andβ are algebraic.

Our proof uses a recent result of Schlickewei and Schmidt [6] on polynomial
exponential equations.
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2. Heights

LetK be a number field of degreed. WriteM(K) for the set of places ofK.
For v ∈ M(K), let | |v be the valuation which extends either the standard
absolute value ofQ, or if v|p for a rational primep, let | |v be the valuation
with |p|v = p−1. Write dv for the local degree[Kv : Qp] and define the
absolute value‖ ‖v by

‖ ‖v = | |dv/d
v .

Let n ≥ 1 and letα = (α0, . . . , αn) 6= (0, . . . , 0) be a point inKn+1. We
then put

‖α‖v = max
{‖α0‖v, . . . , ‖αn‖v

}
and we define the homogeneous height as

H(α) =
∏

v∈M(K)

‖α‖v.

Since it depends only on the classα = (α0 : · · · : αn) of α in Pn(Q), we
also denote it by H(α). Let

h(α) = h(α0 : · · · : αn) = log H(α)

be the homogeneous logarithmic absolute height ofα ∈ Pn(Q) We shall
also need the inhomogeneous absolute heights

Hin(x) = H(1 : x1 : · · · : xn)

and
hin(x) = h(1 : x1 : · · · : xn) = log Hin(x)

of x = (x1, . . . , xn) ∈ Q
n
. Further, forx ∈ Q, we set

Hin(x) = H(1 : x) and hin(x) = h(1 : x) = log Hin(x).

GivenD ∈ N and h/ > 0, we will use the fact that the set of elementsα ∈ Q
×

with

degα ≤ D and hin(α) ≤ h/

is finite.
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3. Algebraic linear recurrence sequences

The results in this section are consequences of the Subspace Theorem.

Lemma 3.1. Let m ≥ 1 and 0 be a finitely generated subgroup of
(Q

×
)m of rankr ≥ 0. Then the solutionsz = x ∗ y = (x1y1, . . . , xmym) of

z1 + · · · + zm = 1 (3.1)
with z ∈ 0, y ∈ Qm and

hin(y) ≤ 1

4m2
hin(x) (3.2)

are contained in the union of at most

exp
(
(4m)4m(r + 1)

)
proper subspaces ofQ

m
.

Proof. This is a variation on Proposition A of [6]. In that proposition there
was a distinction between three kinds of solutions:

i) Solutions where someyi = 0, i.e., somezi = 0. These clearly lie inm
subspaces.

ii) Solutions where eachyi 6= 0 and where hin(x) > 2m logm. These were
called large solutions in [6] and it was shown in (10.4) of that paper
that they lie in the union of fewer than

230m2
(21m2)r

proper subspaces.
iii) Solutions where eachyi 6= 0 and where hin(x) ≤ 2m logm. These

were calledsmall solutionsin [6]. Here we argue as follows. We have
hin(y) ≤ (2m logm)/(4m2) < log 2 by (3.2). Then each component
has hin(yi) < log 2, which is Hin(yi) < 2. Sinceyi ∈ Q×, we have
yi = ±1. The equation (3.1) now becomes

±x1 ± x2 ± · · · ± xm = 1. (3.3)

The group0′ generated by0 and the vectors(±1, · · · , ±1) contains no
more thanr multiplicatively independent elements. By Proposition 2.1
of [6], the solutions of (3.3) lie in the union of not more than

exp
(
(4m)3m · 2(r + 1)

)
proper subspaces ofQ

m
.
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Combining our estimates we obtain

m + 230m2
(21m2)r + exp

(
(4m)3m · 2(r + 1)

)
< exp

(
(4m)4m(r + 1)

)
. ut

Corollary. Let q > 1 and let0 be a finitely generated subgroup of(Q
×
)q

of rankr ≥ 0. Then the solutions of

z1 + · · · + zq = 0 (3.4)

wherez = x ∗ y with x ∈ 0, y ∈ Qq and

h(y) ≤ 1

4q2
h(x)

are contained in the union of fewer than

exp
(
(4q)4q(r + 1)

)
(3.5)

proper subspaces of the space given by (3.4).

