Hans Peter Schlickewei · Wolfgang M. Schmidt · Michel Waldschmidt

Zeros of linear recurrence sequences

Received: 7 August 1998

Abstract. Let $f(x) = P_0(x)\alpha_0^x + \cdots + P_k(x)\alpha_k^x$ be an exponential polynomial over a field of zero characteristic. Assume that for each pair i, j with $i \neq j, \alpha_i/\alpha_j$ is not a root of unity. Define $\Delta = \sum_{j=0}^k (\deg P_j + 1)$. We introduce a partition of $\{\alpha_0, \ldots, \alpha_k\}$ into subsets $\{\alpha_{i0}, \ldots, \alpha_{ik_i}\}$ $(1 \leq i \leq m)$, which induces a decomposition of f into $f = f_1 + \cdots + f_m$, so that, for $1 \leq i \leq m, (\alpha_{i0} : \cdots : \alpha_{ik_i}) \in \mathbb{P}_{k_i}(\overline{\mathbb{Q}})$, while for $1 \leq i \neq u \leq m$, the number α_{i0}/α_{u0} either is transcendental or else is algebraic with not too small a height. Then we show that for all but at most $\exp(\Delta(5\Delta)^{5\Delta})$ solutions $x \in \mathbb{Z}$ of f(x) = 0, we have

$$f_1(x) = \cdots = f_m(x) = 0.$$

1. Introduction

Let \mathbb{K} be a field of zero characteristic, $\alpha_1, \ldots, \alpha_k$ be non-zero elements of \mathbb{K} and P_1, \ldots, P_k non-zero polynomials with coefficients in \mathbb{K} . Consider an exponential polynomial

$$f(x) = \sum_{j=0}^{k} P_j(x) \alpha_j^x.$$

We study the equation

$$f(x) = 0 \tag{1.1}$$

in $x \in \mathbb{Z}$. We suppose that for each pair *i*, *j* with $i \neq j$,

$$\alpha_i / \alpha_j$$
 is not a root of unity. (1.2)

e-mail: hps@mathematik.Uni-Marburg.de

W. M. Schmidt: Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO 80309-0395, USA. e-mail: schmidt@euclid.colorado.edu

M. Waldschmidt: Université P. et M. Curie (Paris VI), Institut Mathématique de Jussieu, Problèmes Diophantiens, Case 247, 4, Place Jussieu, F-75252 Paris Cedex 05, France. e-mail: miw@math.jussieu.fr

Mathematics Subject Classification (1991): 11B37, 11D61, 11J13

H. P. Schlickewei: Fachbereich Mathematik, Universität Marburg, Hans-Meerwein-Strasse, Lahnberge, D-35032 Marburg, Germany.

We set

$$\Delta(f) = \sum_{j=0}^{k} (\deg P_j + 1).$$

It is well known that (f(0), f(1), ...) is a linear recurrence sequence of order $\Delta(f)$, which is "non-degenerate". Vice versa, any non-degenerate linear recurrence sequence $(u_0, u_1, ...)$ of elements of \mathbb{K} of order q has some representation $u_n = f(n)$, where f is an exponential polynomial as above satisfying (1.2) and with $\Delta(f) = q$. For more details, cf. e.g. [8]. So in studying (1.1) we study the zeros of linear recurrence sequences. An old conjecture says that the number of solutions $x \in \mathbb{Z}$ of equation (1.1) is bounded above by a function that depends only upon $\Delta(f)$. Let us briefly review what is known so far in this context¹.

For q = 1, equation (1.1) reduces to

 $a_0 \alpha_0^x = 0$

and clearly there is no solution x at all.

For q = 2, we have one of the following two equations

$$(a_0 + a_1 x)\alpha_0^x = 0$$
 or $a_0\alpha_0^x + a_1\alpha_1^x = 0$

In either case, in view of our assumption (1.2) on non-degeneracy, we clearly do not have more than one solution x.

The first non-trivial case is q = 3. Here, Schlickewei [4] proved the conjecture to be true. His bound has been improved by Beukers and Schlickewei [1]. They showed that for q = 3 equation (1.1) does not have more than 61 solutions.

Now suppose $q \ge 4$. In a recent paper [3], Evertse, Schlickewei and Schmidt proved the following: Suppose that in (1.1) the polynomials f_i for i = 0, ..., k are constant. Then equation (1.1) does not have more than $\exp((7k)^{3k})$ solutions. As in this situation q = k + 1, we see that when the polynomials f_i in (1.1) are all constant, the conjecture is true.

There remains the case when $q \ge 4$ and when not all f_i 's are constant. Now obviously in (1.1) we may suppose without loss of generality that $\alpha_0 = 1$. With this normalization, Schlickewei [5] proved the following: Suppose that $\alpha_1, \ldots, \alpha_k$ are algebraic and that $[\mathbb{Q}(\alpha_1, \ldots, \alpha_k) : \mathbb{Q}] \le d$. Then the number of solutions of equation (1.1) is bounded in terms of q and d only. (A bound was given explicitly). Schlickewei and Schmidt [6] later on established the bound $(2q)^{35q^3} d^{6q^2}$.

¹ After the present paper was written, the second author [7] settled this conjecture.

We denote by $\overline{\mathbb{Q}}$ the algebraic closure of \mathbb{Q} in \mathbb{K} (this is the field of algebraic elements in \mathbb{K}). We define an equivalence relation on the set \mathbb{K}^{\times} of non-zero elements of \mathbb{K} by the condition

$$z_1 \sim z_2 \iff z_1/z_2$$
 is algebraic.

