Hans Peter Schlickewei • Wolfgang M. Schmidt • Michel Waldschmidt

Zeros of linear recurrence sequences

Received: 7 August 1998

Abstract

Let $f(x)=P_{0}(x) \alpha_{0}^{x}+\cdots+P_{k}(x) \alpha_{k}^{x}$ be an exponential polynomial over a field of zero characteristic. Assume that for each pair i, j with $i \neq j, \alpha_{i} / \alpha_{j}$ is not a root of unity. Define $\Delta=\sum_{j=0}^{k}\left(\operatorname{deg} P_{j}+1\right)$. We introduce a partition of $\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$ into subsets $\left\{\alpha_{i 0}, \ldots, \alpha_{i k_{i}}\right\} \quad(1 \leq i \leq m)$, which induces a decomposition of f into $f=f_{1}+\cdots+f_{m}$, so that, for $1 \leq i \leq m,\left(\alpha_{i 0}: \cdots: \alpha_{i k_{i}}\right) \in \mathbb{P}_{k_{i}}(\overline{\mathbb{Q}})$, while for $1 \leq i \neq u \leq m$, the number $\alpha_{i 0} / \alpha_{u 0}$ either is transcendental or else is algebraic with not too small a height. Then we show that for all but at most $\exp \left(\Delta(5 \Delta)^{5 \Delta}\right)$ solutions $x \in \mathbb{Z}$ of $f(x)=0$, we have

$$
f_{1}(x)=\cdots=f_{m}(x)=0 .
$$

1. Introduction

Let \mathbb{K} be a field of zero characteristic, $\alpha_{1}, \ldots, \alpha_{k}$ be non-zero elements of \mathbb{K} and P_{1}, \ldots, P_{k} non-zero polynomials with coefficients in \mathbb{K}. Consider an exponential polynomial

$$
f(x)=\sum_{j=0}^{k} P_{j}(x) \alpha_{j}^{x}
$$

We study the equation

$$
\begin{equation*}
f(x)=0 \tag{1.1}
\end{equation*}
$$

in $x \in \mathbb{Z}$. We suppose that for each pair i, j with $i \neq j$,

$$
\begin{equation*}
\alpha_{i} / \alpha_{j} \text { is not a root of unity. } \tag{1.2}
\end{equation*}
$$

H. P. Schlickewei: Fachbereich Mathematik, Universität Marburg, Hans-Meerwein-Strasse, Lahnberge, D-35032 Marburg, Germany.
e-mail: hps@mathematik.Uni-Marburg.de
W. M. Schmidt: Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO 80309-0395, USA. e-mail: schmidt@euclid.colorado.edu
M. Waldschmidt: Université P. et M. Curie (Paris VI), Institut Mathématique de Jussieu, Problèmes Diophantiens, Case 247, 4, Place Jussieu, F-75252 Paris Cedex 05, France. email: miw@math.jussieu.fr

We set

$$
\Delta(f)=\sum_{j=0}^{k}\left(\operatorname{deg} P_{j}+1\right)
$$

It is well known that $(f(0), f(1), \ldots)$ is a linear recurrence sequence of order $\Delta(f)$, which is "non-degenerate". Vice versa, any non-degenerate linear recurrence sequence $\left(u_{0}, u_{1}, \ldots\right)$ of elements of \mathbb{K} of order q has some representation $u_{n}=f(n)$, where f is an exponential polynomial as above satisfying (1.2) and with $\Delta(f)=q$. For more details, cf. e.g. [8]. So in studying (1.1) we study the zeros of linear recurrence sequences. An old conjecture says that the number of solutions $x \in \mathbb{Z}$ of equation (1.1) is bounded above by a function that depends only upon $\Delta(f)$. Let us briefly review what is known so far in this context ${ }^{1}$.

For $q=1$, equation (1.1) reduces to

$$
a_{0} \alpha_{0}^{x}=0
$$

and clearly there is no solution x at all.
For $q=2$, we have one of the following two equations

$$
\left(a_{0}+a_{1} x\right) \alpha_{0}^{x}=0 \quad \text { or } \quad a_{0} \alpha_{0}^{x}+a_{1} \alpha_{1}^{x}=0
$$

In either case, in view of our assumption (1.2) on non-degeneracy, we clearly do not have more than one solution x.

The first non-trivial case is $q=3$. Here, Schlickewei [4] proved the conjecture to be true. His bound has been improved by Beukers and Schlickewei [1]. They showed that for $q=3$ equation (1.1) does not have more than 61 solutions.

Now suppose $q \geq 4$. In a recent paper [3], Evertse, Schlickewei and Schmidt proved the following: Suppose that in (1.1) the polynomials f_{i} for $i=0, \ldots, k$ are constant. Then equation (1.1) does not have more than $\exp \left((7 k)^{3 k}\right)$ solutions. As in this situation $q=k+1$, we see that when the polynomials f_{i} in (1.1) are all constant, the conjecture is true.

There remains the case when $q \geq 4$ and when not all f_{i} 's are constant. Now obviously in (1.1) we may suppose without loss of generality that $\alpha_{0}=1$. With this normalization, Schlickewei [5] proved the following: Suppose that $\alpha_{1}, \ldots, \alpha_{k}$ are algebraic and that $\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{k}\right): \mathbb{Q}\right] \leq d$. Then the number of solutions of equation (1.1) is bounded in terms of q and d only. (A bound was given explicitly). Schlickewei and Schmidt [6] later on established the bound $(2 q)^{35 q^{3}} d^{6 q^{2}}$.

[^0]We denote by $\overline{\mathbb{Q}}$ the algebraic closure of \mathbb{Q} in \mathbb{K} (this is the field of algebraic elements in \mathbb{K}). We define an equivalence relation on the set \mathbb{K}^{\times} of non-zero elements of \mathbb{K} by the condition

$$
z_{1} \sim z_{2} \Longleftrightarrow z_{1} / z_{2} \quad \text { is algebraic. }
$$

This relation induces a partition of $\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$:

$$
\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}=\bigcup_{i=1}^{m}\left\{\alpha_{i 0}, \ldots, \alpha_{i k_{i}}\right\}
$$

where, for $1 \leq i \leq m$,

$$
\left(\alpha_{i 0}: \cdots: \alpha_{i k_{i}}\right) \in \mathbb{P}_{k_{i}}(\overline{\mathbb{Q}})
$$

while for $1 \leq i \neq u \leq m$, the number $\alpha_{i 0} / \alpha_{u 0}$ is transcendental. Accordingly, f is decomposed into

$$
\begin{equation*}
f=f_{1}+\cdots+f_{m} \tag{1.3}
\end{equation*}
$$

with

$$
f_{i}(x)=P_{i 0}(x) \alpha_{i 0}^{x}+\cdots+P_{i k_{i}}(x) \alpha_{i k_{i}}^{x} \quad(1 \leq i \leq m) .
$$

We prove
Theorem 1.1. Suppose we have (1.2). Define $\Delta=\Delta(f)$ and

$$
F(\Delta)=\exp \left(\Delta(5 \Delta)^{5 \Delta}\right)
$$

Then for all but at most $F(\Delta)$ solutions $x \in \mathbb{Z}$ of (1.1), we have

$$
\begin{equation*}
f_{1}(x)=\cdots=f_{m}(x)=0 \tag{1.4}
\end{equation*}
$$

Our result, in other words, says that the only case when the conjecture possibly could fail to be true arises from the algebraic case, i.e. when $\alpha_{0}, \ldots, \alpha_{k}$ are in $\overline{\mathbb{Q}}$. Moreover we shall see that the conjecture would follow from the special case where $\alpha_{0}, \ldots, \alpha_{k}$ are algebraic and each α_{i} / α_{j} has a small height. Actually our method of proof gives a result of the type stated in the Theorem also under the assumption that the quotients α_{i} / α_{u} are not transcendental but have logarithmic height bounded away from zero (for more details, see the final remark in Sect. 6).

