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OPEN DIOPHANTINE PROBLEMS
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Dédié à un jeune septuagénaire, Pierre Cartier, qui m’a beaucoup appris

Abstract. Diophantine Analysis is a very active domain of mathemat-
ical research where one finds more conjectures than results.

We collect here a number of open questions concerning Diophantine
equations (including Pillai’s Conjectures), Diophantine approximation
(featuring the abc Conjecture) and transcendental number theory (with,
for instance, Schanuel’s Conjecture). Some questions related to Mahler’s
measure and Weil absolute logarithmic height are then considered (e. g.,
Lehmer’s Problem). We also discuss Mazur’s question regarding the
density of rational points on a variety, especially in the particular case
of algebraic groups, in connexion with transcendence problems in several
variables. We say only a few words on metric problems, equidistribution
questions, Diophantine approximation on manifolds and Diophantine
analysis on function fields.
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1. Diophantine Equations

1.1. Points on Curves. Among the 23 problems posed by Hilbert [Hi], [Gu] the
tenth one has the shortest statement.

Given a Diophantine equation with any number of unknown quan-
tities and with integral numerical coefficients: To devise a process
according to which it can be determined by a finite number of oper-
ations whether the equation is solvable in rational integers.

An equation of the form f(x) = 0, where f ∈ Q[X1, . . . , Xn] is a given polynomial,
while the unknowns x = (x1, . . . , xn) take rational integer values, is a Diophantine
equation. To solve this equation amounts to determining the integer points on
the corresponding hypersurface of the affine space. Hilbert’s Tenth Problem is to
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find an algorithm which tells us whether or not such a Diophantine equation has a
solution.

There are other types of Diophantine equations. First of all one may consider
rational solutions instead of integer ones. In this case, one considers rational points
on a hypersurface. Next, one may consider integer or rational points over a number
field. There is a situation which is intermediate between integer and rational points,
where the unknowns take S-integral point values. This means that S is a fixed, finite
set of prime numbers (rational primes, or prime ideals in the number field), and that
the denominators of the solutions are restricted to those belonging to S. Examples
are the Thue–Mahler equation

F (x, y) = pz1
1 · · · pzk

k

where F is a homogeneous polynomial with integer coefficients and p1, . . . , pk are
fixed primes (the unknowns are x, y, z1, . . . , zk and take rational integer values
with zi ≥ 0) and the generalized Ramanujan–Nagell equation x2 +D = pn, where
D is a fixed integer, p a fixed prime, and the unknowns are x, n which take rational
integer values with n ≥ 0 (see for instance [ST], [Ti3], [Sh1], and [BS] for these and
other similar questions).

Also, it is interesting to deal with simultaneous Diophantine equations, i. e., to
study rational or integer points on algebraic varieties.

The final answer to Hilbert’s original Tenth Problem was given in 1970 by
Matiyasevich, following the works of Davis, Putnam and Robinson. This was the
culminating stage of a rich and beautiful theory (see [DMR], [Ma] and [Mat]). The
solution is negative, there is no hope of producing a complete theory of the subject.
But one may still hope that there is a positive answer if one restricts Hilbert’s
initial question to equations in a limited number of variables, say n = 2, which
amounts to considering integer points on a plane curve. In this case, deep results
were achieved during the 20th century and many results are now known, but many
more remain to be discovered.

The most basic results are those of Siegel (1929) and Faltings (1983). Siegel’s
Theorem deals with integer points and produces an algorithm to decide whether the
set of solutions forms a finite or an infinite set. Faltings’s result, solving Mordell’s
Conjecture, does the same for rational solutions, i. e., rational points on curves.
To these two outstanding achievements of the 20th century, one may add Wiles’s
contribution, which not only settles the Last Fermat Theorem, but also provides a
quantity of similar results for other curves [K].

Some natural questions arise.

(a) To answer Hilbert’s tenth Problem for this special case of plane curves,
which means to find an algorithm to decide whether a given Diophantine equation
f(x, y) = 0 has a solution in Z (and the same problem in Q).

(b) To find an upper bound for the number of either rational or integral points
on a curve.

(c) To find an algorithm for solving explicitly a given Diophantine equation in
two unknowns.
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Further questions may be asked. For instance in question b) one might ask for the
exact number of solutions; it may be more relevant to consider more generally the
number of points on any number field, or the number of points of bounded degree
and to investigate the related generating series. . . The number of open problems is
endless!

Our goal here is not to describe in detail the state of the art regarding these
questions (see for instance [La8]). It suffices to say

– that a complete answer to question (a) is not yet available. There is no algo-
rithm (not even a conjectural one) to decide whether a curve has a rational point
or not,

– that a number of results are known about question (b), the latest work on this
topic being due to G. Rémond [Re] who produces an effective upper bound for the
number of rational points on a curve of genus ≥ 2,

– and that question (c) is unanswered even for integer points, and even for the
special case of curves of genus 2.

We do not request a practical algorithm, but only (to start with) a theoretical
one. So our first open problem will be an effective refinement to Siegel’s Theorem.

Problem 1.1. Let f ∈ Z[X, Y ] be a polynomial such that the equation f(x, y) =
0 has only finitely many solutions (x, y) ∈ Z × Z. Give an upper bound for
max{|x|, |y|} when (x, y) is such a solution, in terms of the degree of f and of
the maximal absolute value of the coefficients of f .

That such a bound exists is part of the hypothesis, but the problem is to state
it explicitly (and, if possible, in a closed form).

Further similar questions might also be asked regarding equations involving more
variables (rational points on varieties), for instance Schmidt’s norm form equations.
We refer the reader to [La3] and [La8] for such questions, including the Lang–Vojta
Conjectures.

Even the simplest case of quadratic forms suggests open problems. The deter-
mination of all positive integers which are represented by a given binary form is
far from being solved. It is also expected that infinitely many real quadratic fields
have class number one, but it is not even known that there are infinitely many
number fields (without restriction on the degree) with class number one. Recall
that the first complete solution of Gauss’s class number 1 and 2 Problems (for
imaginary quadratic fields) has been obtained by transcendence methods (A. Baker
and H. M. Stark), so it may be considered to be a Diophantine problem. Nowadays
more efficient methods (Goldfeld, Gross–Zagier, . . . — see [La8, Chap. V, §5]) are
available.

A related open problem is the determination of Euler’s numeri idonei [Ri2]. Fix
a positive integer n. If p is an odd prime for which there exist integers x ≥ 0 and
y ≥ 0 with p = x2 + ny2, then

(i) gcd(x, ny) = 1,
(ii) the equation p = X2 + nY 2 in integers X ≥ 0 and Y ≥ 0 has the only one

solution, X = x and Y = y.
Now let p be an odd integer such that there exist integers x ≥ 0 and y ≥ 0 with

p = x2 + ny2 and such that the conditions (i) and (ii) above are satisfied. If these
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properties imply that p is prime, then the number n belongs to the set of so-called
numeri idonei. Euler found 65 such integers n

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30,
33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105,
112, 120, 130, 133, 165, 168, 177, 190, 210, 232, 240, 253, 273, 280,
312, 330, 345, 357, 385, 408, 462, 520, 760, 840, 1320, 1365, 1848.