This relation induces a partition of $\{\alpha_0, \ldots, \alpha_k\}$:

$$\{\alpha_0,\ldots,\alpha_k\} = \bigcup_{i=1}^m \{\alpha_{i0},\ldots,\alpha_{ik_i}\},\$$

where, for $1 \le i \le m$,

$$(\alpha_{i0}:\cdots:\alpha_{ik_i})\in\mathbb{P}_{k_i}(\mathbb{Q})$$

while for $1 \le i \ne u \le m$, the number α_{i0}/α_{u0} is transcendental. Accordingly, *f* is decomposed into

$$f = f_1 + \dots + f_m, \tag{1.3}$$

with

$$f_i(x) = P_{i0}(x)\alpha_{i0}^x + \dots + P_{ik_i}(x)\alpha_{ik_i}^x \qquad (1 \le i \le m).$$

We prove

Theorem 1.1. Suppose we have (1.2). Define $\Delta = \Delta(f)$ and

$$F(\Delta) = \exp(\Delta(5\Delta)^{5\Delta}).$$

Then for all but at most $F(\Delta)$ solutions $x \in \mathbb{Z}$ of (1.1), we have

$$f_1(x) = \dots = f_m(x) = 0.$$
 (1.4)

Our result, in other words, says that the only case when the conjecture possibly could fail to be true arises from the algebraic case, i.e. when $\alpha_0, \ldots, \alpha_k$ are in $\overline{\mathbb{Q}}$. Moreover we shall see that the conjecture would follow from the special case where $\alpha_0, \ldots, \alpha_k$ are algebraic and each α_i/α_j has a small height. Actually our method of proof gives a result of the type stated in the Theorem also under the assumption that the quotients α_i/α_u are not transcendental but have logarithmic height bounded away from zero (for more details, see the final remark in Sect. 6).

We mention that our proof was inspired by a similar result for q = 3 by Beukers and Tijdeman [2]. They showed:

Let α and β be non-zero elements of \mathbb{K} . Suppose that α , β and α/β are not roots of unity. Let α and β be non-zero elements of \mathbb{K} . Suppose that the equation

$$a\alpha^x + b\beta^x = 1$$

has at least 4 solutions $x \in \mathbb{Z}$. Then α and β are algebraic.

Our proof uses a recent result of Schlickewei and Schmidt [6] on polynomial exponential equations.

2. Heights

Let *K* be a number field of degree *d*. Write M(K) for the set of places of *K*. For $v \in M(K)$, let $| |_v$ be the valuation which extends either the standard absolute value of \mathbb{Q} , or if v|p for a rational prime p, let $| |_v$ be the valuation with $|p|_v = p^{-1}$. Write d_v for the local degree $[K_v : \mathbb{Q}_p]$ and define the absolute value $\| \|_v$ by

$$\| \|_{v} = | \|_{v}^{d_{v}/d}$$

Let $n \ge 1$ and let $\underline{\alpha} = (\alpha_0, \dots, \alpha_n) \ne (0, \dots, 0)$ be a point in K^{n+1} . We then put

$$\|\underline{\alpha}\|_{v} = \max\{\|\alpha_{0}\|_{v}, \ldots, \|\alpha_{n}\|_{v}\}$$

and we define the homogeneous height as

$$\mathrm{H}(\underline{\alpha}) = \prod_{v \in \mathcal{M}(K)} \|\underline{\alpha}\|_v.$$

Since it depends only on the class $\underline{\alpha} = (\alpha_0 : \cdots : \alpha_n)$ of $\underline{\alpha}$ in $\mathbb{P}_n(\overline{\mathbb{Q}})$, we also denote it by $H(\underline{\alpha})$. Let

$$\mathbf{h}(\underline{\alpha}) = \mathbf{h}(\alpha_0 : \cdots : \alpha_n) = \log \mathbf{H}(\underline{\alpha})$$

be the homogeneous logarithmic absolute height of $\underline{\underline{\alpha}} \in \mathbb{P}_n(\overline{\mathbb{Q}})$ We shall also need the inhomogeneous absolute heights

and

$$h_{in}(x) = h(1 : x_1 : \dots : x_n) = \log H_{in}(x)$$

of
$$x = (x_1, \ldots, x_n) \in \overline{\mathbb{Q}}^n$$
. Further, for $x \in \overline{\mathbb{Q}}$, we set

 $H_{in}(x) = H(1:x_1:\cdots:x_n)$

 $\underline{\underline{m}} \quad (w_1, \dots, w_n) \in \mathbb{Q} \cap \mathbb{Q}$

$$H_{in}(x) = H(1:x)$$
 and $h_{in}(x) = h(1:x) = \log H_{in}(x)$.

Given $D \in \mathbb{N}$ and $\not| > 0$, we will use the fact that the set of elements $\alpha \in \overline{\mathbb{Q}}^{\times}$ with

$$\deg \alpha \leq D$$
 and $h_{in}(\alpha) \leq k$

is finite.

3. Algebraic linear recurrence sequences

The results in this section are consequences of the Subspace Theorem.

Lemma 3.1. Let $m \ge 1$ and Γ be a finitely generated subgroup of $(\overline{\mathbb{Q}}^{\times})^m$ of rank $r \ge 0$. Then the solutions $\underline{z} = \underline{x} * y = (x_1y_1, \ldots, x_my_m)$ of

$$z_1 + \dots + z_m = 1 \tag{3.1}$$

with $\underline{z} \in \Gamma$, $y \in \mathbb{Q}^m$ and

$$h_{in}(\underline{y}) \le \frac{1}{4m^2} h_{in}(\underline{x}) \tag{3.2}$$

are contained in the union of at most

$$\exp((4m)^{4m}(r+1))$$

proper subspaces of $\overline{\mathbb{Q}}^m$.

Proof. This is a variation on Proposition A of [6]. In that proposition there was a distinction between three kinds of solutions:

- i) Solutions where some $y_i = 0$, i.e., some $z_i = 0$. These clearly lie in *m* subspaces.
- ii) Solutions where each $y_i \neq 0$ and where $h_{in}(\underline{x}) > 2m \log m$. These were called *large solutions* in [6] and it was shown in (10.4) of that paper that they lie in the union of fewer than

$$2^{30m^2}(21m^2)^r$$

proper subspaces.

iii) Solutions where each $y_i \neq 0$ and where $h_{in}(\underline{x}) \leq 2m \log m$. These were called *small solutions* in [6]. Here we argue as follows. We have $h_{in}(\underline{y}) \leq (2m \log m)/(4m^2) < \log 2$ by (3.2). Then each component has $h_{in}(y_i) < \log 2$, which is $H_{in}(y_i) < 2$. Since $y_i \in \mathbb{Q}^{\times}$, we have $y_i = \pm 1$. The equation (3.1) now becomes

$$\pm x_1 \pm x_2 \pm \dots \pm x_m = 1. \tag{3.3}$$

The group Γ' generated by Γ and the vectors $(\pm 1, \dots, \pm 1)$ contains no more than *r* multiplicatively independent elements. By Proposition 2.1 of [6], the solutions of (3.3) lie in the union of not more than

$$\exp\bigl((4m)^{3m}\cdot 2(r+1)\bigr)$$

proper subspaces of $\overline{\mathbb{Q}}^m$.