We mention that our proof was inspired by a similar result for $q=3$ by Beukers and Tijdeman [2]. They showed:

Let α and β be non-zero elements of \mathbb{K}. Suppose that α, β and α / β are not roots of unity. Let a and b be non-zero elements of \mathbb{K}. Suppose that the equation

$$
a \alpha^{x}+b \beta^{x}=1
$$

has at least 4 solutions $x \in \mathbb{Z}$. Then α and β are algebraic.
Our proof uses a recent result of Schlickewei and Schmidt [6] on polynomial exponential equations.

2. Heights

Let K be a number field of degree d. Write $M(K)$ for the set of places of K. For $v \in M(K)$, let $\left|\left.\right|_{v}\right.$ be the valuation which extends either the standard absolute value of \mathbb{Q}, or if $v \mid p$ for a rational prime p, let $\left|\left.\right|_{v}\right.$ be the valuation with $|p|_{v}=p^{-1}$. Write d_{v} for the local degree $\left[K_{v}: \mathbb{Q}_{p}\right]$ and define the absolute value $\left\|\|_{v}\right.$ by

$$
\|\quad\|_{v}=|\quad|_{v}^{d_{v} / d} .
$$

Let $n \geq 1$ and let $\underline{\alpha}=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \neq(0, \ldots, 0)$ be a point in K^{n+1}. We then put

$$
\|\underline{\alpha}\|_{v}=\max \left\{\left\|\alpha_{0}\right\|_{v}, \ldots,\left\|\alpha_{n}\right\|_{v}\right\}
$$

and we define the homogeneous height as

$$
\mathrm{H}(\underline{\alpha})=\prod_{v \in M(K)}\|\underline{\alpha}\|_{v} .
$$

Since it depends only on the class $\underline{\underline{\alpha}}=\left(\alpha_{0}: \cdots: \alpha_{n}\right)$ of $\underline{\alpha}$ in $\mathbb{P}_{n}(\overline{\mathbb{Q}})$, we also denote it by $\mathrm{H}(\underline{\underline{\alpha}})$. Let

$$
\mathrm{h}(\underline{\underline{\alpha}})=\mathrm{h}\left(\alpha_{0}: \cdots: \alpha_{n}\right)=\log \mathrm{H}(\underline{\underline{\alpha}})
$$

be the homogeneous logarithmic absolute height of $\underline{\underline{\alpha}} \in \mathbb{P}_{n}(\overline{\mathbb{Q}})$ We shall also need the inhomogeneous absolute heights

$$
\mathrm{H}_{\mathrm{in}}(\underline{x})=\mathrm{H}\left(1: x_{1}: \cdots: x_{n}\right)
$$

and

$$
\mathrm{h}_{\mathrm{in}}(\underline{x})=\mathrm{h}\left(1: x_{1}: \cdots: x_{n}\right)=\log \mathrm{H}_{\mathrm{in}}(\underline{x})
$$

of $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{Q}}^{n}$. Further, for $x \in \overline{\mathbb{Q}}$, we set

$$
\mathrm{H}_{\mathrm{in}}(x)=\mathrm{H}(1: x) \quad \text { and } \quad \mathrm{h}_{\mathrm{in}}(x)=\mathrm{h}(1: x)=\log \mathrm{H}_{\mathrm{in}}(x)
$$

Given $D \in \mathbb{N}$ and $\nmid>0$, we will use the fact that the set of elements $\alpha \in \overline{\mathbb{Q}}^{\times}$ with

$$
\operatorname{deg} \alpha \leq D \quad \text { and } \quad \mathrm{h}_{\mathrm{in}}(\alpha) \leq \nmid
$$

is finite.

3. Algebraic linear recurrence sequences

The results in this section are consequences of the Subspace Theorem.
Lemma 3.1. Let $m \geq 1$ and Γ be a finitely generated subgroup of $\left(\overline{\mathbb{Q}}^{\times}\right)^{m}$ of rank $r \geq 0$. Then the solutions $\underline{z}=\underline{x} * \underline{y}=\left(x_{1} y_{1}, \ldots, x_{m} y_{m}\right)$ of

$$
\begin{equation*}
z_{1}+\cdots+z_{m}=1 \tag{3.1}
\end{equation*}
$$

with $\underline{z} \in \Gamma, \underline{y} \in \mathbb{Q}^{m}$ and

$$
\begin{equation*}
\mathrm{h}_{\text {in }}(\underline{y}) \leq \frac{1}{4 m^{2}} \mathrm{~h}_{\text {in }}(\underline{x}) \tag{3.2}
\end{equation*}
$$

are contained in the union of at most

$$
\exp \left((4 m)^{4 m}(r+1)\right)
$$

proper subspaces of $\overline{\mathbb{Q}}^{m}$.
Proof. This is a variation on Proposition A of [6]. In that proposition there was a distinction between three kinds of solutions:
i) Solutions where some $y_{i}=0$, i.e., some $z_{i}=0$. These clearly lie in m subspaces.
ii) Solutions where each $y_{i} \neq 0$ and where $\mathrm{h}_{\mathrm{in}}(\underline{x})>2 m \log m$. These were called large solutions in [6] and it was shown in (10.4) of that paper that they lie in the union of fewer than

$$
2^{30 m^{2}}\left(21 m^{2}\right)^{r}
$$

proper subspaces.
iii) Solutions where each $y_{i} \neq 0$ and where $\mathrm{h}_{\mathrm{in}}(\underline{x}) \leq 2 m \log m$. These were called small solutions in [6]. Here we argue as follows. We have $\mathrm{h}_{\text {in }}(\underline{y}) \leq(2 m \log m) /\left(4 m^{2}\right)<\log 2$ by (3.2). Then each component has $\mathrm{h}_{\text {in }}\left(y_{i}\right)<\log 2$, which is $\mathrm{H}_{\text {in }}\left(y_{i}\right)<2$. Since $y_{i} \in \mathbb{Q}^{\times}$, we have $y_{i}= \pm 1$. The equation (3.1) now becomes

$$
\begin{equation*}
\pm x_{1} \pm x_{2} \pm \cdots \pm x_{m}=1 \tag{3.3}
\end{equation*}
$$

The group Γ^{\prime} generated by Γ and the vectors $(\pm 1, \cdots, \pm 1)$ contains no more than r multiplicatively independent elements. By Proposition 2.1 of [6], the solutions of (3.3) lie in the union of not more than

$$
\exp \left((4 m)^{3 m} \cdot 2(r+1)\right)
$$

proper subspaces of $\overline{\mathbb{Q}}^{m}$.