Proof. This is just the homogeneous version of Lemma 3.1. We apply
Lemma 3.1 withm = q − 1. One needs also to consider the possible solu-
tions withzq = 0. But they lie in one subspace, and 1 is absorbed in (3.5)
sinceq > m. ut
Lemma 3.2. Letα ∈ Q

×
be given withhin(α) > 0. Leta ∈ Q

×
. Then there

is au ∈ Z such that

hin(aαx−u) ≥ 1

4
hin(α)|x|

for x ∈ Z.

Proof. This is the caser = n = 1 of Lemma 15.1 in [6]. ut
Agreement. We define the degree of the zero polynomial as−1.

Lemma 3.3. Consider an equation

P0(x)αx
0 + · · · + Pk(x)αx

k = 0 (3.6)

where (α0, . . . , αk) ∈ (Q
×
)k+1 and, for 0 ≤ j ≤ k, Pj is a non-zero

polynomial of degreedj ≥ 0 with algebraic coefficients. Write

1 =
k∑

j=0

(dj + 1), D = max
0≤j≤k

dj .

Suppose that1 ≥ 3,
max

0≤i,j≤k
h(αi : αj ) ≥ h/
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where0 < h/ ≤ 1 and set

E = 1612D/h/, t = exp
(
(51)41

) + 5E logE.

Then there are tuples(
P

(`)
0 , . . . , P

(`)
k

) 6= (0, . . . , 0) (1 ≤ ` ≤ t)

of polynomials wheredegP
(`)
j ≤ dj (0 ≤ j < k, 1 ≤ ` ≤ t) anddegP

(`)
k <

dk for ` = 1, . . . , t , such that every solutionx ∈ Z of (3.6) satisfies

P
(`)
0 (x)αx

0 + · · · + P
(`)
k (x)αx

k = 0 (3.7)

for somè .

Proof. Supposeu ∈ Z and sety = x + u. Then (3.6) may be rewritten as

P0(y − u)α−u
0 α

y

0 + · · · + Pk(y − u)α−u
k α

y

k = 0,

which is the same as

P̃0(y)α
y

0 + · · · + P̃k(y)α
y

k = 0, (3.8)

with
P̃j (Y ) = Pj(Y − u)α−u

j (0 ≤ j ≤ k).

Suppose our assertion is true for (3.8), with polynomialsP̃
(`)
0 , . . . , P̃

(`)
k

(1 ≤ ` ≤ t). Thus every solution of (3.8) satisfies

P̃
(`)
0 (y)α

y

0 + · · · + P̃
(`)
k (y)α

y

k = 0

for somè . But thenx = y − u satisfies (3.7) with

P
(`)
j (X) = P̃

(`)
j (X + u)αu

j (0 ≤ j ≤ k).

We therefore may make a change of variablesx 7→ y = x + u.
We may suppose that h(α0 : αι) ≥ h/ for someι in the range 1≤ ι ≤ k.

WritePj(X) = aj0+aj1X+· · ·+aj,dj
Xdj . Picku according to Lemma 3.2

with h(a0,d0α
y−u

0 : aι,dι
αy−u

ι ) ≥ 1
4h/|y|. Writing P̃j (Y ) = Pj(Y − u)α−u

j =
bj0 + bj1Y + · · · + bj,dj

Y dj , we haveb0,d0 = a0,d0α
−u
0 , bι,dι

= aι,dι
α−u

ι , so
that

h(b0,d0α
y

0 : bι,dι
αy

ι ) ≥ 1

4
h/|y|. (3.9)

The equation (3.8) may be written as(
b00+b01y +· · ·+b0,d0y

d0
)
α

y

0 +· · ·+ (
bk0 +bk1y +· · ·+bk,dk

ydk
)
α

y

k = 0.



232 H. P. Schlickewei et al.

Some coefficients may be zero; omitting the zero coefficients, we rewrite
this as(

b′
00y

v00 + · · · + b0,d0y
d0

)
α

y

0 + · · · + (
b′

k0y
vk0 + · · · + bk,dk

ydk
)
α

y

k = 0.