Combining our estimates we obtain

$$m + 2^{30m^2} (21m^2)^r + \exp((4m)^{3m} \cdot 2(r+1)) < \exp((4m)^{4m}(r+1)).$$

Corollary. Let q > 1 and let Γ be a finitely generated subgroup of $(\overline{\mathbb{Q}}^{\times})^q$ of rank $r \ge 0$. Then the solutions of

$$z_1 + \dots + z_q = 0 \tag{3.4}$$

where $\underline{z} = \underline{x} * y$ with $\underline{x} \in \Gamma$, $y \in \mathbb{Q}^q$ and

$$\mathbf{h}(\underline{y}) \le \frac{1}{4q^2} \mathbf{h}(\underline{x})$$

are contained in the union of fewer than

$$\exp((4q)^{4q}(r+1))$$
 (3.5)

proper subspaces of the space given by (3.4).

Proof. This is just the homogeneous version of Lemma 3.1. We apply Lemma 3.1 with m = q - 1. One needs also to consider the possible solutions with $z_q = 0$. But they lie in one subspace, and 1 is absorbed in (3.5) since q > m. \Box

Lemma 3.2. Let $\alpha \in \overline{\mathbb{Q}}^{\times}$ be given with $h_{in}(\alpha) > 0$. Let $a \in \overline{\mathbb{Q}}^{\times}$. Then there is a $u \in \mathbb{Z}$ such that

$$\mathbf{h}_{\mathrm{in}}(a\alpha^{x-u}) \ge \frac{1}{4}\mathbf{h}_{\mathrm{in}}(\alpha)|x|$$

for $x \in \mathbb{Z}$.

Proof. This is the case r = n = 1 of Lemma 15.1 in [6]. \Box

Agreement. We define the degree of the zero polynomial as -1.

Lemma 3.3. Consider an equation

$$P_0(x)\alpha_0^x + \dots + P_k(x)\alpha_k^x = 0$$
 (3.6)

where $(\alpha_0, \ldots, \alpha_k) \in (\overline{\mathbb{Q}}^{\times})^{k+1}$ and, for $0 \leq j \leq k$, P_j is a non-zero polynomial of degree $d_j \geq 0$ with algebraic coefficients. Write

$$\Delta = \sum_{j=0}^{k} (d_j + 1), \qquad D = \max_{0 \le j \le k} d_j.$$

Suppose that $\Delta \geq 3$,

$$\max_{0 \le i, j \le k} \mathbf{h}(\alpha_i : \alpha_j) \ge h$$

where $0 < h \leq 1$ and set

$$E = 16\Delta^2 D/\hbar, \quad t = \exp((5\Delta)^{4\Delta}) + 5E \log E.$$

Then there are tuples

$$(P_0^{(\ell)}, \dots, P_k^{(\ell)}) \neq (0, \dots, 0) \quad (1 \le \ell \le t)$$

of polynomials where deg $P_j^{(\ell)} \leq d_j$ $(0 \leq j < k, 1 \leq \ell \leq t)$ and deg $P_k^{(\ell)} < d_k$ for $\ell = 1, ..., t$, such that every solution $x \in \mathbb{Z}$ of (3.6) satisfies

$$P_0^{(\ell)}(x)\alpha_0^x + \dots + P_k^{(\ell)}(x)\alpha_k^x = 0$$
(3.7)

for some ℓ .

Proof. Suppose $u \in \mathbb{Z}$ and set y = x + u. Then (3.6) may be rewritten as

$$P_0(y-u)\alpha_0^{-u}\alpha_0^y+\cdots+P_k(y-u)\alpha_k^{-u}\alpha_k^y=0$$

which is the same as

$$\widetilde{P}_0(y)\alpha_0^y + \dots + \widetilde{P}_k(y)\alpha_k^y = 0, \qquad (3.8)$$

with

$$\widetilde{P}_j(Y) = P_j(Y - u)\alpha_j^{-u} \quad (0 \le j \le k).$$

Suppose our assertion is true for (3.8), with polynomials $\widetilde{P}_0^{(\ell)}, \ldots, \widetilde{P}_k^{(\ell)}$ (1 $\leq \ell \leq t$). Thus every solution of (3.8) satisfies

$$\widetilde{P}_0^{(\ell)}(y)\alpha_0^y + \dots + \widetilde{P}_k^{(\ell)}(y)\alpha_k^y = 0$$

for some ℓ . But then x = y - u satisfies (3.7) with

$$P_j^{(\ell)}(X) = \widetilde{P}_j^{(\ell)}(X+u)\alpha_j^u \qquad (0 \le j \le k).$$

We therefore may make a change of variables $x \mapsto y = x + u$.

We may suppose that $h(\alpha_0 : \alpha_i) \ge \not h$ for some ι in the range $1 \le \iota \le k$. Write $P_j(X) = a_{j0} + a_{j1}X + \dots + a_{j,d_j}X^{d_j}$. Pick u according to Lemma 3.2 with $h(a_{0,d_0}\alpha_0^{y-u} : a_{\iota,d_\iota}\alpha_\iota^{y-u}) \ge \frac{1}{4}\not h|y|$. Writing $\widetilde{P}_j(Y) = P_j(Y-u)\alpha_j^{-u} = b_{j0} + b_{j1}Y + \dots + b_{j,d_j}Y^{d_j}$, we have $b_{0,d_0} = a_{0,d_0}\alpha_0^{-u}$, $b_{\iota,d_\iota} = a_{\iota,d_\iota}\alpha_\iota^{-u}$, so that

$$h(b_{0,d_0}\alpha_0^{y}:b_{\iota,d_{\iota}}\alpha_{\iota}^{y}) \ge \frac{1}{4}|y|.$$
(3.9)