Combining our estimates we obtain
$m+2^{30 m^{2}}\left(21 m^{2}\right)^{r}+\exp \left((4 m)^{3 m} \cdot 2(r+1)\right)<\exp \left((4 m)^{4 m}(r+1)\right)$.
Corollary. Let $q>1$ and let Γ be a finitely generated subgroup of $\left(\overline{\mathbb{Q}}^{\times}\right)^{q}$ of rank $r \geq 0$. Then the solutions of

$$
\begin{equation*}
z_{1}+\cdots+z_{q}=0 \tag{3.4}
\end{equation*}
$$

where $\underline{z}=\underline{x} * \underline{y}$ with $\underline{x} \in \Gamma, \underline{y} \in \mathbb{Q}^{q}$ and

$$
\mathrm{h}(\underline{y}) \leq \frac{1}{4 q^{2}} \mathrm{~h}(\underline{x})
$$

are contained in the union of fewer than

$$
\begin{equation*}
\exp \left((4 q)^{4 q}(r+1)\right) \tag{3.5}
\end{equation*}
$$

proper subspaces of the space given by (3.4).
Proof. This is just the homogeneous version of Lemma 3.1. We apply Lemma 3.1 with $m=q-1$. One needs also to consider the possible solutions with $z_{q}=0$. But they lie in one subspace, and 1 is absorbed in (3.5) since $q>m$.

Lemma 3.2. Let $\alpha \in \overline{\mathbb{Q}}^{\times}$be given with $\mathrm{h}_{\mathrm{in}}(\alpha)>0$. Let $a \in \overline{\mathbb{Q}}^{\times}$. Then there is a $u \in \mathbb{Z}$ such that

$$
\mathrm{h}_{\mathrm{in}}\left(a \alpha^{x-u}\right) \geq \frac{1}{4} \mathrm{~h}_{\mathrm{in}}(\alpha)|x|
$$

for $x \in \mathbb{Z}$.
Proof. This is the case $r=n=1$ of Lemma 15.1 in [6].
Agreement. We define the degree of the zero polynomial as -1 .
Lemma 3.3. Consider an equation

$$
\begin{equation*}
P_{0}(x) \alpha_{0}^{x}+\cdots+P_{k}(x) \alpha_{k}^{x}=0 \tag{3.6}
\end{equation*}
$$

where $\left(\alpha_{0}, \ldots, \alpha_{k}\right) \in\left(\overline{\mathbb{Q}}^{\times}\right)^{k+1}$ and, for $0 \leq j \leq k, P_{j}$ is a non-zero polynomial of degree $d_{j} \geq 0$ with algebraic coefficients. Write

$$
\Delta=\sum_{j=0}^{k}\left(d_{j}+1\right), \quad D=\max _{0 \leq j \leq k} d_{j}
$$

Suppose that $\Delta \geq 3$,

$$
\max _{0 \leq i, j \leq k} \mathrm{~h}\left(\alpha_{i}: \alpha_{j}\right) \geq \not /
$$

where $0<k \leq 1$ and set

$$
E=16 \Delta^{2} D / h, \quad t=\exp \left((5 \Delta)^{4 \Delta}\right)+5 E \log E .
$$

Then there are tuples

$$
\left(P_{0}^{(\ell)}, \ldots, P_{k}^{(\ell)}\right) \neq(0, \ldots, 0) \quad(1 \leq \ell \leq t)
$$

of polynomials where $\operatorname{deg} P_{j}^{(\ell)} \leq d_{j}(0 \leq j<k, 1 \leq \ell \leq t)$ and $\operatorname{deg} P_{k}^{(\ell)}<$ d_{k} for $\ell=1, \ldots, t$, such that every solution $x \in \mathbb{Z}$ of (3.6) satisfies

$$
\begin{equation*}
P_{0}^{(\ell)}(x) \alpha_{0}^{x}+\cdots+P_{k}^{(\ell)}(x) \alpha_{k}^{x}=0 \tag{3.7}
\end{equation*}
$$

for some ℓ.
Proof. Suppose $u \in \mathbb{Z}$ and set $y=x+u$. Then (3.6) may be rewritten as

$$
P_{0}(y-u) \alpha_{0}^{-u} \alpha_{0}^{y}+\cdots+P_{k}(y-u) \alpha_{k}^{-u} \alpha_{k}^{y}=0
$$

which is the same as

$$
\begin{equation*}
\widetilde{P}_{0}(y) \alpha_{0}^{y}+\cdots+\widetilde{P}_{k}(y) \alpha_{k}^{y}=0, \tag{3.8}
\end{equation*}
$$

with

$$
\widetilde{P}_{j}(Y)=P_{j}(Y-u) \alpha_{j}^{-u} \quad(0 \leq j \leq k) .
$$

Suppose our assertion is true for (3.8), with polynomials $\widetilde{P}_{0}^{(\ell)}, \ldots, \widetilde{P}_{k}^{(\ell)}$ ($1 \leq \ell \leq t$). Thus every solution of (3.8) satisfies

$$
\widetilde{P}_{0}^{(\ell)}(y) \alpha_{0}^{y}+\cdots+\widetilde{P}_{k}^{(\ell)}(y) \alpha_{k}^{y}=0
$$

for some ℓ. But then $x=y-u$ satisfies (3.7) with

$$
P_{j}^{(\ell)}(X)=\widetilde{P}_{j}^{(\ell)}(X+u) \alpha_{j}^{u} \quad(0 \leq j \leq k) .
$$

We therefore may make a change of variables $x \mapsto y=x+u$.
We may suppose that $\mathrm{h}\left(\alpha_{0}: \alpha_{\iota}\right) \geq \not \emptyset$ for some ι in the range $1 \leq \iota \leq k$. Write $P_{j}(X)=a_{j 0}+a_{j 1} X+\cdots+a_{j, d_{j}} X^{d_{j}}$. Pick u according to Lemma 3.2 with $\mathrm{h}\left(a_{0, d_{0}} \alpha_{0}^{y-u}: a_{t, d_{i}} \alpha_{i}^{y-u}\right) \geq \frac{1}{4} \underline{k}|y|$. Writing $\widetilde{P}_{j}(Y)=P_{j}(Y-u) \alpha_{j}^{-u}=$ $b_{j 0}+b_{j 1} Y+\cdots+b_{j, d_{j}} Y^{d_{j}}$, we have $b_{0, d_{0}}=a_{0, d_{0}} \alpha_{0}^{-u}, b_{\iota, d_{l}}=a_{\iota, d_{l}} \alpha_{\iota}^{-u}$, so that

$$
\begin{equation*}
\mathrm{h}\left(b_{0, d_{0}} \alpha_{0}^{y}: b_{\iota, d_{\imath}} \alpha_{\iota}^{y}\right) \geq \frac{1}{4} \mathrm{~h}|y| . \tag{3.9}
\end{equation*}
$$

The equation (3.8) may be written as
$\left(b_{00}+b_{01} y+\cdots+b_{0, d_{0}} y^{d_{0}}\right) \alpha_{0}^{y}+\cdots+\left(b_{k 0}+b_{k 1} y+\cdots+b_{k, d_{k}} y^{d_{k}}\right) \alpha_{k}^{y}=0$.