It is known that there is at most one more number in the list, but one expects there
be no other.

Here is just one example ([Sie1, problem 58, p. 112], [Guy, D18]) of an open
problem dealing with simultaneous Diophantine quadratic equations. Is there a
perfect integer cuboid? The existence of a box with integer edges x1, x2, x3, integer
face diagonals y1, y2, y3 and integer body diagonal z, amounts to solving the system
of four simultaneous Diophantine equations in seven unknowns

x2
1 + x2

2 = y2
3 ,

x2
2 + x2

3 = y2
1 ,

x2
3 + x2

1 = y2
2 ,

x2
1 + x2

2 + x2
3 = z2

in Z. We don’t know whether there is a solution, but it is known that there is no
perfect integer cuboid with the smallest edge ≤ 231.

1.2. Exponential Diophantine Equations. In a Diophantine equation, the un-
knowns occur as the variables of polynomials, while in an exponential Diophantine
equation (see [ST]), some exponents also are variables. One may consider the above-
mentioned Ramanujan–Nagell equation x2+D = pn as an exponential Diophantine
equation.

A famous problem which was open until 2002 is Catalan’s one which dates back
to 1844 [Cat], the same year where Liouville constructed the first examples of
transcendental numbers (see also [Sie1, problem 77, p. 116], [Sie2, n◦ 60, p. 42],
[ST, Chap. 12], [N1, Chap. 11], [Ri1], [Guy, D9], [Ri2, Chap. 7]). The “Note
extraite d’une lettre adressée à l’Éditeur par Monsieur E. Catalan, Répétiteur à
l’école polytechnique de Paris”, published in Crelle Journal [Cat], reads:

“Je vous prie, Monsieur, de bien vouloir énoncer, dans votre recueil,
le théorème suivant, que je crois vrai, bien que je n’aie pas encore
réussi à le démontrer complètement : d’autres seront peut-être plus
heureux.

Deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent
être des puissances exactes; autrement dit : l’équation xm − yn =
1, dans laquelle les inconnues sont entières et positives, n’admet
qu’une seule solution.”

This means that the only example of consecutive numbers which are perfect
powers xp with p ≥ 2 should be 8 and 9. Further information on the history of this
question is available in Ribenboim’s book [Ri1]. Tijdeman’s result [Ti2] in 1976
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shows that there are only finitely many solutions. More precisely, for any solu-
tion x, y, p, q, the number max{p, q} can be bounded by an effectively computable
absolute constant. Once max{p, q} is bounded, only finitely many exponential Dio-
phantine equations remain to be considered, and there are algorithms to complete
the solution (based on Baker’s method). Such a bound has been computed, but
it is somewhat large: M. Mignotte proved that any solution x, y, p, q to Catalan’s
equation should satisfy

max{p, q} < 8 · 1016.

Catalan’s claim was finally substantiated by P. Mihăilescu [Mi] (see also [Bi]
and [Me]).

Theorem 1.2 (Catalan’s Conjecture). The equation

xp − yq = 1,

where the unknowns x, y, p and q take integer values all ≥ 2, has only one solution,
namely (x, y, p, q) = (3, 2, 2, 3).

The final solution by Mihăilescu involves deep results from the theory of cy-
clotomic fields. Initially sharp measures of linear independence of logarithms of
algebraic numbers were required, namely a specific estimate for two logarithms due
to M. Laurent, M. Mignotte and Yu. V. Nesterenko, but then a solution using nei-
ther results from transcendental number theory nor the help of a computer was
derived.

Catalan asked for integral solutions, like in Siegel’s Theorem, while Faltings’s
Theorem deals with rational points. D. Prasad suggested that the set of tuples
(x, y, p, q) in Q2 × N2 satisfying the conditions

xp − yq = 1, and the curve Xp − Y q = 1 has genus ≥ 1

should be finite — evidence for this is provided by the abc Conjecture (see Sec-
tion 2.1).

The fact that the right hand side in Catalan’s equation is 1 is crucial. Nothing
is known if one replaces it by another positive integer. The next conjecture was
proposed by S. S. Pillai [Pi] at a conference of the Indian Mathematical Society
held in Aligarh (see also [Sie1, problem 78, p. 117], [ST], [Ti3], [Sh1]).

Conjecture 1.3 (Pillai). Let k be a positive integer. The equation

xp − yq = k,

where the unknowns x, y, p and q take integer values, all ≥ 2, has only finitely
many solutions (x, y, p, q).

This means that in the increasing sequence of perfect powers xp, with x ≥ 2 and
p ≥ 2:

4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, . . . ,

the difference between two consecutive terms tends to infinity. It is not even known
whether for, say, k = 2, Pillai’s equation has only finitely many solutions. A related
open question is whether the number 6 occurs as a difference between two perfect
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powers: Is there a solution to the Diophantine equation xp − yq = 6? (see [Sie2,
problem 238a, p. 116]).

A conjecture which implies Pillai’s has been suggested by T. N. Shorey in [Sh2].
This is the very problem which motivated C. L. Siegel in [Si1]. Let f ∈ Z[X] be a
polynomial of degree n with at least two distinct roots and f(0) 6= 0. Let L be the
number of non-zero coefficients of f . Write

f(X) = b1X
n1 + · · ·+ bL−1X

nL−1 + bL

with n = n1 > n2 > · · · > nL−1 > 0 and bi 6= 0 (1 ≤ i ≤ L). Set H = H(f) =
max1≤i≤L |bi|.

Conjecture 1.4 (Shorey). There exists a positive number C which depends only
on L and H with the following property. Let m, x and y be rational integers with
m ≥ 2 and |y| > 1 satisfying

ym = f(x).

Then either m ≤ C, or else there is a proper sub-sum in

ym − b1x
n1 − · · · − bL−1x

nL−1 − bL

which vanishes.

An example with a vanishing proper sub-sum is

ym = xn1 + x− 2

where H = 2, L = 3 and a solution (m, x, y) = (n1, 2, 2).
Consider now the positive integers which are perfect powers yq, with q ≥ 2, and

such that all digits in some basis x ≥ 2 are 1’s. Examples are 121 in basis 3, 400 in
basis 7 and 343 in basis 18. To find all solutions amounts to solving the exponential
Diophantine equation

xn − 1
x− 1

= yq,

where the unknown x, y, n, q take positive, rational, integer values with x ≥ 2,
y ≥ 1, n ≥ 3 and q ≥ 2. Only 3 solutions are known

(x, y, n, q) = (3, 11, 5, 2), (7, 20, 4, 2), (18, 7, 3, 3),

corresponding to the above-mentioned three examples. One does not know whether
these are the only solutions (see [ST], [Guy, D10], [Ti3], [Sh1], [BM] and [Sh2]),
but it is expected that there are no others.