The equation (3.8) may be written as

$$(b_{00}+b_{01}y+\cdots+b_{0,d_0}y^{d_0})\alpha_0^y+\cdots+(b_{k0}+b_{k1}y+\cdots+b_{k,d_k}y^{d_k})\alpha_k^y=0.$$

Some coefficients may be zero; omitting the zero coefficients, we rewrite this as

$$(b'_{00}y^{v_{00}}+\cdots+b_{0,d_0}y^{d_0})\alpha_0^y+\cdots+(b'_{k0}y^{v_{k0}}+\cdots+b_{k,d_k}y^{d_k})\alpha_k^y=0.$$

Let q be the total number of (non-zero) coefficients here, and consider the following vectors in q-space:

$$\underline{x} = (b'_{00}\alpha_0^{y}, \dots, b_{0,d_0}\alpha_0^{y}, \dots, b'_{k0}\alpha_k^{y}, \dots, b_{k,d_k}\alpha_k^{y})$$

$$\underline{w} = (y^{v_{00}}, \dots, y^{d_0}, \dots, y^{v_{k0}}, \dots, y^{d_k}).$$

Our equation becomes

$$z_1 + \dots + z_q = 0$$
 (3.10)

with $\underline{z} = \underline{x} * \underline{w} = (x_1 w_1, \dots, x_q w_q)$. Hence \underline{x} lies in the group Γ of rank $r \leq 2$ generated by $(\alpha_0, \dots, \alpha_0, \dots, \alpha_k, \dots, \alpha_k)$ and $(b'_{00}, \dots, b_{0,d_0}, \dots, b'_{k_0}, \dots, b_{k,d_k})$. Further

$$\mathbf{h}(\underline{x}) \ge \mathbf{h}(b_{0,d_0}\alpha_0^y : b_{\iota,d_\iota}\alpha_\iota^y) \ge \frac{1}{4}|\underline{y}||y|$$

by (3.9). On the other hand, $h(\underline{w}) \leq D \log |y|$. Therefore when

$$|y| \ge 2E \log E, \tag{3.11}$$

so that $|y| \ge (32q^2D/4)\log(16q^2D/4)$ by $q \le \Delta$, then $|y| > (16q^2D/4)\log|y|$,

and

$$\mathbf{h}(\underline{w}) \le D\log|y| < \frac{\mu}{16q^2}|y| = \frac{1}{4q^2}\frac{1}{4}\mu|y| \le \frac{1}{4q^2}\mathbf{h}(\underline{x}).$$

By the corollary, for such y, we have z contained in the union of

$$\exp((4q)^{4q} \cdot 3) < \exp((5\Delta)^{4\Delta})$$

proper subspaces of the space (3.10). Consider such a subspace $c_1z_1 + \cdots + c_qz_q = 0$ (where (c_1, \ldots, c_q) is not proportional to $(1, \ldots, 1)$). Taking a linear combination of this and (3.10) we obtain a non-trivial relation $c'_1z_1 + \cdots + c'_{q-1}z_{q-1} = 0$. But this means exactly that y satisfies a non-trivial equation

$$\widetilde{Q}_0(y)\alpha_0^y + \dots + \widetilde{Q}_k(y)\alpha_k^y = 0, \qquad (3.12)$$

where deg $\widetilde{Q}_j \leq d_j$ $(0 \leq j < k)$ and deg $\widetilde{Q}_k < d_k$.

There are not more than $5E \log E$ values of y where (3.11) is violated. For fixed y, and since $\Delta = \sum (d_j + 1) \ge 3$, there will certainly be polynomials $\widetilde{Q}_0, \ldots, \widetilde{Q}_k$ as above (deg $\widetilde{Q}_j \le d_j$ ($0 \le j < k$) and deg $\widetilde{Q}_k < d_k$) with (3.12). \Box

Remark. When $\not \geq \exp(-(5\Delta)^{4\Delta})$ we have $t \leq \exp((5\Delta)^{5\Delta})$.

4. A specialization-type argument

Lemma 4.1. Let K be a number field, D, N, M, L_1 , ..., L_M non-negative integers, A_1 , ..., A_N homogeneous polynomials in $K[X_0, ..., X_k]$, each of degree $\leq D$ and $B_{\lambda\mu}$ $(1 \leq \lambda \leq L_{\mu}, 1 \leq \mu \leq M)$ homogeneous polynomials in $\overline{\mathbb{Q}}[X_0, ..., X_k]$. Assume that there exists $\underline{\alpha} \in \mathbb{P}_k(\mathbb{K})$ such that

(i) $A_1(\underline{\alpha}) = \cdots = A_N(\underline{\alpha}) = 0$ and

(ii) for each μ = 1, ..., M, there exists λ ∈ {1, ..., L_μ} with B_{λμ}(<u>α</u>) ≠ 0. Then there exist elements α̃₀, ..., α̃_k in K, algebraic over Q, not all of which are zero, which generate an extension K̃ = K(α̃₀, ..., α̃_k) of K of degree [K̃ : K] ≤ D^k and such that the point <u>α̃</u> = (α̃₀ : ... : α̃_k) ∈ P_k(K̃) satisfies (i)_a A₁(<u>α̃</u>) = ... = A_N(<u>α̃</u>) = 0 and (ii)_a for each μ = 1, ..., M, there exists λ ∈ {1, ..., L_μ} with B_{λμ}(<u>α̃</u>) ≠ 0.

Proof. Given homogeneous polynomials Q_1, \ldots, Q_N in $\mathbb{K}[X_0, \ldots, X_k]$, we write

$$Z(Q_1,\ldots,Q_N) \subset \mathbb{P}_k(\mathbb{K})$$

for the set of zeros in $\mathbb{P}_k(\mathbb{K})$ of the ideal (Q_1, \ldots, Q_N) in $\mathbb{K}[X_0, \ldots, X_k]$ generated by Q_1, \ldots, Q_N .