Some coefficients may be zero; omitting the zero coefficients, we rewrite this as

$$
\left(b_{00}^{\prime} y^{v_{00}}+\cdots+b_{0, d_{0}} y^{d_{0}}\right) \alpha_{0}^{y}+\cdots+\left(b_{k 0}^{\prime} y^{v_{k 0}}+\cdots+b_{k, d_{k}} y^{d_{k}}\right) \alpha_{k}^{y}=0
$$

Let q be the total number of (non-zero) coefficients here, and consider the following vectors in q-space:

$$
\begin{aligned}
\underline{x} & =\left(b_{00}^{\prime} \alpha_{0}^{y}, \ldots, b_{0, d_{0}} \alpha_{0}^{y}, \ldots, b_{k 0}^{\prime} \alpha_{k}^{y}, \ldots, b_{k, d_{k}} \alpha_{k}^{y}\right) \\
\underline{w} & =\left(y^{v_{00}}, \ldots, y^{d_{0}}, \ldots, y^{v_{k 0}}, \ldots, y^{d_{k}}\right) .
\end{aligned}
$$

Our equation becomes

$$
\begin{equation*}
z_{1}+\cdots+z_{q}=0 \tag{3.10}
\end{equation*}
$$

with $\underline{z}=\underline{x} * \underline{w}=\left(x_{1} w_{1}, \ldots, x_{q} w_{q}\right)$. Hence \underline{x} lies in the group Γ of $\operatorname{rank} r \leq 2$ generated by $\left(\alpha_{0}, \ldots, \alpha_{0}, \ldots, \alpha_{k}, \ldots, \alpha_{k}\right)$ and $\left(b_{00}^{\prime}, \ldots, b_{0, d_{0}}\right.$, $\ldots, b_{k 0}^{\prime}, \ldots, b_{k, d_{k}}$). Further

$$
\left.\mathrm{h}(\underline{x}) \geq \mathrm{h}\left(b_{0, d_{0}} \alpha_{0}^{y}: b_{\iota, d_{\imath}} \alpha_{\imath}^{y}\right) \geq \frac{1}{4}|x| y \right\rvert\,
$$

by (3.9). On the other hand, $\mathrm{h}(\underline{w}) \leq D \log |y|$. Therefore when

$$
\begin{equation*}
|y| \geq 2 E \log E, \tag{3.11}
\end{equation*}
$$

so that $|y| \geq\left(32 q^{2} D / \nmid x\right) \log \left(16 q^{2} D / \nmid x\right)$ by $q \leq \Delta$, then

$$
|y|>\left(16 q^{2} D / \nmid x\right) \log |y|,
$$

and

$$
\left.\mathrm{h}(\underline{w}) \leq D \log |y|<\frac{\nmid 1}{16 q^{2}}|y|=\frac{1}{4 q^{2}} \frac{1}{4}|\nmid| y \right\rvert\, \leq \frac{1}{4 q^{2}} \mathrm{~h}(\underline{x}) .
$$

By the corollary, for such y, we have \underline{z} contained in the union of

$$
\exp \left((4 q)^{4 q} \cdot 3\right)<\exp \left((5 \Delta)^{4 \Delta}\right)
$$

proper subspaces of the space (3.10). Consider such a subspace $c_{1} z_{1}+$ $\cdots+c_{q} z_{q}=0$ (where $\left(c_{1}, \ldots, c_{q}\right)$ is not proportional to $(1, \ldots, 1)$). Taking a linear combination of this and (3.10) we obtain a non-trivial relation $c_{1}^{\prime} z_{1}+\cdots+c_{q-1}^{\prime} z_{q-1}=0$. But this means exactly that y satisfies a non-trivial equation

$$
\begin{equation*}
\widetilde{Q}_{0}(y) \alpha_{0}^{y}+\cdots+\widetilde{Q}_{k}(y) \alpha_{k}^{y}=0 \tag{3.12}
\end{equation*}
$$

where $\operatorname{deg} \widetilde{Q}_{j} \leq d_{j}(0 \leq j<k)$ and $\operatorname{deg} \widetilde{Q}_{k}<d_{k}$.
There are not more than $5 E \log E$ values of y where (3.11) is violated. For fixed y, and since $\Delta=\sum\left(d_{\dot{Q}}+1\right) \geq 3$, there will certainly be polynomials $\widetilde{Q}_{0}, \ldots, \widetilde{Q}_{k}$ as above $\left(\operatorname{deg} \widetilde{Q}_{j} \leq \overline{d_{j}}(0 \leq j<k)\right.$ and deg $\left.\widetilde{Q}_{k}<d_{k}\right)$ with (3.12).

Remark. When $\nmid \geq \exp \left(-(5 \Delta)^{4 \Delta}\right)$ we have $t \leq \exp \left((5 \Delta)^{5 \Delta}\right)$.

4. A specialization-type argument

Lemma 4.1. Let K be a number field, $D, N, M, L_{1}, \ldots, L_{M}$ non-negative integers, A_{1}, \ldots, A_{N} homogeneous polynomials in $K\left[X_{0}, \ldots, X_{k}\right]$, each of degree $\leq D$ and $B_{\lambda \mu}\left(1 \leq \lambda \leq L_{\mu}, 1 \leq \mu \leq M\right)$ homogeneous polynomials in $\overline{\mathbb{Q}}\left[X_{0}, \ldots, X_{k}\right]$. Assume that there exists $\underline{\underline{\alpha}} \in \mathbb{P}_{k}(\mathbb{K})$ such that
(i) $A_{1}(\underline{\underline{\alpha}})=\cdots=A_{N}(\underline{\underline{\alpha}})=0$ and
(ii) for $\overline{e a c h} \mu=1, \ldots, M$, there exists $\lambda \in\left\{1, \ldots, L_{\mu}\right\}$ with $B_{\lambda \mu}(\underline{\underline{\alpha}}) \neq 0$. Then there exist elements $\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}$ in \mathbb{K}, algebraic over \mathbb{Q}, not all of which are zero, which generate an extension $\widetilde{K}=K\left(\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}\right)$ of K of degree $[\widetilde{K}: K] \leq D^{k}$ and such that the point $\underline{\underline{\alpha}}=\left(\widetilde{\alpha}_{0}: \cdots: \widetilde{\alpha}_{k}\right) \in$ $\mathbb{P}_{k}(\widetilde{K})$ satisfies
(i) $A_{1}(\underline{\underline{\alpha}})=\cdots=A_{N}(\underline{\underline{\alpha}})=0$ and
(ii) ${ }_{a}$ for each $\mu=1, \ldots, M$, there exists $\lambda \in\left\{1, \ldots, L_{\mu}\right\}$ with

$$
B_{\lambda \mu}(\underline{\underline{\alpha}}) \neq 0 .
$$

Proof. Given homogeneous polynomials Q_{1}, \ldots, Q_{N} in $\mathbb{K}\left[X_{0}, \ldots, X_{k}\right]$, we write

$$
Z\left(Q_{1}, \ldots, Q_{N}\right) \subset \mathbb{P}_{k}(\mathbb{K})
$$

for the set of zeros in $\mathbb{P}_{k}(\mathbb{K})$ of the ideal $\left(Q_{1}, \ldots, Q_{N}\right)$ in $\mathbb{K}\left[X_{0}, \ldots, X_{k}\right]$ generated by Q_{1}, \ldots, Q_{N}.