Let q be the total number of (non-zero) coefficients here, and consider the
following vectors inq-space:

x = (
b′

00α
y

0, . . . , b0,d0α
y

0, . . . , b′
k0α

y

k , . . . , bk,dk
α

y

k

)
w = (

yv00, . . . , yd0, . . . , yvk0, . . . , ydk
)
.

Our equation becomes
z1 + · · · + zq = 0 (3.10)

with z = x ∗ w = (x1w1, . . . , xqwq). Hencex lies in the group0 of
rankr ≤ 2 generated by(α0, . . . , α0, . . . , αk, . . . , αk) and(b′

00, . . . , b0,d0,

. . . , b′
k0, . . . , bk,dk

). Further

h(x) ≥ h(b0,d0α
y

0 : bι,dι
αy

ι ) ≥ 1

4
h/|y|

by (3.9). On the other hand, h(w) ≤ D log |y|. Therefore when

|y| ≥ 2E logE, (3.11)

so that|y| ≥ (32q2D/h/) log(16q2D/h/) by q ≤ 1, then

|y| > (16q2D/h/) log |y|,
and

h(w) ≤ D log |y| <
h/

16q2
|y| = 1

4q2

1

4
h/|y| ≤ 1

4q2
h(x).

By the corollary, for suchy, we havez contained in the union of

exp
(
(4q)4q · 3

)
< exp

(
(51)41

)
proper subspaces of the space (3.10). Consider such a subspacec1z1 +
· · · + cqzq = 0 (where(c1, . . . , cq) is not proportional to(1, . . . , 1)).
Taking a linear combination of this and (3.10) we obtain a non-trivial relation
c′

1z1+· · ·+c′
q−1zq−1 = 0. But this means exactly thaty satisfies a non-trivial

equation
Q̃0(y)α

y

0 + · · · + Q̃k(y)α
y

k = 0, (3.12)

where deg̃Qj ≤ dj (0 ≤ j < k) and deg̃Qk < dk.
There are not more than 5E logE values ofy where (3.11) is violated. For

fixedy, and since1 = ∑
(dj + 1) ≥ 3, there will certainly be polynomials

Q̃0, . . . , Q̃k as above (deg̃Qj ≤ dj (0 ≤ j < k) and deg̃Qk < dk) with
(3.12). ut
Remark.When h/ ≥ exp

(−(51)41
)

we havet ≤ exp
(
(51)51

)
.
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4. A specialization-type argument

Lemma 4.1. LetK be a number field,D, N , M, L1, . . . , LM non-negative
integers,A1, . . . , AN homogeneous polynomials inK[X0, . . . , Xk], each of
degree≤ D andBλµ (1 ≤ λ ≤ Lµ, 1 ≤ µ ≤ M) homogeneous polynomials
in Q[X0, . . . , Xk]. Assume that there existsα ∈ Pk(K) such that

(i) A1(α) = · · · = AN(α) = 0 and
(ii) for eachµ = 1, . . . , M, there existsλ ∈ {1, . . . , Lµ} withBλµ(α) 6= 0.

Then there exist elements̃α0, . . . , α̃k in K, algebraic overQ, not all of
which are zero, which generate an extensionK̃ = K(̃α0, . . . , α̃k) of K
of degree

[
K̃ : K

] ≤ Dk and such that the point̃α = (̃α0 : · · · : α̃k) ∈
Pk(K̃) satisfies
(i)a A1(̃α) = · · · = AN(̃α) = 0 and
(ii) a for eachµ = 1, . . . , M, there existsλ ∈ {1, . . . , Lµ} with

Bλµ(̃α) 6= 0.

Proof. Given homogeneous polynomialsQ1, . . . , QN in K[X0, . . . , Xk],
we write

Z(Q1, . . . , QN) ⊂ Pk(K)

for the set of zeros inPk(K) of the ideal(Q1, . . . , QN) in K[X0, . . . , Xk]
generated byQ1, . . . , QN .