The next question is to determine all the perfect powers with identical digits in
some basis, which amounts to solving the equation

z
xn − 1
x− 1

= yq,

where the unknown x, y, n, q, z take positive, rational, integer values with x ≥ 2,
y ≥ 1, n ≥ 3, 1 ≤ z < x and q ≥ 2.

Another type of exponential Diophantine equation has been studied in a joint
paper by H. P. Schlickewei and C. Viola [SV] where they state the following con-
jecture.
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Conjecture 1.5. Let k ≥ 2 be an integer and α1, . . . , αn be non-zero elements in
a field K of zero characteristic, such that, no quotient αi/αj with j 6= i is a root of
unity. Consider the function

F (X1, . . . , Xk) = det

αX1
1 · · · αX1

k

. . . . . . . . . . . . . . .

αXk
1 · · · αXk

k

 .

Then the equation
F (0, x2, . . . , xk) = 0

has only finitely many solutions (x2, . . . , xk) ∈ Zk−1 such that, in the corresponding
determinant, all (k − 1)× k and all k × (k − 1) submatrices have rank k − 1.

Other exponential Diophantine equations are worth of study. See for instance
[N1, Chap. III], [ST], [Ti3] and [Sh1].

Among the numerous applications of Baker’s transcendence method are several
questions related to the greatest prime factors of certain numbers. In this connexion
we mention Grimm’s Conjecture ([Gri], [N1, Chap. III, §3], [Guy, B32]).

Conjecture 1.6 (Grimm). Given k consecutive, composite integers, n + 1, . . . ,
n + k, there exist k distinct primes p1, . . . , pk such that n + j is divisible by pj ,
1 ≤ j ≤ k.

This conjecture may be rephrased as follows. Given an increasing sequence of
positive integers n1 < · · · < nk for which the product n1 · · ·nk has fewer than k
distinct prime factors, there is a prime p in the range n1 ≤ p ≤ nk. The equivalence
of this with the original formulation follows from the “marriage theorem”.

According to P. Erdős and J. L. Selfridge, a consequence of Conjecture 1.6 is
that between two consecutive squares there is always a prime number.

A weaker form of Conjecture 1.6, which is also an open problem, is

Conjecture 1.7. If there is no prime in the interval [n+1, n+k], then the product
(n+ 1) · · · (n+ k) has at least k distinct prime divisors.

M. Langevin (personal communication) pointed out that Grimm’s Conjecture
cannot be extended to arithmetical progressions without a proviso. For instance
the numbers 12, 25, 38, 51, 64, 77, 90 belong to an arithmetic progression of ratio 13,
but the number of distinct prime factors of 12·25·64·90 is only 3. However in [Lan1]
he proposed a stronger conjecture than Conjecture 1.6.

Conjecture 1.8 (Langevin). Given an increasing sequence n1 < n2 < · · · < nk

of positive integers such that n1, n2, . . . , nk are multiplicatively dependent, there
exists a prime number in the interval [n1, nk].

Even if they may not be classified as Diophantine questions, the following open
problems (see [La10]) are related to this topic: the twin prime conjecture, the Gold-
bach Problem (is every even integer ≥ 4 the sum of two primes?), Bouniakovsky’s
conjecture, Schinzel’s hypothesis (H) (see also [Sie1, §29]) and the Bateman–Horn
Conjecture.

The Diophantine equation
xp + yq = zr
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has also a long history in relation with Fermat’s last Theorem ([K], [Ri2, §9.2.D]).
If we look at the solutions in positive integers (x, y, z, p, q, r) for which

1
p

+
1
q

+
1
r
< 1

and such that x, y, z are relatively prime, then only 10 solutions1 are known,

1+23 =32, 25 +72 =34, 73 +132 =29, 27 +173 =712,

35 +114 =1222, 177 +762713 =210639282, 14143 +22134592 =657,

92623 +153122832 =1137, 438 +962223 =300429072, 338 +15490342 =156133.

Since the condition
1
p

+
1
q

+
1
r
< 1 implies

1
p

+
1
q

+
1
r
≤ 41

42
,

the abc Conjecture (see Section 2.1) predicts that the set of such solutions is fi-
nite (the “Fermat–Catalan” Conjecture formulated by Darmon and Granville —
see [Mau]). For all known solutions, one of p, q, r is 2; this led R. Tijdeman and
D. Zagier to conjecture2 that there is no solution with the further restriction that
each of p, q and r is ≥ 3.

A Diophantine tuple is a tuple (a1, . . . , an) of distinct positive integers such that
aiaj +1 is a square for 1 ≤ i < j ≤ n (see [Guy] and [G]). Fermat gave the example
(1, 3, 8, 120), and Euler showed that any Diophantine pair (a1, a2) can be extended
to a Diophantine quadruple (a1, a2, a3, a4). It is not known whether there exists
a Diophantine quintuple (a1, a2, a3, a4, a5), but A. Dujella [Du] proved that each
Diophantine quintuple has max{a1, a2, a3, a4, a5} ≤ 101026

. He also proved that
there is no Diophantine sextuple.

1.3. Markoff Spectrum. The original Markoff3 equation (1879) is x2 +y2 +z2 =
3xyz (see [Ca, Chap. II], [CF, Chap. 2], [Guy, D12] and [Ri2, §10.5.B]). This is
an algorithm which produces all solutions in positive integers. Given any solution
(x, y, z) = (m, m1, m2), we fix two of the three coordinates; then we obtain a
quadratic equation in the third coordinate, for which we already know a solution.
By the usual process of cutting with a rational line we deduce another solution.
From one solution (m, m1, m2), this produces three other solutions

(m′, m1, m2), (m, m′
1, m2), (m, m1, m

′
2),

where

m′ = 3m1m2 −m, m′
1 = 3mm2 −m1, m′

2 = 3mm1 −m2.

These three solutions are called neighbors of the original one. Apart from the
two so-called singular solutions (1, 1, 1) and (2, 1, 1), the three components of

1Up to obvious symmetries; in particular 1 + 23 = 32 counts only for one solution.
2This conjecture is also known as Beal’s Conjecture — see [Mau].
3His name is spelled Markov in probability theory.
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(m, m1, m2) are pairwise distinct, and the three neighbors of (m, m1, m2) are
pairwise distinct. Assuming m > m1 > m2, one deduces

m′
2 > m′

1 > m > m′.

Hence there is a neighbor of (m, m1, m2) with maximum component less than m,
and two neighbors, namely (m′

1, m, m2) and (m′
2, m, m1), with maximum com-

ponent greater than m. It follows that one produces all solutions, starting from
(1, 1, 1), by taking successively the neighbors of the known solutions. Here is the
Markoff tree, in the notation of H. Cohn [Coh], where (m′

1, m, m2) is written on
the right and (m′

2, m, m1) on the left.