Let *Y* be an absolutely irreducible component of $Z(A_1, \ldots, A_N) \subset \mathbb{P}_k(\mathbb{K})$ containing $\underline{\alpha}$. Consider the Zariski closed subset

$$F = \bigcap_{\mu=1}^{M} Z(B_{1\mu}, \dots, B_{L_{\mu}, \mu})$$

of $\mathbb{P}_k(\mathbb{K})$. By assumption $\underline{\alpha}$ is not in *F*. Hence Lemma 4.1 is a consequence of the following statement:

Let A_1, \ldots, A_N be homogeneous polynomials in $K[X_0, \ldots, X_k]$, each of degree $\leq D$. Let Y be an irreducible component of dimension δ of

$$Z(A_1,\ldots,A_N)$$

and F a Zariski closed subset of $\mathbb{P}_k(\mathbb{K})$ such that $Y \setminus F$ is not empty. Then there exists an element $\underline{\widetilde{\alpha}} = (\widetilde{\alpha}_0 : \cdots : \widetilde{\alpha}_k)$ in $Y \setminus F$ whose components $\widetilde{\alpha}_0, \ldots, \widetilde{\alpha}_k$ are algebraic over \mathbb{Q} and such that we have

$$\left[K(\widetilde{\alpha}_0,\ldots,\widetilde{\alpha}_k):K\right] \leq D^{k-\delta}.$$

Since Y is absolutely irreducible and not contained in F, we have dim $(Y \cap$ $F \leq \delta - 1$. Pick linear forms L_1, \ldots, L_{δ} with coefficients in K and in sufficiently general position such that

$$Z(L_1) \cap \dots \cap Z(L_{\delta}) \cap F \cap Y = \emptyset$$

and such that moreover

$$Z(L_1) \cap \cdots \cap Z(L_{\delta}) \cap Y$$

is a non-empty finite set which does not contain more than $D^{k-\delta}$ points. Let $\gamma = (\gamma_0 : \cdots : \gamma_k)$ be one of its elements. One at least among $\gamma_0, \ldots, \gamma_k$ is non-zero, say γ_0 . Put $\tilde{\alpha}_i = \gamma_i / \gamma_0$. Then our construction implies that $\underline{\widetilde{\alpha}} = (1 : \widetilde{\alpha}_1 : \cdots : \widetilde{\alpha}_k) = \gamma$ lies in $Y \setminus F$. Since our linear forms L_i as well as the polynomials A_1, \ldots, A_N have coefficients in K, it follows that for any *K*-embedding σ of $K(\widetilde{\alpha}_1, \ldots, \widetilde{\alpha}_k)$ in \mathbb{K} we have

$$(1:\sigma\widetilde{\alpha}_1:\cdots:\sigma\widetilde{\alpha}_k)\in Z(L_1)\cap\cdots\cap Z(L_{\delta})\cap Y.$$

Since moreover the right hand side has cardinality $\leq D^{k-\delta}$, we may conclude that in fact $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_k$ are algebraic over K and that

$$[K(\widetilde{\alpha}_1,\ldots,\widetilde{\alpha}_k):K] \leq D^{k-\delta}. \quad \Box$$

Here is a consequence of Lemma 4.1.

Lemma 4.2. Let k be a non-negative integer, p, S, T, d_1, \ldots, d_s positive integers and h a positive real number. For $1 \le s \le S$, let $\underline{C}_s = (C_{1s}, \ldots, C_{ps})$ be a p-tuple of homogeneous polynomials in $\overline{\mathbb{Q}}[X_0, \ldots, X_k]$, each of degree d_s . For $1 \le t \le T$, let $\underline{D}_t = (D_{1t}, \ldots, D_{pt})$ be a p-tuple of homogeneous polynomials in $\overline{\mathbb{Q}}[X_0, \ldots, X_k]$, with deg $D_{1t} = \cdots = \deg D_{pt}$. Let $\alpha_0, \ldots, \alpha_k$ be non-zero elements of \mathbb{K} and $\underline{\alpha} = (\alpha_0, \ldots, \alpha_k) \in \mathbb{K}^{k+1}$. Denote by V the subspace of \mathbb{K}^p spanned by $\underline{C}_1(\underline{\alpha}), \ldots, \underline{C}_s(\underline{\alpha})$. Assume that for each t = 1, ..., T, we have $\underline{D}_t(\underline{\alpha}) \notin V$.

Then there exist non-zero algebraic elements $\widetilde{\alpha}_0, \ldots, \widetilde{\alpha}_k$ in \mathbb{K} such that

$$\underline{\widetilde{\alpha}} = (\widetilde{\alpha}_0, \ldots, \widetilde{\alpha}_k) \in \overline{\mathbb{Q}}^{k+1}$$

has the following properties. The subspace \widetilde{V} of \mathbb{K}^p spanned by $\underline{C}_1(\widetilde{\alpha}), \ldots,$ $\underline{C}_{S}(\widetilde{\alpha})$ has dim $\widetilde{V} = \dim V$. Further, for each $t = 1, \ldots, T$, we have $\underline{D}_{t}(\widetilde{\alpha}) \notin \widetilde{V}$. Furthermore, for $0 \leq i, j \leq k$, we have

$$\begin{cases} \widetilde{\alpha}_i / \widetilde{\alpha}_j = \alpha_i / \alpha_j & \text{if } \alpha_i / \alpha_j \text{ is algebraic,} \\ h(\widetilde{\alpha}_i : \widetilde{\alpha}_j) \ge h & \text{if } \alpha_i / \alpha_j \text{ is transcendental.} \end{cases}$$

Proof. Let *K* denote a number field containing all coefficients of C_{is} $(1 \le i \le p, 1 \le s \le S)$ and all algebraic elements of \mathbb{K} which belong to the set $\{\alpha_i / \alpha_j; 0 \le i, j \le k\}$. We shall prove the existence of $\underline{\widetilde{\alpha}} = (\widetilde{\alpha}_0, \ldots, \widetilde{\alpha}_k) \in \mathbb{K}^{k+1}$ satisfying the desired properties together with an upper bound for the degree of the number field $\widetilde{K} = K(\widetilde{\alpha}_0, \ldots, \widetilde{\alpha}_k)$, namely

$$\left[\widetilde{K}:K\right] \leq D^k \quad \text{with} \quad D = p \max_{1 \leq s \leq S} d_s.$$