Let Y be an absolutely irreducible component ofZ(A1, . . . , AN) ⊂
Pk(K) containingα. Consider the Zariski closed subset

F =
M⋂

µ=1

Z(B1µ, . . . , BLµ,µ)

of Pk(K). By assumptionα is not inF . Hence Lemma 4.1 is a consequence
of the following statement:

LetA1, . . . , AN be homogeneous polynomials inK[X0, . . . , Xk], each
of degree≤ D. LetY be an irreducible component of dimensionδ of

Z(A1, . . . , AN)

andF a Zariski closed subset ofPk(K) such thatY \F is not empty. Then
there exists an element̃α = (̃α0 : · · · : α̃k) in Y \ F whose components
α̃0, . . . , α̃k are algebraic overQ and such that we have[

K(̃α0, . . . , α̃k) : K
] ≤ Dk−δ.
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SinceY is absolutely irreducible and not contained inF , we have dim(Y ∩
F) ≤ δ − 1. Pick linear formsL1, . . . , Lδ with coefficients inK and in
sufficiently general position such that

Z(L1) ∩ · · · ∩ Z(Lδ) ∩ F ∩ Y = ∅
and such that moreover

Z(L1) ∩ · · · ∩ Z(Lδ) ∩ Y

is a non-empty finite set which does not contain more thanDk−δ points. Let
γ = (γ0 : · · · : γk) be one of its elements. One at least amongγ0, . . . , γk

is non-zero, sayγ0. Put α̃i = γi/γ0. Then our construction implies that
α̃ = (1 : α̃1 : · · · : α̃k) = γ lies inY \ F . Since our linear formsLi as well

as the polynomialsA1, . . . , AN have coefficients inK, it follows that for
anyK-embeddingσ of K(̃α1, . . . , α̃k) in K we have

(1 : σ α̃1 : · · · : σ α̃k) ∈ Z(L1) ∩ · · · ∩ Z(Lδ) ∩ Y.

Since moreover the right hand side has cardinality≤ Dk−δ, we may conclude
that in fact̃α1, . . . , α̃k are algebraic overK and that

[K(̃α1, . . . , α̃k) : K] ≤ Dk−δ. ut
Here is a consequence of Lemma 4.1.

Lemma 4.2. Letk be a non-negative integer,p,S,T ,d1, . . . , dS positive in-
tegers and h/ a positive real number. For1 ≤ s ≤ S, letCs = (C1s, . . . , Cps)

be ap-tuple of homogeneous polynomials inQ[X0, . . . , Xk], each of de-
greeds . For 1 ≤ t ≤ T , let Dt = (D1t , . . . , Dpt ) be ap-tuple of homo-
geneous polynomials inQ[X0, . . . , Xk], with degD1t = · · · = degDpt .
Let α0, . . . , αk be non-zero elements ofK andα = (α0, . . . , αk) ∈ Kk+1.
Denote byV the subspace ofKp spanned byC1(α), . . . , CS(α). Assume
that for eacht = 1, . . . , T , we haveDt(α) 6∈ V .
Then there exist non-zero algebraic elementsα̃0, . . . , α̃k in K such that

α̃ = (̃α0, . . . , α̃k) ∈ Q
k+1

has the following properties. The subspaceṼ ofKp spanned byC1(̃α), . . . ,

CS(̃α) has dim Ṽ = dimV . Further, for eacht = 1, . . . , T , we have
Dt (̃α) 6∈ Ṽ . Furthermore, for0 ≤ i, j ≤ k, we have{

α̃i/α̃j = αi/αj if αi/αj is algebraic,

h(̃αi : α̃j ) ≥ h/ if αi/αj is transcendental.
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Proof. Let K denote a number field containing all coefficients ofCis (1 ≤
i ≤ p, 1 ≤ s ≤ S) and all algebraic elements ofK which belong to the set{
αi/αj ; 0 ≤ i, j ≤ k

}
. We shall prove the existence ofα̃ = (̃α0, . . . , α̃k) ∈

Kk+1 satisfying the desired properties together with an upper bound for the
degree of the number field̃K = K(̃α0, . . . , α̃k), namely[

K̃ : K
] ≤ Dk with D = p max

1≤s≤S
ds.