(1, 1, 1)

(2, 1, 1)

(5, 2, 1)

(29, 5, 2) (13, 5, 1)

(433, 29, 5) (169, 29, 2) (194, 13, 5) (34, 13, 1)

...
...

...
...

...
...

...
...

The main open problem in this topic ([Ca, p. 33], [CF, p. 11] and [Guy, D12]) is
to prove that each largest component occurs only once in a triple of this tree.

Conjecture 1.9. Fix a positive integer m for which the equation

m2 +m2
1 +m2

2 = 3mm1m2

has a solution in positive integers (m1, m2) with 0 < m1 ≤ m2 ≤ m. Then such a
pair (m1, m2) is unique.

This conjecture has been proven for m ≤ 10105.
The sequence

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, . . .

of integers m satisfying the hypotheses of Conjecture 1.9 is closely related to the
question of the best rational approximation to quadratic, irrational, real numbers:
for each m in this sequence, there is an explicit quadratic form fm(x, y) such that
fm(x, 1) = 0 has a root αm for which

lim sup
q∈Z, q→∞

(q‖qαm‖) =
m√

9m2 − 4
. (1.10)
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The sequence of (m, fm, αm, µm) where µm =
√

9m2 − 4/m starts as follows,

m 1 2 5 13

fm(x, 1) x2 + x− 1 x2 + 2x− 1 5x2 + 11x− 5 13x2 + 29x− 13

αm 1 2 2211 221111

µm

√
5

√
8

√
221/5

√
1517/13

The third row gives the continued fraction expansion for αm, where 2211, for in-
stance, stands for [2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, . . . ]. Conjecture 1.9 amounts to
claiming that there is no ambiguity in the notation fm: given m, two quadratic
numbers αm satisfying (1.10) should be roots of equivalent quadratic forms.

Hence the Markoff spectrum is closely related to rational approximation to a
single real number. A generalization to simultaneous approximation is considered
in Section 2.2 below.

2. Diophantine Approximation

In this section we restrict ourselves to problems in Diophantine approximation
which do not require introducing a notion of height for algebraic numbers, those
will be discussed in Section 4.

2.1. The abc Conjecture. For a positive integer n, we denote by

R(n) =
∏
p|n

p

the radical or square free part of n.
The abc Conjecture resulted from a discussion between D. W. Masser and

J. Œsterlé ([Œ, p. 169]; see also [Mas], as well as [La7], [La8, Chap. II, §1], [La9,
Ch. IV, §7], [Guy, B19], [Bro], [Ri2, §9.4.E], [V], [Maz4] and [Ni]).

Conjecture 2.1 (abc Conjecture). For each ε > 0 there exists a positive number
κ(ε) which has the following property : if a, b and c are three positive rational
integers which are relatively prime and satisfy a+ b = c, then

c < κ(ε)R(abc)1+ε.

Conjecture 2.1 implies a previous conjecture by L. Szpiro on the conductor of el-
liptic curves. Given any ε > 0, there exists a constant C(ε) > 0 such that, for every
elliptic curve with minimal discriminant ∆ and conductor N , |∆| < C(ε)N6+ε.

When a, b and c are three positive relatively prime integers satisfying a+ b = c,
define

λ(a, b, c) =
log c

logR(abc)
and

%(a, b, c) =
log abc

logR(abc)
.
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Here are the six largest known values for λ(abc) (in [Bro] p. 102–105 as well as
in [Ni], one can find all the 140 known values of λ(a, b, c) which are ≥ 1.4).

a+ b = c λ(a, b, c) author(s)

1 2 + 310 · 109 = 235 1.629912. . . É. Reyssat

2 112 + 325673 = 221 · 23 1.625991. . . B. de Weger

3 19 · 1307 + 7 · 292 · 318 = 28 · 322 · 54 1.623490. . . J. Browkin, J. Brzezinski

4 283 + 511 · 132 = 28 · 38 · 173 1.580756. . . J. Browkin, J. Brzezinski;
A. Nitaj

5 1 + 2 · 37 = 54 · 7 1.567887. . . B. de Weger

6 73 + 310 = 211 · 29 1.547075. . . B. de Weger

Here are the six largest known values for %(abc), according to [Ni], where one can
find the complete list of 46 known triples (a, b, c) with 0 < a < b < c, a + b = c
and gcd(a, b) = 1 satisfying %(a, b, c) > 4.

a+ b = c %(a, b, c) author(s)

1 13 · 196 + 230 · 5 = 313 · 112 · 31 4.41901. . . A. Nitaj

2 25 · 112 · 199 + 515 · 372 · 47 = 37 · 711 · 743 4.26801. . . A. Nitaj

3 219 · 13 · 103 + 711 = 311 · 53 · 112 4.24789. . . B. de Weger

4 235 · 72 · 172 · 19 + 327 · 1072 = 515 · 372 · 2311 4.23069. . . A. Nitaj

5 318 · 23 · 2269 + 173 · 29 · 318 = 210 · 52 · 715 4.22979. . . A. Nitaj

6 174 · 793 · 211 + 229 · 23 · 292 = 519 4.22960. . . A. Nitaj

As observed by M. Langevin [Lan2], a consequence of the abc Conjecture is the
solution of the following open problem [E1].

Conjecture 2.2 (Erdős–Woods). There exists a positive integer k such that, for
m and n positive integers, the conditions

R(m+ i) = R(n+ i) (i = 0, . . . , k − 1)

imply m = n.

Conjecture 2.2 is motivated by the following question raised by J. Robinson:
Is first order arithmetic definable using only the successor function S : x 7→ x + 1
and the coprimarity x ⊥ y ⇔ (x, y) = 1? It would suffice to decide whether the
function x 7→ 5x can be defined in the language (S, ⊥); see [Woo], [Guy, B29 and
B35], [BLSW].

From the abc Conjecture (or even the weaker version with “some ε < 1” rather
than “all ε > 0”), it follows that, apart from possibly finitely many exceptions
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(m, n), k = 3 is an admissible value. Indeed, assume m > n. Using the abc
Conjecture with a = m(m+ 2), b = 1, c = (m+ 1)2, we obtain

m2 ≤ κ(ε)R
(
m(m+ 1)(m+ 2)

)1+ε
.

Now if R(m+ i) = R(n+ i) for i = 0, 1, 2 then R(m+ i) divides m− n, hence the
number

R
(
m(m+ 1)(m+ 2)

)
= lcm

(
R(m), R(m+ 1), R(m+ 2)

)
divides m− n and therefore m2 ≤ κ(ε)m1+ε. This shows that m is bounded.