Let Y be an absolutely irreducible component of $Z\left(A_{1}, \ldots, A_{N}\right) \subset$ $\mathbb{P}_{k}(\mathbb{K})$ containing $\underline{\underline{\alpha}}$. Consider the Zariski closed subset

$$
F=\bigcap_{\mu=1}^{M} Z\left(B_{1 \mu}, \ldots, B_{L_{\mu}, \mu}\right)
$$

of $\mathbb{P}_{k}(\mathbb{K})$. By assumption $\underline{\underline{\alpha}}$ is not in F. Hence Lemma 4.1 is a consequence of the following statement:

Let A_{1}, \ldots, A_{N} be homogeneous polynomials in $K\left[X_{0}, \ldots, X_{k}\right]$, each of degree $\leq D$. Let Y be an irreducible component of dimension δ of

$$
Z\left(A_{1}, \ldots, A_{N}\right)
$$

and F a Zariski closed subset of $\mathbb{P}_{k}(\mathbb{K})$ such that $Y \backslash F$ is not empty. Then there exists an element $\underline{\underline{\alpha}}=\left(\widetilde{\alpha}_{0}: \cdots: \widetilde{\alpha}_{k}\right)$ in $Y \backslash F$ whose components $\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}$ are algebraic over \mathbb{Q} and such that we have

$$
\left[K\left(\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}\right): K\right] \leq D^{k-\delta}
$$

Since Y is absolutely irreducible and not contained in F, we have $\operatorname{dim}(Y \cap$ $F) \leq \delta-1$. Pick linear forms $L_{1}, \ldots, L_{\delta}$ with coefficients in K and in sufficiently general position such that

$$
Z\left(L_{1}\right) \cap \cdots \cap Z\left(L_{\delta}\right) \cap F \cap Y=\emptyset
$$

and such that moreover

$$
Z\left(L_{1}\right) \cap \cdots \cap Z\left(L_{\delta}\right) \cap Y
$$

is a non-empty finite set which does not contain more than $D^{k-\delta}$ points. Let $\underline{\gamma}=\left(\gamma_{0}: \cdots: \gamma_{k}\right)$ be one of its elements. One at least among $\gamma_{0}, \ldots, \gamma_{k}$ $\overline{\overline{i s}}$ non-zero, say γ_{0}. Put $\tilde{\alpha}_{i}=\gamma_{i} / \gamma_{0}$. Then our construction implies that $\underline{\underline{\alpha}}=\left(1: \widetilde{\alpha}_{1}: \cdots: \widetilde{\alpha}_{k}\right)=\underline{\underline{\gamma}}$ lies in $Y \backslash F$. Since our linear forms L_{i} as well as the polynomials A_{1}, \ldots, A_{N} have coefficients in K, it follows that for any K-embedding σ of $K\left(\widetilde{\alpha}_{1}, \ldots, \widetilde{\alpha}_{k}\right)$ in \mathbb{K} we have

$$
\left(1: \sigma \widetilde{\alpha}_{1}: \cdots: \sigma \widetilde{\alpha}_{k}\right) \in Z\left(L_{1}\right) \cap \cdots \cap Z\left(L_{\delta}\right) \cap Y
$$

Since moreover the right hand side has cardinality $\leq D^{k-\delta}$, we may conclude that in fact $\widetilde{\alpha}_{1}, \ldots, \widetilde{\alpha}_{k}$ are algebraic over K and that

$$
\left[K\left(\widetilde{\alpha}_{1}, \ldots, \widetilde{\alpha}_{k}\right): K\right] \leq D^{k-\delta}
$$

Here is a consequence of Lemma 4.1.
Lemma 4.2. Let k be a non-negative integer, $p, S, T, d_{1}, \ldots, d_{S}$ positive integers and hh a positive real number. For $1 \leq s \leq S$, let $\underline{C}_{s}=\left(C_{1 s}, \ldots, C_{p s}\right)$ be a p-tuple of homogeneous polynomials in $\overline{\mathbb{Q}}\left[X_{0}, \ldots, X_{k}\right]$, each of degree d_{s}. For $1 \leq t \leq T$, let $\underline{D}_{t}=\left(D_{1 t}, \ldots, D_{p t}\right)$ be a p-tuple of homogeneous polynomials in $\overline{\mathbb{Q}}\left[X_{0}, \ldots, X_{k}\right]$, with $\operatorname{deg} D_{1 t}=\cdots=\operatorname{deg} D_{p t}$. Let $\alpha_{0}, \ldots, \alpha_{k}$ be non-zero elements of \mathbb{K} and $\underline{\alpha}=\left(\alpha_{0}, \ldots, \alpha_{k}\right) \in \mathbb{K}^{k+1}$. Denote by V the subspace of \mathbb{K}^{p} spanned by $\underline{C}_{1}(\underline{\alpha}), \ldots, \underline{C}_{S}(\underline{\alpha})$. Assume that for each $t=1, \ldots, T$, we have $\underline{D}_{t}(\underline{\alpha}) \notin V$.
Then there exist non-zero algebraic elements $\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}$ in \mathbb{K} such that

$$
\underline{\tilde{\alpha}}=\left(\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}\right) \in \overline{\mathbb{Q}}^{k+1}
$$

has the following properties. The subspace \tilde{V} of \mathbb{K}^{p} spanned by $\underline{C}_{1}(\underline{\widetilde{\alpha}}), \ldots$, $\underline{C}_{S}(\underline{\widetilde{\alpha}})$ has $\operatorname{dim} \widetilde{V}=\operatorname{dim} V$. Further, for each $t=1, \ldots, T$, we have $\underline{D}_{t}(\underline{\widetilde{\alpha}}) \notin \widetilde{V}$. Furthermore, for $0 \leq i, j \leq k$, we have

$$
\begin{cases}\widetilde{\alpha}_{i} / \widetilde{\alpha}_{j}=\alpha_{i} / \alpha_{j} & \text { if } \alpha_{i} / \alpha_{j} \text { is algebraic } \\ \mathrm{h}\left(\widetilde{\alpha}_{i}: \widetilde{\alpha}_{j}\right) \geq \not h & \text { if } \alpha_{i} / \alpha_{j} \text { is transcendental }\end{cases}
$$