Definer = dimV . SinceDt(α) is not inV , we haveV 6= Kp, hencer < p.
Denote by

{
A1, . . . , AJ

}
the set of(r + 1) × (r + 1) minors of thep × S

matrix (
C1, . . . , CS

)
.

Each of these polynomialsA1, . . . , AJ is homogeneous of degree

≤ (r + 1) max
1≤s≤S

ds ≤ D.

Also, for 1≤ t ≤ T , denote by
{
B1t , . . . , BLt

}
the set of(r+1)×(r+1)

minors of thep × (S + 1) matrix(
C1, . . . , CS, Dt

)
.

Further, let
{
AJ+1, . . . , AN

}
denote the set of polynomialsαiXj − αjXi

where(i, j) runs over the set of pairs with 0≤ i, j ≤ k for whichαi/αj is
algebraic. Furthermore, denote by

{
BT +1, . . . , BM

}
the set of polynomials

X0, . . . , Xk, andβXi − Xj , where(i, j) runs over the set of pairs with
0 ≤ i, j ≤ k for which αi/αj is transcendental, whileβ runs over the
(finite) set of algebraic elements ofK for which

[K(β) : K] ≤ Dk and hin(β) ≤ h/.

By assumption the pointα ∈ Kk+1 satisfies

A1(α) = · · · = AN(α) = 0,

Bµ(α) 6= 0 for T + 1 ≤ µ ≤ M,

and for eachµ = 1, . . . , T , there existsλ ∈ {1, . . . , L} such thatBλµ(α) 6=
0.

From Lemma 4.1 we deduce that there existsα̃ ∈ Q
k+1

such that[
K(̃α0, . . . , α̃k) : K

] ≤ Dk,

A1(̃α) = · · · = AN(̃α) = 0,

Bµ(̃α) 6= 0 for T + 1 ≤ µ ≤ M,

and for eachµ = 1, . . . , T , there existsλ ∈ {1, . . . , L} such thatBλµ(̃α) 6=
0. Thisα̃ then satisfies all desired properties.ut
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We apply Lemma 4.2 to exponential polynomials.

Lemma 4.3. Let k ≥ 1 be an integer, h/ a positive real number,d0, . . . , dk

non-negative integers andα0, . . . , αk non-zero elements ofK satisfying
(1.2). For0 ≤ j ≤ k, let

Pj(X) =
dj∑
i=0

aijX
i

be a non-zero polynomial inK[X] of degreedj . Define

f (x) =
k∑

j=0

Pj(x)αx
j

and denote byN the set of solutionsx ∈ Z of the equationf (x) = 0. Let
E be a finite subset ofZ. Assume that for eachx ∈ E we are given a subset
I (x) of

{
(i, j) ; 0 ≤ i ≤ dj , 0 ≤ j ≤ k

}
for which∑

(i,j)∈I (x)

aij x
iαx

j 6= 0. (4.1)

Then there exist non-zero algebraic elementsα̃0, . . . , α̃k ofK and there exist
polynomialsP̃0, . . . , P̃k which are not all zero,

P̃j (X) =
dj∑
i=0

ãijX
i (0 ≤ j ≤ k),

with algebraic coefficients̃aij , and with the following properties:

degP̃j ≤ dj (0 ≤ j ≤ k) (4.2)
k∑

j=0

P̃j (x)̃αx
j = 0 for all x ∈ N , (4.3)

∑
(i,j)∈I (x)

ãij x
iα̃x

j 6= 0 for each x ∈ E, (4.4)

and, for0 ≤ i, j ≤ k,{
α̃i/α̃j = αi/αj if αi/αj is algebraic,

h(̃αi : α̃j ) ≥ h/ if αi/αj is transcendental.
(4.5)
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Proof. We fix an ordering of the setI = {
(i, j) ; 0 ≤ i ≤ dj , 0 ≤ j ≤

k, aij 6= 0
}

and we denote byp the number of elements in this set. Also
we writeN = {n1, . . . , nS} (recall thatN is finite) andE = {x1, . . . , xT }.
For 1 ≤ s ≤ S, we defineCs as thep-tuple composed of the polynomials
ni

sX
ns

j for (i, j) ∈ I . For 1≤ t ≤ T , let Dt be thep-tuple composed of the
polynomials {

xi
t X

xt

j for (i, j) ∈ I ∩ I (xt )

0 for (i, j) ∈ I \ I (xt ).