One suspects that there is no exception at all with k = 3. This would mean that
if m and n have the same prime divisors, m+1, n+1 have the same prime divisors
and m+ 2, n+ 2 have the same prime divisors, then m = n.

That k = 2 is not an admissible value is easily seen: 75 and 1215 have the same
prime divisors, and this is true also for 76 and 1216,

R(75) = 15 = R(1215), R(76) = 2 · 19 = R(1216).

Apart from this sporadic example, there is also a sequence of examples: for m =
2h − 2 and n = m(m+ 2) = 2hm,

R(m) = R(n) and R(m+ 1) = R(n+ 1)

because n+ 1 = (m+ 1)2.
A generalization of the Erdős–Woods Problem to arithmetic progressions has

been suggested by T. N. Shorey.

Question. Does there exist a positive integer k such that, for any non-zero integers
m, n, d and d′ satisfying gcd(m, d) = gcd(n, d′) = 1, the conditions

R(m+ id) = R(n+ id′) (i = 0, . . . , k − 1)

imply m = n and d = d′?

On the one hand, if the answer is positive, k is at least 4, as shown by several
examples of quadruples (m, n, d, d′), like (2, 2, 1, 7), (2, 8, 79, 1) or (4, 8, 23, 1):

R(2) = R(2), R(3) = R(2 + 7), R(4) = R(2 + 2 · 7),

R(2) = R(4) = R(8), R(2 + 79) = R(4 + 23) = R(9),

R(2 + 2 · 79) = R(4 + 2 · 23) = R(10).

On the other hand, under the abc Conjecture, Shorey’s question has a positive
answer for k = 5 (see [Lan3]).

Another related problem of T. S. Motzkin and E. G. Straus ([Guy, B19]) is to
determine the pairs of integers m, n such that m and n + 1 have the same prime
divisors, and also n and m + 1 have the same set of prime divisors. The known
examples are

m = 2k + 1, n = m2 − 1 (k ≥ 0)
and the sporadic example m = 35 = 5 · 7, n = 4374 = 2 · 37, which yields m+ 1 =
22 · 32 and n+ 1 = 54 · 7.

We also quote another related conjecture attributed to P. Erdős in [Lan2] and
to R. E. Dressler in [Ni].
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Conjecture 2.3 (Erdős–Dressler). If a and b are two positive integers with a < b
and R(a) = R(b) then there is a prime p with a < p < b.

The first estimates in the direction of the abc Conjecture have been achieved by
C. L. Stewart and R. Tijdeman, and then refined by C. L. Stewart and Yu Kunrui
(see [SY1], [SY2]), using (p-adic) lower bounds for linear forms in logarithms: if a,
b, c are relatively prime positive integers with a+ b = c, then

log c ≤ κR1/3(logR)3

where R = R(abc).
An explicit version was worked out by Wong Chi Ho in 1999 [Wo] following an

earlier version of [SY2]. For c > 2 the estimate

log c ≤ R(1/3)+(15/ log log R)

is valid.
Further connexions between the abc Conjecture and measures of linear indepen-

dence of logarithms of algebraic numbers have been pointed out by A. Baker [B2]
and P. Philippon [P3] (see also [W6, exercise 1.11]). We reproduce here the main
conjecture of the addendum of [P3]. For a rational number a/b with relatively
prime integers a, b, we denote by h(a/b) the number log max{|a|, |b|}.

Conjecture 2.4 (Philippon). There exist real numbers ε, α and β with 0 < ε <
1/2, α ≥ 1 and β ≥ 0, and a positive integer B, such that for any non-zero rational
numbers x, y satisfying xyB 6= 1, if S denotes the set of prime numbers for which
|xyB + 1|p < 1, then

−
∑
p∈S

log |xyB + 1|p ≤ B

(
αh(x) + εh(y) + (αB + ε)

(
β +

∑
p∈S

log p

))
.

The conclusion is a lower bound for the p-adic distance between −xyB and 1; the
main point is that several p’s are involved. Conjecture 2.4 is telling us something
about the prime decomposition of all numbers xyB+1 for some fixed but unspecified
value of B — and it implies the abc Conjecture.

Examples of optimistic Archimedean estimates related to measures of linear in-
dependence of logarithms of algebraic numbers are the Lang–Waldschmidt Con-
jectures in [La5] (introduction to Chap. X and XI, p. 212–217). Here is a simple
example.

Conjecture 2.5 (Lang–Waldschmidt). For any ε > 0, there exists a constant
C(ε) > 0 such that, for any non-zero rational integers a1, . . . , am, b1, . . . , bm with
ab1
1 · · · abm

m 6= 1,

|ab1
1 · · · abm

m − 1| ≥ C(ε)mB

(|b1| · · · |bm| · |a1| · · · |am|)1+ε
,

where B = max1≤i≤m |bi|.

Similar questions related to Diophantine approximation on tori are discussed in
[La8, Chap. IX, §7].
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Conjecture 2.5 deals with rational integers; we shall consider algebraic numbers
more generally in Section 4.3, once we have defined a notion of height.

A very sharp conjectured lower bound for infinitely many elements in a specific
sequence

|eb0ab1
1 · · · abm

m − 1|
with b0 arbitrary, and where all the exponents bi have the same sign (compare with
Conjecture 2.14) has been shown by J. Sondow in [So] to yield the irrationality of
Euler’s constant.

From either the abc Conjecture or Conjecture 2.5 one deduces a quantitative
refinement of Pillai’s Conjecture 1.3.

Conjecture 2.6. For any ε > 0, there is a constant C(ε) > 0 such that, for any
positive integers x, y, p, q satisfying xp 6= yq,

|xp − yq| ≥ C(ε)max{xp, yq}1−(1/p)−(1/q)−ε.

We consider two special cases of Conjecture 2.6: first (p, q) = (2, 3), which gives
rise to Hall’s Conjecture [H] (also [La8, Chap. II, §1]),

Conjecture 2.7 (Hall). If x and y are positive integers with y2 6= x3, then

|y2 − x3| ≥ Cmax{y2, x3}1/6.

In this statement there is no ε. On the one hand, Conjecture 2.7 may be true
by a sort of accident, but one may also expect that the estimate is too strong to be
true. On the other hand, with the exponent (1/6)− ε, the abc Conjecture provides
a lower bound not only for |y2 − x3|, but also for its radical [Lan3]: for x and y
relatively prime positive integers with y2 6= x3,

R
(
|y2 − x3|

)
≥ C(ε) max{y2, x3}(1/6)−ε.

The exponent 1/6 in Conjecture 2.7 is optimal, as has been shown by L. V. Danilov
and A. Schinzel. Indeed, using the polynomial identity

(X2 − 6X + 4)3 − (X2 + 1)(X2 − 9X + 19)2 = 27(2X − 11)

which is related to Klein’s identity for the icosahedron (cf. [Lan4, Th. 6]), they
show that there exist infinitely many pairs of positive integers (x, y) such that

0 < |y2 − x3| < 54
25
√

5
·
√
x.