Define $r = \dim V$. Since $\underline{D}_t(\underline{\alpha})$ is not in V, we have $V \neq \mathbb{K}^p$, hence r < p. Denote by $\{A_1, \ldots, A_J\}$ the set of $(r + 1) \times (r + 1)$ minors of the $p \times S$ matrix

$$\left(\underline{C}_1,\ldots,\underline{C}_S\right).$$

Each of these polynomials A_1, \ldots, A_J is homogeneous of degree

$$\leq (r+1) \max_{1 \leq s \leq S} d_s \leq D$$

Also, for $1 \le t \le T$, denote by $\{B_{1t}, \ldots, B_{Lt}\}$ the set of $(r+1) \times (r+1)$ minors of the $p \times (S+1)$ matrix

$$\left(\underline{C}_1,\ldots,\underline{C}_S,\ \underline{D}_t\right)$$

Further, let $\{A_{J+1}, \ldots, A_N\}$ denote the set of polynomials $\alpha_i X_j - \alpha_j X_i$ where (i, j) runs over the set of pairs with $0 \le i, j \le k$ for which α_i/α_j is algebraic. Furthermore, denote by $\{B_{T+1}, \ldots, B_M\}$ the set of polynomials X_0, \ldots, X_k , and $\beta X_i - X_j$, where (i, j) runs over the set of pairs with $0 \le i, j \le k$ for which α_i/α_j is transcendental, while β runs over the (finite) set of algebraic elements of \mathbb{K} for which

$$[K(\beta):K] \le D^k$$
 and $h_{in}(\beta) \le \not a$.

By assumption the point $\underline{\alpha} \in \mathbb{K}^{k+1}$ satisfies

$$A_1(\underline{\alpha}) = \cdots = A_N(\underline{\alpha}) = 0,$$

$$B_{\mu}(\underline{\alpha}) \neq 0$$
 for $T+1 \leq \mu \leq M_{\pi}$

and for each $\mu = 1, ..., T$, there exists $\lambda \in \{1, ..., L\}$ such that $B_{\lambda\mu}(\underline{\alpha}) \neq 0$.

From Lemma 4.1 we deduce that there exists $\underline{\widetilde{\alpha}} \in \overline{\mathbb{Q}}^{k+1}$ such that

$$\begin{bmatrix} K(\widetilde{\alpha}_0, \dots, \widetilde{\alpha}_k) : K \end{bmatrix} \le D^k,$$

$$A_1(\widetilde{\alpha}) = \dots = A_N(\widetilde{\alpha}) = 0,$$

$$B_\mu(\widetilde{\alpha}) \ne 0 \quad \text{for} \quad T+1 \le \mu \le M$$

and for each $\mu = 1, ..., T$, there exists $\lambda \in \{1, ..., L\}$ such that $B_{\lambda\mu}(\underline{\widetilde{\alpha}}) \neq 0$. This $\underline{\widetilde{\alpha}}$ then satisfies all desired properties. \Box

We apply Lemma 4.2 to exponential polynomials.

Lemma 4.3. Let $k \ge 1$ be an integer, k a positive real number, d_0, \ldots, d_k non-negative integers and $\alpha_0, \ldots, \alpha_k$ non-zero elements of \mathbb{K} satisfying (1.2). For $0 \le j \le k$, let

$$P_j(X) = \sum_{i=0}^{d_j} a_{ij} X^i$$

be a non-zero polynomial in $\mathbb{K}[X]$ of degree d_i . Define

$$f(x) = \sum_{j=0}^{k} P_j(x) \alpha_j^x$$

and denote by \mathcal{N} the set of solutions $x \in \mathbb{Z}$ of the equation f(x) = 0. Let \mathcal{E} be a finite subset of \mathbb{Z} . Assume that for each $x \in \mathcal{E}$ we are given a subset I(x) of $\{(i, j); 0 \le i \le d_j, 0 \le j \le k\}$ for which

$$\sum_{(i,j)\in I(x)} a_{ij} x^i \alpha_j^x \neq 0.$$
(4.1)

Then there exist non-zero algebraic elements $\tilde{\alpha}_0, \ldots, \tilde{\alpha}_k$ of \mathbb{K} and there exist polynomials $\tilde{P}_0, \ldots, \tilde{P}_k$ which are not all zero,

$$\widetilde{P}_j(X) = \sum_{i=0}^{d_j} \widetilde{a}_{ij} X^i \qquad (0 \le j \le k),$$

with algebraic coefficients \tilde{a}_{ij} , and with the following properties:

$$\deg \widetilde{P}_j \le d_j \qquad (0 \le j \le k) \tag{4.2}$$

$$\sum_{j=0}^{\kappa} \widetilde{P}_j(x) \widetilde{\alpha}_j^x = 0 \quad \text{for all } x \in \mathcal{N},$$
(4.3)

$$\sum_{(i,j)\in I(x)} \widetilde{a}_{ij} x^i \widetilde{\alpha}_j^x \neq 0 \quad \text{for each} \quad x \in \mathcal{E},$$
(4.4)

and, for $0 \le i, j \le k$,

$$\begin{cases} \widetilde{\alpha}_{i}/\widetilde{\alpha}_{j} = \alpha_{i}/\alpha_{j} & \text{if } \alpha_{i}/\alpha_{j} \text{ is algebraic,} \\ h(\widetilde{\alpha}_{i}:\widetilde{\alpha}_{j}) \geq \not h & \text{if } \alpha_{i}/\alpha_{j} \text{ is transcendental.} \end{cases}$$
(4.5)

Proof. We fix an ordering of the set $I = \{(i, j); 0 \le i \le d_j, 0 \le j \le k, a_{ij} \ne 0\}$ and we denote by p the number of elements in this set. Also we write $\mathcal{N} = \{n_1, \ldots, n_S\}$ (recall that \mathcal{N} is finite) and $\mathcal{E} = \{x_1, \ldots, x_T\}$. For $1 \le s \le S$, we define \underline{C}_s as the p-tuple composed of the polynomials $n_s^i X_j^{n_s}$ for $(i, j) \in I$. For $1 \le t \le T$, let \underline{D}_t be the p-tuple composed of the polynomials

$$\begin{cases} x_t^i X_j^{x_t} & \text{for } (i, j) \in I \cap I(x_t) \\ 0 & \text{for } (i, j) \in I \setminus I(x_t). \end{cases}$$