From the definition ofN we deduce that the dimensionr of the vector space
V spanned byC1(α), . . . , CS(α) satisfiesr < p. According to (4.1), for
eacht = 1, . . . , T we haveDt(α) 6∈ V . Therefore Lemma 4.3 follows from
Lemma 4.2. ut
Remark.Let K denote the field generated overQ by all algebraic elements
which belong to the set

{
αi/αj ; 0 ≤ i, j ≤ k

}
. The proof of Lemma

4.3 also yields an upper bound for the degree of the number fieldK̃ =
K(̃α0, . . . , α̃k), namely [

K̃ : K
] ≤ (

1 max
x∈N

|x|)k

with 1 = d1+· · ·+dk+k+1. One may prove a variant of Lemma 4.3 where
(4.3) holds only for some subsetN ′ ofN with CardN ′/ CardN ≥ 1/(k+1)

but with the estimate [
K̃ : K

] ≤ (
1 min

x∈N ′ |x|)k
.

5. Dividing exponential polynomials

Let α0, . . . , αk be given non-zero elements ofK satisfying (1.2) and
P0, . . . , Pk be polynomials with coefficients inK, possibly zero. Consider
the exponential polynomial

f (x) =
k∑

j=0

Pj(x)αx
j .

We set

1(f ) =
k∑

j=0
Pj 6=0

(degPj + 1).

Thus1(f ) = 0 precisely whenP0 = · · · = Pk = 0. When

g(x) =
k∑

j=0

Qj(x)αx
j
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is another exponential polynomial with the same frequencies(α0, · · · , αk),
we writeg ≺ f if degQj ≤ degPj for 0 ≤ j ≤ k. We writeg � f if
g ≺ f and1(g) < 1(f ).

Lemma 5.1. Supposeg ≺ f and g 6= 0. Then there is an exponential
polynomial

r(x) = R0(x)αx
0 + · · · + Rk(x)αx

k

with r � f such that
f (x) = r(x) + cxng(x)

for somec in K× and somen ≥ 0.

Proof. With f andg written as above, set

n = min
0≤j≤k
Qj 6=0

(degPj − degQj).

We may supposen = degP0 − degQ0. When

P0 = caX
a + ca−1X

a−1 + · · · , Q0 = dbX
b + db−1X

b−1 + · · · ,

where nowa = b + n, setc = ca/db and

r(x) = f (x) − cxng(x).

If againr(x) = R0(x)αx
0 + · · · + Rk(x)αx

k , we have

R0(X) = P0(X) − (ca/db)x
nQ0(X),

so that degR0 < degP0.Also degRj ≤ max(degPj , n+degQj) ≤ degPj ,
so thatr � f . ut

Consider an exponential polynomial

f (x) =
k∑

j=0

Pj(x)αx
j

whereα0, . . . , αk are non-zero algebraic elements inK satisfying (1.2).
Assume {

α0, . . . , αk

} =
m⋃

i=1

{
αi0 : · · · : αiki

}
is a partition of

{
α0, . . . , αk

}
and define

fi(x) = Pi0(x)αx
i0 + · · · + Piki

(x)αx
iki

(1 ≤ i ≤ m)

so that
f (x) = f1(x) + · · · + fm(x).
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Suppose further, for 1≤ i 6= u ≤ m, 0 ≤ j ≤ ki and 0≤ v ≤ ku,

hin(αij /αuv) ≥ 1. (5.1)

From (1.2) we deduce

1(f ) = 1(f1) + · · · + 1(fm).

Set
1 = 1(f )

Lemma 5.2. Define
F(1) = exp

(
1(51)51

)
.