The smallest known value for |y2 − x3|/
√
x (N. Elkies, 1998) is 0.0214. . . , with

x = 3 · 7 211 · 38 791 · 6 975 841, y = 2 · 32 · 15 228 748 819 · 1 633 915 978 229,

x3 − y2 = 33 · 72 · 17 · 73.

The second special case of Conjecture 2.6 we consider is (x, y) = (3, 2). The
question of how small 3n − 2m can be in comparison with 2m has been raised by
J. E. Littlewood [Guy, F23]. The example

312

219
= 1 +

7153
524288

= 1.013. . .

is related to music scales.
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For further questions dealing with exponential Diophantine equations, we refer
to Chap. 12 of the book of T. N. Shorey and R. Tijdeman [ST], as well as to the
more recent surveys [Ti3] and [Sh1].

2.2. Thue–Siegel–Roth–Schmidt. One of the main open problems in Diophan-
tine approximation is to produce an effective version of the Thue–Siegel–Roth The-
orem. For any ε > 0 and any irrational algebraic number α, there is a positive
constant C(α, ε) > 0 such that, for any rational number p/q,∣∣∣∣α− p

q

∣∣∣∣ > C(α, ε)
q2+ε

. (2.8)

In connexion with the negative answer to Hilbert’s 10th Problem by Yu. Matiyase-
vich, it has been suggested by M. Mignotte that an effective version of Schmidt’s
Subspace Theorem (which extends the Thue–Siegel–Roth Theorem to simultaneous
Diophantine approximation) may be impossible. If this turns out to be the case
also for the special case of the Thue–Siegel–Roth Theorem itself, then, according to
E. Bombieri (see [Ni]), an effective version of the abc Conjecture would also be out
of reach. M. Langevin noticed that the abc Conjecture yields a stronger inequality
than Roth’s, ∣∣∣∣α− p

q

∣∣∣∣ > C(ε)
R(pq)qε

.

So far, effective improvements are known only for Liouville’s bound, and to
improve them is already a great challenge.

Another goal would be to improve the estimate in Roth’s Theorem. In the lower
bound (2.8) one would like to replace q−2−ε by, say, q−2(log q)−1−ε. It is expected
that for any irrational real algebraic number α of degree ≥ 3, the term q−2−ε cannot
be replaced by q−2 in inequality (2.8), but the set of α for which the answer is known
is empty! This question is often asked for the special case of the number 3

√
2, but

another interesting example (due to Stanislaw Ulam — see for instance [Guy, F22])
is the real algebraic number ξ defined by

ξ =
1

ξ + y
with y =

1
1 + y

.

Essentially nothing is known about the continued fraction expansion of a real alge-
braic number of degree ≥ 3; one does not know the answer to any of the following
two questions.

Question 2.9. Does there exist a real algebraic number of degree ≥ 3 with bounded
partial quotients?

Question 2.10. Does there exist a real algebraic number of degree ≥ 3 with un-
bounded partial quotients?

It is usually expected is that the continued fraction expansion of a real algebraic
number of degree at least 3 always has unbounded partial quotients. More precisely
one expects that real algebraic numbers of degree ≥ 3 behave like “almost all” real
numbers (see Section 5.1).
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Let ψ(q) be a continuous positive real valued function. Assume that the function
qψ(q) is non-increasing. Consider the inequality∣∣∣∣θ − p

q

∣∣∣∣ > ψ(q)
q

. (2.11)

Conjecture 2.12. Let θ be real algebraic number of degree at least 3. Then in-
equality (2.11) has infinitely many solutions in integers p and q with q > 0 if and
only if ∫ ∞

1

ψ(x)dx

diverges.

A far-reaching generalization of the Thue–Siegel–Roth Theorem to simultaneous
approximation is the Schmidt Subspace Theorem. Here are two special cases.
• Given real algebraic numbers α1, . . . , αn such that 1, α1, . . . , αn are linearly

independent over Q, for any ε > 0,

max
1≤i≤n

∣∣∣∣αi −
pi

q

∣∣∣∣ < 1
q1+(1/n)+ε

has only finitely many solutions (p1, . . . , pn, q) in Zn+1 with q > 0.

• Given real algebraic numbers α1, . . . , αn such that 1, α1, . . . , αn are linearly
independent over Q, for any ε > 0,

|q1α1 + · · ·+ qnαn − p| < 1
qn+ε

has only finitely many solutions (q1, . . . , qn, p) in Zn+1 with q = max{|q1|, . . .
. . . , |qn|} > 0.
These two types of Diophantine statements are parallel to the two types of

Padé Approximants. It would be interesting to consider the analogue of Schmidt’s
Subspace Theorem in case of Padé Approximants, and also to study a corresponding
analogue of Khinchine’s transference principle [Ca].

One of the most important consequences of Schmidt’s Subspace Theorem is the
finiteness of nondegenerate solutions of the equation

x1 + · · ·+ xn = 1,

where the unknowns take integer values (or S-integer values) in a number field.
Here, non-degenerate means that no proper sub-sum vanishes. One main open
question is to prove an effective version of this result. Schmidt’s Theorem, which
is a generalization of Roth’s Theorem, is not effective. Only for n = 2 does one
know bounds for the solutions of the S-unit equation x1+x2 = 1, thanks to Baker’s
method (see [B1, Chap. 5], [La5, Chap. VI], [ST, Chap 1], [Se] and [La8]). One
would like to extend Baker’s method (or any other effective method) to the higher-
dimensional case.

A generalization of the Markoff spectrum to simultaneous approximation is not
yet available. Even the first step is missing. Given a positive integer n and real



OPEN DIOPHANTINE PROBLEMS 261

numbers (ξ1, . . . , ξn), not all of which are rational, define cn = cn(ξ1, . . . , ξn) to
be the infimum of all c in the range 0 < c ≤ 1 for which

q|qξi − pi|n < c

has infinitely many solutions. Then define the n-dimensional simultaneous Dio-
phantine approximation constant γn to be the supremum of cn over tuples (ξ1, . . .
. . . , ξn) as above. Following [Fi], here is a summary of what is known about the
first values of the approximation constants.

γ1 =
1√
5

= 0.447. . . (Hurwitz)

0.285. . . =
2
7

≤ γ2 ≤
64
169

= 0.378. . . (Cassels and Nowak)

0.120. . . =
2

5
√

11
≤ γ3 ≤

1
2(π − 2)

= 0.437. . . (Cusick and Spohn)

The question remains open as to whether there are pairs with an approximation
constant larger than 2/7 (see [Br]).

We now illustrate with Waring’s Problem the importance of proving effective
Roth-type inequalities for irrational algebraic numbers.