From the definition of \mathcal{N} we deduce that the dimension *r* of the vector space *V* spanned by $\underline{C}_1(\underline{\alpha}), \ldots, \underline{C}_S(\underline{\alpha})$ satisfies r < p. According to (4.1), for each $t = 1, \ldots, T$ we have $\underline{D}_t(\underline{\alpha}) \notin V$. Therefore Lemma 4.3 follows from Lemma 4.2. \Box

Remark. Let *K* denote the field generated over \mathbb{Q} by all algebraic elements which belong to the set $\{\alpha_i/\alpha_j; 0 \leq i, j \leq k\}$. The proof of Lemma 4.3 also yields an upper bound for the degree of the number field $\widetilde{K} = K(\widetilde{\alpha}_0, \ldots, \widetilde{\alpha}_k)$, namely

$$\left[\widetilde{K}:K\right] \leq \left(\Delta \max_{x \in \mathcal{N}} |x|\right)^{k}$$

with $\Delta = d_1 + \cdots + d_k + k + 1$. One may prove a variant of Lemma 4.3 where (4.3) holds only for some subset \mathcal{N}' of \mathcal{N} with Card $\mathcal{N}' / \text{Card } \mathcal{N} \ge 1/(k+1)$ but with the estimate

$$\left[\widetilde{K}:K\right] \leq \left(\Delta \min_{x \in \mathcal{N}'} |x|\right)^k$$

5. Dividing exponential polynomials

Let $\alpha_0, \ldots, \alpha_k$ be given non-zero elements of \mathbb{K} satisfying (1.2) and P_0, \ldots, P_k be polynomials with coefficients in \mathbb{K} , possibly zero. Consider the exponential polynomial

$$f(x) = \sum_{j=0}^{k} P_j(x) \alpha_j^x$$

We set

$$\Delta(f) = \sum_{\substack{j=0\\P_j\neq 0}}^k (\deg P_j + 1).$$

Thus $\Delta(f) = 0$ precisely when $P_0 = \cdots = P_k = 0$. When

$$g(x) = \sum_{j=0}^{k} Q_j(x) \alpha_j^x$$

is another exponential polynomial with the same frequencies $(\alpha_0, \dots, \alpha_k)$, we write $g \prec f$ if deg $Q_j \leq \deg P_j$ for $0 \leq j \leq k$. We write $g \ll f$ if $g \prec f$ and $\Delta(g) < \Delta(f)$.

Lemma 5.1. Suppose $g \prec f$ and $g \neq 0$. Then there is an exponential polynomial

$$r(x) = R_0(x)\alpha_0^x + \dots + R_k(x)\alpha_k^x$$

with $r \ll f$ such that

$$f(x) = r(x) + cx^n g(x)$$

for some c in \mathbb{K}^{\times} and some $n \geq 0$.

Proof. With f and g written as above, set

$$n = \min_{\substack{0 \le j \le k \\ Q_j \ne 0}} (\deg P_j - \deg Q_j)$$

We may suppose $n = \deg P_0 - \deg Q_0$. When

$$P_0 = c_a X^a + c_{a-1} X^{a-1} + \cdots, \qquad Q_0 = d_b X^b + d_{b-1} X^{b-1} + \cdots,$$

where now a = b + n, set $c = c_a/d_b$ and

$$r(x) = f(x) - cx^n g(x).$$

If again $r(x) = R_0(x)\alpha_0^x + \cdots + R_k(x)\alpha_k^x$, we have

$$R_0(X) = P_0(X) - (c_a/d_b)x^n Q_0(X),$$

so that deg $R_0 < \deg P_0$. Also deg $R_j \le \max(\deg P_j, n + \deg Q_j) \le \deg P_j$, so that $r \ll f$. \Box

Consider an exponential polynomial

$$f(x) = \sum_{j=0}^{k} P_j(x) \alpha_j^x$$

where $\alpha_0, \ldots, \alpha_k$ are non-zero algebraic elements in \mathbb{K} satisfying (1.2). Assume

$$\{\alpha_0,\ldots,\alpha_k\} = \bigcup_{i=1}^m \{\alpha_{i0}:\cdots:\alpha_{ik_i}\}$$

is a partition of $\{\alpha_0, \ldots, \alpha_k\}$ and define

$$f_i(x) = P_{i0}(x)\alpha_{i0}^x + \dots + P_{ik_i}(x)\alpha_{ik_i}^x \quad (1 \le i \le m)$$

so that

$$f(x) = f_1(x) + \dots + f_m(x).$$

Suppose further, for $1 \le i \ne u \le m$, $0 \le j \le k_i$ and $0 \le v \le k_u$,

$$h_{\rm in}(\alpha_{ij}/\alpha_{uv}) \ge 1. \tag{5.1}$$

From (1.2) we deduce

$$\Delta(f) = \Delta(f_1) + \dots + \Delta(f_m).$$

Set

$$\Delta = \Delta(f)$$

Lemma 5.2. Define

$$F(\Delta) = \exp(\Delta(5\Delta)^{5\Delta}).$$

Then for all but at most $F(\Delta)$ solutions $x \in \mathbb{Z}$ of f(x) = 0, we have

$$f_1(x) = \dots = f_m(x) = 0.$$
 (5.2)

Proof. The lemma is non-trivial only when $m \ge 2$ and at least two of f_1, \ldots, f_m are non-zero, so that $\Delta \ge 2$. We now proceed by induction on Δ . When $\Delta = 2$ and $m \ge 2$, we have in fact $f(x) = a\alpha_{10}^x + b\alpha_{20}^x$ with $ab \ne 0$ and $h_{in}(\alpha_{10}/\alpha_{20}) \ge 1$, so that α_{10}/α_{20} is not a root of 1. There can be at most one zero x of f, for if f(x) = f(y) = 0, then $(\alpha_{10}/\alpha_{20})^x = (\alpha_{10}/\alpha_{20})^y = -b/a$, so that $(\alpha_{10}/\alpha_{20})^{x-y} = 1$ hence x = y since α_{10}/α_{20} is not a root of 1.