Proof. Let K denote a number field containing all coefficients of $C_{i s}(1 \leq$ $i \leq p, 1 \leq s \leq S)$ and all algebraic elements of \mathbb{K} which belong to the set $\left\{\alpha_{i} / \alpha_{j} ; 0 \leq i, j \leq k\right\}$. We shall prove the existence of $\underline{\widetilde{\alpha}}=\left(\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}\right) \in$ \mathbb{K}^{k+1} satisfying the desired properties together with an upper bound for the degree of the number field $\widetilde{K}=K\left(\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}\right)$, namely

$$
[\tilde{K}: K] \leq D^{k} \quad \text { with } \quad D=p \max _{1 \leq s \leq S} d_{s}
$$

Define $r=\operatorname{dim} V$. Since $\underline{D}_{t}(\underline{\alpha})$ is not in V, we have $V \neq \mathbb{K}^{p}$, hence $r<p$. Denote by $\left\{A_{1}, \ldots, A_{J}\right\}$ the set of $(r+1) \times(r+1)$ minors of the $p \times S$ matrix

$$
\left(\underline{C}_{1}, \ldots, \underline{C}_{S}\right)
$$

Each of these polynomials A_{1}, \ldots, A_{J} is homogeneous of degree

$$
\leq(r+1) \max _{1 \leq s \leq S} d_{s} \leq D
$$

Also, for $1 \leq t \leq T$, denote by $\left\{B_{1 t}, \ldots, B_{L t}\right\}$ the set of $(r+1) \times(r+1)$ minors of the $p \times(S+1)$ matrix

$$
\left(\underline{C}_{1}, \ldots, \underline{C}_{S}, \underline{D}_{t}\right) .
$$

Further, let $\left\{A_{J+1}, \ldots, A_{N}\right\}$ denote the set of polynomials $\alpha_{i} X_{j}-\alpha_{j} X_{i}$ where (i, j) runs over the set of pairs with $0 \leq i, j \leq k$ for which α_{i} / α_{j} is algebraic. Furthermore, denote by $\left\{B_{T+1}, \ldots, B_{M}\right\}$ the set of polynomials X_{0}, \ldots, X_{k}, and $\beta X_{i}-X_{j}$, where (i, j) runs over the set of pairs with $0 \leq i, j \leq k$ for which α_{i} / α_{j} is transcendental, while β runs over the (finite) set of algebraic elements of \mathbb{K} for which

$$
[K(\beta): K] \leq D^{k} \quad \text { and } \quad \mathrm{h}_{\text {in }}(\beta) \leq \nmid
$$

By assumption the point $\underline{\alpha} \in \mathbb{K}^{k+1}$ satisfies

$$
\begin{gathered}
A_{1}(\underline{\alpha})=\cdots=A_{N}(\underline{\alpha})=0, \\
B_{\mu}(\underline{\alpha}) \neq 0 \quad \text { for } \quad T+1 \leq \mu \leq M,
\end{gathered}
$$

and for each $\mu=1, \ldots, T$, there exists $\lambda \in\{1, \ldots, L\}$ such that $B_{\lambda \mu}(\underline{\alpha}) \neq$ 0.

From Lemma 4.1 we deduce that there exists $\underline{\tilde{\alpha}} \in \overline{\mathbb{Q}}^{k+1}$ such that

$$
\begin{gathered}
{\left[K\left(\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}\right): K\right] \leq D^{k},} \\
A_{1}(\underline{\widetilde{\alpha}})=\cdots=A_{N}(\underline{\widetilde{\alpha}})=0, \\
B_{\mu}(\underline{\widetilde{\alpha}}) \neq 0 \quad \text { for } \quad T+1 \leq \mu \leq M,
\end{gathered}
$$

and for each $\mu=1, \ldots, T$, there exists $\lambda \in\{1, \ldots, L\}$ such that $B_{\lambda \mu}(\underline{\tilde{\alpha}}) \neq$ 0 . This $\underline{\tilde{\alpha}}$ then satisfies all desired properties.

We apply Lemma 4.2 to exponential polynomials.
Lemma 4.3. Let $k \geq 1$ be an integer, h a positive real number, d_{0}, \ldots, d_{k} non-negative integers and $\alpha_{0}, \ldots, \alpha_{k}$ non-zero elements of \mathbb{K} satisfying (1.2). For $0 \leq j \leq k$, let

$$
P_{j}(X)=\sum_{i=0}^{d_{j}} a_{i j} X^{i}
$$

be a non-zero polynomial in $\mathbb{K}[X]$ of degree d_{j}. Define

$$
f(x)=\sum_{j=0}^{k} P_{j}(x) \alpha_{j}^{x}
$$

and denote by \mathcal{N} the set of solutions $x \in \mathbb{Z}$ of the equation $f(x)=0$. Let \mathcal{E} be a finite subset of \mathbb{Z}. Assume that for each $x \in \mathcal{E}$ we are given a subset $I(x)$ of $\left\{(i, j) ; 0 \leq i \leq d_{j}, 0 \leq j \leq k\right\}$ for which

$$
\begin{equation*}
\sum_{(i, j) \in I(x)} a_{i j} x^{i} \alpha_{j}^{x} \neq 0 \tag{4.1}
\end{equation*}
$$

Then there exist non-zero algebraic elements $\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}$ of \mathbb{K} and there exist polynomials $\widetilde{P}_{0}, \ldots, \widetilde{P}_{k}$ which are not all zero,

$$
\widetilde{P}_{j}(X)=\sum_{i=0}^{d_{j}} \widetilde{a}_{i j} X^{i} \quad(0 \leq j \leq k)
$$

with algebraic coefficients $\widetilde{a}_{i j}$, and with the following properties:

$$
\begin{array}{cl}
\operatorname{deg} \widetilde{P}_{j} \leq d_{j} & (0 \leq j \leq k) \\
\sum_{j=0}^{k} \widetilde{P}_{j}(x) \widetilde{\alpha}_{j}^{x}=0 & \text { for all } x \in \mathcal{N} \\
\sum_{(i, j) \in I(x)} \widetilde{a}_{i j} x^{i} \widetilde{\alpha}_{j}^{x} \neq 0 & \text { for each } \quad x \in \mathcal{E} \tag{4.4}
\end{array}
$$

and, for $0 \leq i, j \leq k$,

$$
\begin{cases}\widetilde{\alpha}_{i} / \widetilde{\alpha}_{j}=\alpha_{i} / \alpha_{j} & \text { if } \alpha_{i} / \alpha_{j} \text { is algebraic } \tag{4.5}\\ \mathrm{h}\left(\widetilde{\alpha}_{i}: \widetilde{\alpha}_{j}\right) \geq h & \text { if } \alpha_{i} / \alpha_{j} \text { is transcendental } .\end{cases}
$$

Proof. We fix an ordering of the set $I=\left\{(i, j) ; 0 \leq i \leq d_{j}, 0 \leq j \leq\right.$ $\left.k, a_{i j} \neq 0\right\}$ and we denote by p the number of elements in this set. Also we write $\mathcal{N}=\left\{n_{1}, \ldots, n_{S}\right\}$ (recall that \mathcal{N} is finite) and $\mathcal{E}=\left\{x_{1}, \ldots, x_{T}\right\}$. For $1 \leq s \leq S$, we define \underline{C}_{s} as the p-tuple composed of the polynomials $n_{s}^{i} X_{j}^{n_{s}}$ for $(i, j) \in I$. For $1 \leq t \leq T$, let \underline{D}_{t} be the p-tuple composed of the polynomials

$$
\begin{cases}x_{t}^{i} X_{j}^{x_{t}} & \text { for }(i, j) \in I \cap I\left(x_{t}\right) \\ 0 & \text { for }(i, j) \in I \backslash I\left(x_{t}\right)\end{cases}
$$

From the definition of \mathcal{N} we deduce that the dimension r of the vector space V spanned by $\underline{C}_{1}(\underline{\alpha}), \ldots, \underline{C}_{S}(\underline{\alpha})$ satisfies $r<p$. According to (4.1), for each $t=1, \ldots, T$ we have $\underline{D}_{t}(\underline{\alpha}) \notin V$. Therefore Lemma 4.3 follows from Lemma 4.2.