In 1770, a few months before J. L. Lagrange proved that every positive integer
is the sum of at most four squares of integers, E. Waring ([Wa, Chap. 5, Theo-
rem 47 (9)]) wrote:

“Every integer is a cube or the sum of two, three, . . . nine cubes;
every integer is also the square of a square, or the sum of up to
nineteen such; and so forth. Similar laws may be affirmed for the
correspondingly defined numbers of quantities of any like degree.”

See also Note 15 of the translator in [Wa].
For k ≥ 2 define g(k) as the smallest positive integer g such that any integer is

the sum of g elements of the form xk with x ≥ 0. In other terms, for each positive
integer n

n = xk
1 + · · ·+ xk

m

has a solution if m = g(k), while there is a n which is not the sum of g(k)− 1 such
k-th powers.

Lagrange’s Theorem, which solved a conjecture of Bachet and Fermat, is g(2) = 4.
Following Chap. IV of [N1], here are the values of g(k) for the first integers k, with
the name(s) of the author(s) and the date.

g(2)=4 g(3)=9 g(4)=19 g(5)=37 g(6)=73 g(7)=143

R. Balasubramanian
J. L. Lagrange A. Wieferich J-M. Deshouillers J. Chen S. S. Pillai L. E. Dickson

F. Dress

1770 1909 1986 1964 1940 1936

For each integer k ≥ 2, define

I(k) = 2k + [(3/2)k]− 2.
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It is easy to show that g(k) ≥ I(k). Indeed, write

3k = 2kq + r with 0 < r < 2k, q = [(3/2)k],

and consider the integer

N = 2kq − 1 = (q − 1)2k + (2k − 1)1k.

Since N < 3k, writing N as a sum of k-th powers can involve no term 3k, and since
N < 2kq, it involves at most (q− 1) terms 2k, all others being 1k; hence it requires
a total number of at least (q − 1) + (2k − 1) = I(k) terms.

L. E. Dickson and S. S. Pillai (see for instance [HW] or [N1, Chap. IV]) proved
independently in 1936 that g(k) = I(k), provided that r = 3k − 2kq satisfies

r ≤ 2k − q − 2.

Otherwise there is another formula for g(k).
It has been shown that the condition r ≤ 2k − q − 2 is satisfied for 3 ≤ k ≤

471 600 000, and K. Mahler proved that it is also true for any sufficiently large k.
Hence g(k) = I(k) for these values of k. The problem is that Mahler’s proof relies
on a p-adic version of the Thue–Siegel–Roth Theorem, and therefore is not effective.
So there is a gap, of which we don’t even know the size. The conjecture, dating
back to 1853, is g(k) = I(k) for any k ≥ 2, and this is true as soon as∥∥∥∥∥

(
3
2

)k
∥∥∥∥∥ ≥

(
3
4

)k

,

where ‖ · ‖ denote the distance to the nearest integer. As remarked by S. David,
such an estimate (for sufficiently large k) follows not only from Mahler’s estimate,
but also from the abc Conjecture!

In [M1] K. Mahler defined a Z-number as a non-zero real number α such that
the fractional part rn of α(3/2)n satisfies 0 ≤ rn < 1/2 for any positive integer
n. It is not known whether Z-numbers exist (see [FLP]). A related remark by
J. E. Littlewood ([Guy, E18]) is that we are not yet able to prove that the fractional
part of en does not tend to 0 as n tends to infinity (see also Conjecture 2.14 below).

A well known conjecture of Littlewood ([B1, Chap. 10, §1] and [PV]) asserts that
for any pair (x, y) of real numbers and any ε > 0, there exists a positive integer q
such that

q‖qx‖ · ‖qy‖ < ε.

According to G. Margulis (communication of G. Lachaud), the proofs in a 1988
paper by B. F. Skubenko (see MR 94d:11047) are not correct and cannot be fixed.

There are several open questions known as “view obstruction Problems”. One
of them is the following. Given n positive integers k1, . . . , kn, there exists a real
number x such that

‖kix‖ ≥
1

n+ 1
for 1 ≤ i ≤ n.

It is known that 1/(n+ 1) cannot be replaced by a larger number [CP].

http://www.ams.org/mathscinet-getitem?mr=94d:11047
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2.3. Irrationality and Linear Independence Measures. Given a real number
θ, the first Diophantine question is to decide whether θ is rational or not. This is a
qualitative question, and it is remarkable that an answer is provided by a quanti-
tative property of θ. It depends ultimately on the quality of rational Diophantine
approximations to θ. Indeed, on the one hand, if θ is rational, then there exists a
positive constant c = c(θ) such that∣∣∣∣θ − p

q

∣∣∣∣ > c

q

for any p/q ∈ Q. An admissible value for c is 1/b when θ = a/b. On the other
hand, if θ is irrational, then there are infinitely many rational numbers p/q such
that

0 <
∣∣∣∣θ − p

q

∣∣∣∣ < 1
q2
.

Hence, in order to prove that θ is irrational, it suffices to prove that for any ε > 0
there is a rational number p/q such that

0 <
∣∣∣∣θ − p

q

∣∣∣∣ < ε

q
.

This is a rather weak requirement. There are rational approximations in 1/q2, and
we need only to produce rational approximations better than the trivial ones in c/q.
Accordingly one should expect that it is rather easy to prove the irrationality of a
given real number. In spite of that, the class of “interesting” real numbers which
are known to be irrational is not as large as one would expect [KZ]. For instance
no proof of irrationality has been given so far for Euler’s constant

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · ·+ 1
n
− log n

)
= 0.577215. . . ,

nor for Catalan’s constant

G =
∑
n≥0

(−1)n

(2n+ 1)2
= 0.915965. . . , (2.13)

nor for

Γ(1/5) =
∫ ∞

0

e−tt−4/5dt = 4.590843. . .

or for numbers like

e+ π = 5.859874. . . , eγ = 1.781072. . . ,

ζ(5) = 1.036927. . . , ζ(3)/π3 = 0.038768. . .

and ∑
n≥1

σk(n)
n!

(k = 1, 2) where σk(n) =
∑
d|n

dk

(see [Guy, B14]).
Here is another irrationality question raised by P. Erdős and E. Straus in 1975

(see [E2] and [Guy, E24]). Define an irrationality sequence as an increasing sequence
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(nk)k≥1 of positive integers such that, for any sequence (tk)k≥1 of positive integers,
the real number ∑

k≥1

1
nktk

is irrational. On the one hand, it has been proved by Erdős that (22k

)k≥1 is an
irrationality sequence. On the other hand, the sequence (k!)k≥1 is not, since∑

k≥1

1
k!(k + 2)

=
1
2
.

An open question is whether an irrationality sequence must increase very rapidly.
No irrationality sequence (nk)k≥1 is known for which n

1/2k

k tends to 1 as k tends
to infinity.

Many further open irrationality questions are raised in [E2]. Another related
example is Conjecture 5.4 below.

Assume now that the first step has been completed and that we know our number
θ is irrational. Then there are (at least) two directions for further investigation.