Now assume $\Delta \ge 3$. In the induction step we apply Lemma 3.3 with $\not = 1$. The condition $\max_{0\le i,j\le k} h(\alpha_i : \alpha_j) \ge 1$ is satisfied because $m \ge 2$. Any $x \in \mathbb{Z}$ with f(x) = 0 satisfies a relation

$$f^{(\ell)}(x) = 0$$

for some ℓ in the range $1 \le \ell \le t$ where $t = \exp((5\Delta)^{5\Delta})$ and each $f^{(\ell)} \ne 0$ has $f^{(\ell)} \ll f$. By Lemma 5.1 we have, for $1 \le \ell \le t$

$$f(x) = r^{(\ell)}(x) + c^{(\ell)}x^{n^{(\ell)}}f^{(\ell)}(x)$$

with $r^{(\ell)} \ll f$. Write out

$$f^{(\ell)}(x) = f_1^{(\ell)}(x) + \dots + f_m^{(\ell)}(x),$$

$$r^{(\ell)}(x) = r_1^{(\ell)}(x) + \dots + r_m^{(\ell)}(x)$$

with

$$f_i^{(\ell)}(x) = P_{i0}^{(\ell)}(x)\alpha_{i0}^x + \dots + P_{ik_i}^{(\ell)}(x)\alpha_{ik_i}^x,$$

$$r_i^{(\ell)}(x) = R_{i0}^{(\ell)}(x)\alpha_{i0}^x + \dots + R_{ik_i}^{(\ell)}(x)\alpha_{ik_i}^x$$

and

$$f_i(x) = r_i^{(\ell)}(x) + c^{(\ell)} x^{n^{(\ell)}} f_i^{(\ell)}(x).$$
(5.3)

By induction, and since $f^{(\ell)} \ll f$ and $r^{(\ell)} \ll f$, hence $\Delta(f^{(\ell)}) < \Delta(f)$, $\Delta(r^{(\ell)}) < \Delta(f)$, we see that all but at most $F(\Delta - 1)$ solutions of $f^{(\ell)}(x) = 0$ have

$$f_1^{(\ell)}(x) = \dots = f_m^{(\ell)}(x) = 0,$$
 (5.4)

and similarly all but at most $F(\Delta - 1)$ solutions of $r^{(\ell)}(x) = 0$ have

$$r_1^{(\ell)}(x) = \dots = r_m^{(\ell)}(x) = 0.$$
 (5.5)

But (5.3), (5.4) and (5.5) imply (5.2). Taking the sum over ℓ in $1 \le \ell \le t$, we see that all but at most

$$2tF(\Delta - 1) \le \exp\left(1 + (5\Delta)^{5\Delta} + (\Delta - 1)(5\Delta)^{5\Delta - 5}\right) \le F(\Delta)$$

solutions of f(x) = 0 have (5.2). \Box

6. Proof of Theorem 1.1

Assume that the assumptions of Theorem 1.1 are satisfied. Let \mathcal{E} be a set of more than $F(\Delta)$ solutions of (1.1). Assume that for each x in \mathcal{E} there is an index i = i(x) in the range $1 \le i \le m$ such that $f_{i(x)}(x) \ne 0$.

We apply Lemma 4.3 with $\not| = 1$. We produce algebraic elements $\tilde{\alpha}_0, \ldots, \tilde{\alpha}_k$ and polynomials with algebraic coefficients $\tilde{P}_0, \ldots, \tilde{P}_k$ satisfying (4.2), (4.3), (4.4) and (4.5). The exponential polynomial

$$\widetilde{f}(x) = \sum_{j=0}^{k} \widetilde{P}_j(x) \widetilde{\alpha}_j^x$$

can be written

$$\widetilde{f}(x) = \widetilde{f}_1(x) + \dots + \widetilde{f}_m(x)$$

where, for $1 \le i \le m$,

$$\widetilde{f}_i(x) = \sum_{j=0}^{\kappa_i} \widetilde{P}_{ij}(x)\widetilde{\alpha}_{ij}^x$$

and, for $1 \le i \ne u \le m$, $0 \le j \le k_i$ and $0 \le v \le k_u$,

$$h_{in}(\widetilde{\alpha}_{ij}/\widetilde{\alpha}_{uv}) \geq 1.$$

We apply Lemma 5.2 and deduce that one at least of *x* in \mathcal{E} satisfies $\tilde{f}_{i(x)}(x) = 0$, which is a contradiction with (4.4). \Box

Final remark. The proof of Theorem 1.1 yields a stronger result. Fix $\not h$ with $0 < \not h \le 1$. If we replace the assumption that α_{i0}/α_{u0} is transcendental by the assumption that either it is transcendental, or else has height $\ge \not h$, then we get the same conclusion but with $F(\Delta)$ replaced by a function of Δ and $\not h$, which is equal to $F(\Delta)$ when $\not h = 1$.

References

- [1] Beukers, F. and Schlickewei, H.P.: The equation x + y = 1 in finitely generated groups. Acta Arith. **78**, 189–199 (1996)
- [2] Beukers, F. and Tijdeman, R.: On the multiplicities of binary complex recurrences. Compositio Math. **51**, 193–213 (1984)
- [3] Evertse, J.H., Schlickewei, H.P. and Schmidt, W.M.: Linear equations with variables which lie in a multiplicative group. In preparation
- [4] Schlickewei, H.P.: The multiplicity of binary recurrences. Invent. Math. **129**, 11–36 (1997)
- [5] Schlickewei, H.P.: Multiplicities of recurrence sequences. Acta Math. **176**, 171–243 (1996)
- [6] Schlickewei, H.P. and Schmidt, W.M.: Linear equations with variables which lie in a multiplicative group. Preprint
- [7] Schmidt, W.M.: The zero multiplicity of linear recurrence sequences. Acta Arith., to appear
- [8] Shorey, T.N. and Tijdeman, R.: *Exponential Diophantine Equations*. Cambridge Tracts in Mathematics 87, Cambridge Univ. Press, 1986, pp. 240