Remark. Let K denote the field generated over \mathbb{Q} by all algebraic elements which belong to the set $\left\{\alpha_{i} / \alpha_{j} ; 0 \leq i, j \leq k\right\}$. The proof of Lemma 4.3 also yields an upper bound for the degree of the number field $\widetilde{K}=$ $K\left(\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}\right)$, namely

$$
[\widetilde{K}: K] \leq\left(\Delta \max _{x \in \mathcal{N}}|x|\right)^{k}
$$

with $\Delta=d_{1}+\cdots+d_{k}+k+1$. One may prove a variant of Lemma 4.3 where (4.3) holds only for some subset \mathcal{N}^{\prime} of \mathcal{N} with $\operatorname{Card} \mathcal{N}^{\prime} / \operatorname{Card} \mathcal{N} \geq 1 /(k+1)$ but with the estimate

$$
[\widetilde{K}: K] \leq\left(\Delta \min _{x \in \mathcal{N}^{\prime}}|x|\right)^{k}
$$

5. Dividing exponential polynomials

Let $\alpha_{0}, \ldots, \alpha_{k}$ be given non-zero elements of \mathbb{K} satisfying (1.2) and P_{0}, \ldots, P_{k} be polynomials with coefficients in \mathbb{K}, possibly zero. Consider the exponential polynomial

$$
f(x)=\sum_{j=0}^{k} P_{j}(x) \alpha_{j}^{x}
$$

We set

$$
\Delta(f)=\sum_{\substack{j=0 \\ P_{j} \neq 0}}^{k}\left(\operatorname{deg} P_{j}+1\right)
$$

Thus $\Delta(f)=0$ precisely when $P_{0}=\cdots=P_{k}=0$. When

$$
g(x)=\sum_{j=0}^{k} Q_{j}(x) \alpha_{j}^{x}
$$

is another exponential polynomial with the same frequencies $\left(\alpha_{0}, \cdots, \alpha_{k}\right)$, we write $g \prec f$ if $\operatorname{deg} Q_{j} \leq \operatorname{deg} P_{j}$ for $0 \leq j \leq k$. We write $g \ll f$ if $g \prec f$ and $\Delta(g)<\Delta(f)$.

Lemma 5.1. Suppose $g \prec f$ and $g \neq 0$. Then there is an exponential polynomial

$$
r(x)=R_{0}(x) \alpha_{0}^{x}+\cdots+R_{k}(x) \alpha_{k}^{x}
$$

with $r \ll f$ such that

$$
f(x)=r(x)+c x^{n} g(x)
$$

for some c in \mathbb{K}^{\times}and some $n \geq 0$.
Proof. With f and g written as above, set

$$
n=\min _{\substack{0 \leq j \leq k \\ Q_{j} \neq 0}}\left(\operatorname{deg} P_{j}-\operatorname{deg} Q_{j}\right)
$$

We may suppose $n=\operatorname{deg} P_{0}-\operatorname{deg} Q_{0}$. When

$$
P_{0}=c_{a} X^{a}+c_{a-1} X^{a-1}+\cdots, \quad Q_{0}=d_{b} X^{b}+d_{b-1} X^{b-1}+\cdots
$$

where now $a=b+n$, set $c=c_{a} / d_{b}$ and

$$
r(x)=f(x)-c x^{n} g(x)
$$

If again $r(x)=R_{0}(x) \alpha_{0}^{x}+\cdots+R_{k}(x) \alpha_{k}^{x}$, we have

$$
R_{0}(X)=P_{0}(X)-\left(c_{a} / d_{b}\right) x^{n} Q_{0}(X)
$$

so that $\operatorname{deg} R_{0}<\operatorname{deg} P_{0}$. Also $\operatorname{deg} R_{j} \leq \max \left(\operatorname{deg} P_{j}, n+\operatorname{deg} Q_{j}\right) \leq \operatorname{deg} P_{j}$, so that $r \ll f$.

Consider an exponential polynomial

$$
f(x)=\sum_{j=0}^{k} P_{j}(x) \alpha_{j}^{x}
$$

where $\alpha_{0}, \ldots, \alpha_{k}$ are non-zero algebraic elements in \mathbb{K} satisfying (1.2). Assume

$$
\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}=\bigcup_{i=1}^{m}\left\{\alpha_{i 0}: \cdots: \alpha_{i k_{i}}\right\}
$$

is a partition of $\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$ and define

$$
f_{i}(x)=P_{i 0}(x) \alpha_{i 0}^{x}+\cdots+P_{i k_{i}}(x) \alpha_{i k_{i}}^{x} \quad(1 \leq i \leq m)
$$

so that

$$
f(x)=f_{1}(x)+\cdots+f_{m}(x)
$$

Suppose further, for $1 \leq i \neq u \leq m, 0 \leq j \leq k_{i}$ and $0 \leq v \leq k_{u}$,

$$
\begin{equation*}
\mathrm{h}_{\mathrm{in}}\left(\alpha_{i j} / \alpha_{u v}\right) \geq 1 \tag{5.1}
\end{equation*}
$$

From (1.2) we deduce

$$
\Delta(f)=\Delta\left(f_{1}\right)+\cdots+\Delta\left(f_{m}\right)
$$

Set

$$
\Delta=\Delta(f)
$$

Lemma 5.2. Define

$$
F(\Delta)=\exp \left(\Delta(5 \Delta)^{5 \Delta}\right)
$$

Then for all but at most $F(\Delta)$ solutions $x \in \mathbb{Z}$ of $f(x)=0$, we have

$$
\begin{equation*}
f_{1}(x)=\cdots=f_{m}(x)=0 \tag{5.2}
\end{equation*}
$$

Proof. The lemma is non-trivial only when $m \geq 2$ and at least two of f_{1}, \ldots, f_{m} are non-zero, so that $\Delta \geq 2$. We now proceed by induction on Δ. When $\Delta=2$ and $m \geq 2$, we have in fact $f(x)=a \alpha_{10}^{x}+b \alpha_{20}^{x}$ with $a b \neq 0$ and $\mathrm{h}_{\text {in }}\left(\alpha_{10} / \alpha_{20}\right) \geq 1$, so that $\alpha_{10} / \alpha_{20}$ is not a root of 1 . There can be at most one zero x of f, for if $f(x)=f(y)=0$, then $\left(\alpha_{10} / \alpha_{20}\right)^{x}=\left(\alpha_{10} / \alpha_{20}\right)^{y}=-b / a$, so that $\left(\alpha_{10} / \alpha_{20}\right)^{x-y}=1$ hence $x=y$ since $\alpha_{10} / \alpha_{20}$ is not a root of 1 .