Then for all but at mostF(1) solutionsx ∈ Z of f (x) = 0, we have

f1(x) = · · · = fm(x) = 0. (5.2)

Proof. The lemma is non-trivial only whenm ≥ 2 and at least two of
f1, . . . , fm are non-zero, so that1 ≥ 2. We now proceed by induction
on 1. When1 = 2 andm ≥ 2, we have in factf (x) = aαx

10 + bαx
20

with ab 6= 0 and hin(α10/α20) ≥ 1, so thatα10/α20 is not a root of 1.
There can be at most one zerox of f , for if f (x) = f (y) = 0, then
(α10/α20)

x = (α10/α20)
y = −b/a, so that(α10/α20)

x−y = 1 hencex = y

sinceα10/α20 is not a root of 1.
Now assume1 ≥ 3. In the induction step we apply Lemma 3.3 with

h/ = 1. The condition max0≤i,j≤k h(αi : αj ) ≥ 1 is satisfied becausem ≥ 2.
Any x ∈ Z with f (x) = 0 satisfies a relation

f (`)(x) = 0

for somè in the range 1≤ ` ≤ t wheret = exp
(
(51)51

)
and eachf (`) 6= 0

hasf (`) � f . By Lemma 5.1 we have, for 1≤ ` ≤ t

f (x) = r(`)(x) + c(`)xn(`)

f (`)(x)

with r(`) � f . Write out

f (`)(x) = f
(`)
1 (x) + · · · + f (`)

m (x),

r(`)(x) = r
(`)
1 (x) + · · · + r(`)

m (x)

with
f

(`)
i (x) = P

(`)
i0 (x)αx

i0 + · · · + P
(`)
iki

(x)αx
iki

,

r
(`)
i (x) = R

(`)
i0 (x)αx

i0 + · · · + R
(`)
iki

(x)αx
iki

and
fi(x) = r

(`)
i (x) + c(`)xn(`)

f
(`)
i (x). (5.3)
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By induction, and sincef (`) � f andr(`) � f , hence1(f (`)) < 1(f ),
1(r(`)) < 1(f ), we see that all but at mostF(1−1) solutions off (`)(x) =
0 have

f
(`)
1 (x) = · · · = f (`)

m (x) = 0, (5.4)

and similarly all but at mostF(1 − 1) solutions ofr(`)(x) = 0 have

r
(`)
1 (x) = · · · = r(`)

m (x) = 0. (5.5)

But (5.3), (5.4) and (5.5) imply (5.2). Taking the sum over` in 1 ≤ ` ≤ t ,
we see that all but at most

2tF (1 − 1) ≤ exp
(
1 + (51)51 + (1 − 1)(51)51−5

) ≤ F(1)

solutions off (x) = 0 have (5.2). ut

6. Proof of Theorem 1.1

Assume that the assumptions of Theorem 1.1 are satisfied. LetE be a set of
more thanF(1) solutions of (1.1). Assume that for eachx in E there is an
indexi = i(x) in the range 1≤ i ≤ m such thatfi(x)(x) 6= 0.

We apply Lemma 4.3 with h/ = 1. We produce algebraic elements
α̃0, . . . , α̃k and polynomials with algebraic coefficients̃P0, . . . , P̃k satis-
fying (4.2), (4.3), (4.4) and (4.5). The exponential polynomial

f̃ (x) =
k∑

j=0

P̃j (x)̃αx
j

can be written
f̃ (x) = f̃1(x) + · · · + f̃m(x)

where, for 1≤ i ≤ m,

f̃i(x) =
ki∑

j=0

P̃ij (x)̃αx
ij

and, for 1≤ i 6= u ≤ m, 0 ≤ j ≤ ki and 0≤ v ≤ ku,

hin(̃αij /α̃uv) ≥ 1.

We apply Lemma 5.2 and deduce that one at least ofx inE satisfies̃fi(x)(x) =
0, which is a contradiction with (4.4).ut
Final remark. The proof of Theorem 1.1 yields a stronger result. Fix h/ with
0 < h/ ≤ 1. If we replace the assumption thatαi0/αu0 is transcendental by
the assumption that either it is transcendental, or else has height≥ h/, then
we get the same conclusion but withF(1) replaced by a function of1 and
h/, which is equal toF(1) when h/ = 1.
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