Now assume $\Delta \geq 3$. In the induction step we apply Lemma 3.3 with $\not x=1$. The condition $\max _{0 \leq i, j \leq k} \mathrm{~h}\left(\alpha_{i}: \alpha_{j}\right) \geq 1$ is satisfied because $m \geq 2$. Any $x \in \mathbb{Z}$ with $f(x)=0$ satisfies a relation

$$
f^{(\ell)}(x)=0
$$

for some ℓ in the range $1 \leq \ell \leq t$ where $t=\exp \left((5 \Delta)^{5 \Delta}\right)$ and each $f^{(\ell)} \neq 0$ has $f^{(\ell)} \ll f$. By Lemma 5.1 we have, for $1 \leq \ell \leq t$

$$
f(x)=r^{(\ell)}(x)+c^{(\ell)} x^{n^{(\ell)}} f^{(\ell)}(x)
$$

with $r^{(\ell)} \ll f$. Write out

$$
\begin{aligned}
f^{(\ell)}(x) & =f_{1}^{(\ell)}(x)+\cdots+f_{m}^{(\ell)}(x), \\
r^{(\ell)}(x) & =r_{1}^{(\ell)}(x)+\cdots+r_{m}^{(\ell)}(x)
\end{aligned}
$$

with

$$
\begin{aligned}
f_{i}^{(\ell)}(x) & =P_{i 0}^{(\ell)}(x) \alpha_{i 0}^{x}+\cdots+P_{i k_{i}}^{(\ell)}(x) \alpha_{i k_{i}}^{x} \\
r_{i}^{(\ell)}(x) & =R_{i 0}^{(\ell)}(x) \alpha_{i 0}^{x}+\cdots+R_{i k_{i}}^{(\ell)}(x) \alpha_{i k_{i}}^{x}
\end{aligned}
$$

and

$$
\begin{equation*}
f_{i}(x)=r_{i}^{(\ell)}(x)+c^{(\ell)} x^{n^{(\ell)}} f_{i}^{(\ell)}(x) \tag{5.3}
\end{equation*}
$$

By induction, and since $f^{(\ell)} \ll f$ and $r^{(\ell)} \ll f$, hence $\Delta\left(f^{(\ell)}\right)<\Delta(f)$, $\Delta\left(r^{(\ell)}\right)<\Delta(f)$, we see that all but at most $F(\Delta-1)$ solutions of $f^{(\ell)}(x)=$ 0 have

$$
\begin{equation*}
f_{1}^{(\ell)}(x)=\cdots=f_{m}^{(\ell)}(x)=0, \tag{5.4}
\end{equation*}
$$

and similarly all but at most $F(\Delta-1)$ solutions of $r^{(\ell)}(x)=0$ have

$$
\begin{equation*}
r_{1}^{(\ell)}(x)=\cdots=r_{m}^{(\ell)}(x)=0 \tag{5.5}
\end{equation*}
$$

But (5.3), (5.4) and (5.5) imply (5.2). Taking the sum over ℓ in $1 \leq \ell \leq t$, we see that all but at most

$$
2 t F(\Delta-1) \leq \exp \left(1+(5 \Delta)^{5 \Delta}+(\Delta-1)(5 \Delta)^{5 \Delta-5}\right) \leq F(\Delta)
$$

solutions of $f(x)=0$ have (5.2).

6. Proof of Theorem 1.1

Assume that the assumptions of Theorem 1.1 are satisfied. Let \mathcal{E} be a set of more than $F(\Delta)$ solutions of (1.1). Assume that for each x in \mathcal{E} there is an index $i=i(x)$ in the range $1 \leq i \leq m$ such that $f_{i(x)}(x) \neq 0$.

We apply Lemma 4.3 with $\not \subset=1$. We produce algebraic elements $\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{k}$ and polynomials with algebraic coefficients $\widetilde{P}_{0}, \ldots, \widetilde{P}_{k}$ satisfying (4.2), (4.3), (4.4) and (4.5). The exponential polynomial

$$
\widetilde{f}(x)=\sum_{j=0}^{k} \widetilde{P}_{j}(x) \widetilde{\alpha}_{j}^{x}
$$

can be written

$$
\tilde{f}(x)=\widetilde{f}_{1}(x)+\cdots+\widetilde{f_{m}}(x)
$$

where, for $1 \leq i \leq m$,

$$
\widetilde{f}_{i}(x)=\sum_{j=0}^{k_{i}} \widetilde{P}_{i j}(x) \widetilde{\alpha}_{i j}^{x}
$$

and, for $1 \leq i \neq u \leq m, 0 \leq j \leq k_{i}$ and $0 \leq v \leq k_{u}$,

$$
\mathrm{h}_{\text {in }}\left(\widetilde{\alpha}_{i j} / \widetilde{\alpha}_{u v}\right) \geq 1
$$

We apply Lemma 5.2 and deduce that one at least of x in \mathcal{E} satisfies $\widetilde{f_{i(x)}}(x)=$ 0 , which is a contradiction with (4.4).

Final remark. The proof of Theorem 1.1 yields a stronger result. Fix $\nmid /$ with $0<\npreceq \leq 1$. If we replace the assumption that $\alpha_{i 0} / \alpha_{u 0}$ is transcendental by the assumption that either it is transcendental, or else has height $\geq \not \emptyset$, then we get the same conclusion but with $F(\Delta)$ replaced by a function of Δ and \nmid, which is equal to $F(\Delta)$ when $\nmid x=1$.

References

[1] Beukers, F. and Schlickewei, H.P.: The equation $x+y=1$ in finitely generated groups. Acta Arith. 78, 189-199 (1996)
[2] Beukers, F. and Tijdeman, R.: On the multiplicities of binary complex recurrences. Compositio Math. 51, 193-213 (1984)
[3] Evertse, J.H., Schlickewei, H.P. and Schmidt, W.M.: Linear equations with variables which lie in a multiplicative group. In preparation
[4] Schlickewei, H.P.: The multiplicity of binary recurrences. Invent. Math. 129, 11-36 (1997)
[5] Schlickewei, H.P.: Multiplicities of recurrence sequences. Acta Math. 176, 171-243 (1996)
[6] Schlickewei, H.P. and Schmidt, W.M.: Linear equations with variables which lie in a multiplicative group. Preprint
[7] Schmidt, W.M.: The zero multiplicity of linear recurrence sequences. Acta Arith., to appear
[8] Shorey, T.N. and Tijdeman, R.: Exponential Diophantine Equations. Cambridge Tracts in Mathematics 87, Cambridge Univ. Press, 1986, pp. 240

[^0]: ${ }^{1}$ After the present paper was written, the second author [7] settled this conjecture.