(1) Considering several real numbers θ1, . . . , θn, a fundamental question is to
decide whether or not they are linearly independent over Q. One main example
is to start with the successive powers of one number, 1, θ, θ2, . . . , θn−1. The goal
is to decide whether θ is algebraic of degree < n. If n is not fixed, the question
is whether θ is transcendental. This question, which is relevant also for complex
numbers, will be considered in the next section. Observe also that the problem of
algebraic independence is included here. It amounts to the linear independence of
monomials.

(2) Another direction of research is to consider a quantitative refinement of the
irrationality statement, namely an irrationality measure. We wish to bound from
below the non-zero number |θ− (p/q)| when p/q is any rational number; this lower
bound will depend on θ as well as the denominator q of the rational approximation.
In case where a statement weaker than an irrationality result is known, namely if
one can prove only that at least one of n numbers θ1, . . . , θn is irrational, then a
quantitative refinement will be a lower bound (in terms of q) for

max
{∣∣∣∣θ1 − p1

q

∣∣∣∣ , . . . , ∣∣∣∣θn −
pn

q

∣∣∣∣} ,
when p1/q, . . . , pn/q are n rational numbers and q > 0 a common denominator.

On the one hand, the study of rational approximation of real numbers is achieved
in a satisfactory way for numbers whose “regular”4 continued fraction expansion is

4A “regular” continued fraction expansion[
a0 +

1

a1+

1

a2+
· · ·

]
is written [a0, a1, a2, . . . ]. A continued fraction expansion of the form[

a0 +
b1

a1+

b2

a2+
· · ·

]
is called “irregular”.
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known. This is the case for rational numbers (!), for quadratic numbers, as well as
for a small set of transcendental numbers, like

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, . . . ] = [2, {1, 2m, 1}m≥1]

e2 = [7, 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, 11, . . . ]

= [7, {3m− 1, 1, 1, 3m, 12m+ 6}m≥1]

and

e1/n = [1, n− 1, 1, 1, 3n− 1, 1, 1, 5n− 1, 1, 1, . . . ] = [{1, (2m− 1)n− 1, 1}m≥1]

for n > 1. On the other hand, even for a real number x for which an “irregular”
continued fraction expansion is known, like

log 2 =
[

1
1+

1
1+

4
1+

9
1+

· · · n
2

1+
· · ·
]

or
π

4
=
[

1
1+

9
2+

25
2+

49
2+

· · · (2n+ 1)2

2+
· · ·
]
,

one does not know how well x can be approximated by rational numbers. No regular
pattern has been observed or can be expected from the regular continued fraction
of π,

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84,

2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 6, 1, . . . ],

nor from any number ”easily” related to π.
One expects that for any ε > 0 there are constants C(ε) > 0 and C ′(ε) > 0 such

that ∣∣∣∣log 2− p

q

∣∣∣∣ > C(ε)
q2+ε

and
∣∣∣∣π − p

q

∣∣∣∣ > C ′(ε)
q2+ε

hold for any p/q ∈ Q, but this is known only with larger exponents, namely
3.8913. . . and 8.0161. . . respectively (Rukhadze and Hata). The sharpest known
exponent for an irrationality measure of

ζ(3) =
∑
n≥1

1
n3

= 1.202056. . .

is 5.513891. . . , while for π2 (or for ζ(2) = π2/6) it is 5.441243. . . (both results due
to Rhin and Viola). For a number like Γ(1/4), the existence of absolute positive
constants C and κ for which ∣∣∣∣Γ(1/4)− p

q

∣∣∣∣ > C

qκ

has been proved only recently [P4]. The similar problem for eπ is not yet solved.
In other terms there is no proof so far that eπ is not a Liouville number.

Earlier we distinguished two directions for research once we know the irrationality
of some given numbers. Either, on the qualitative side, one studies the linear
dependence relations, or else, on the quantitative side, one studies the quality of
rational approximation. One can combine both. A quantitative version of a result
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of Q-linear independence of n real numbers θ1, . . . , θn, is a lower bound, in terms
of max{|p1|, . . . , |pn|}, for ∣∣p1θ1 + · · ·+ pnθn

∣∣
when (p1, . . . , pn) is in Zn \ {0}.

For specific classes of transcendental numbers, A. I. Galochkin [G], A. N. Ko-
robov (Th. 1.22 of [FN, Chap. 1, §7]) and more recently P. Ivankov proved extremely
sharp measures of linear independence (see [FN, Chap. 2, §6.2 and §6.3]).

A general and important problem is to improve the known measures of linear
independence for logarithms of algebraic numbers, as well as elliptic logarithms,
Abelian logarithms, and more generally logarithms of algebraic points on com-
mutative algebraic groups. For instance the conjecture that eπ is not a Liouville
number should follow from improvements of known linear independence measures
for logarithms of algebraic numbers.

The next step, which is to obtain sharp measures of algebraic independence for
transcendental numbers, will be considered later (see Sections 4.2 and 4.3).

The so-called Mahler Problem (see [W8, §4.1]) is related to linear combination
of logarithms |b− log a|.

Conjecture 2.14 (Mahler). There exists an absolute constant c > 0 such that

‖ log a‖ > a−c

for all integers a ≥ 2.

Equivalently,
|a− eb| > a−c

for some absolute constant c > 0 for all integers a, b > 1.
A stronger conjecture is suggested in [W8] (4.1),

‖ log a‖ > (log a)−c

for some absolute constant c > 0 for all integers a ≥ 3, or equivalently

|a− eb| > b−c

for some absolute constant c > 0 for all integers a, b > 1. So far the best known
estimate is

|a− eb| > e−c(log a)(log b),

so the problem is to replace the product (log a)(log b) in the exponent by the sum
log a+ log b.

Such explicit lower bounds have interest in theoretical computer science [MT].
Another topic which belongs to Diophantine approximation is the theory of

equidistributed sequences. For a positive integer r ≥ 2, a normal number in base
r is a real number such that the sequence (xrn)n≥1 is equidistributed modulo 1.
Almost all real numbers for Lebesgue measure are normal (i. e., normal in basis r
for any r > 1), but it is not known whether any irrational real algebraic number is
normal to any integer basis, and it is also not known whether there is an integer r
for which any number like e, π, ζ(3), Γ(1/4), γ, G, e + π, eγ is normal in basis r
(see [Ra]). Further studies by D. H. Bailey and M. E. Crandall have recently been
advanced by J. C. Lagarias in [L].
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The digits of the expansion (in any basis ≥ 2) of an irrational, real, algebraic
number should be equidistributed— in particular any digit should appear infinitely
often. But even the following special case is unknown.

Conjecture 2.15 (Mahler). Let (εn)n≥0 be a sequence of elements in {0, 1}. As-
sume that the real number ∑

n≥0

εn3−n

is irrational, then it is transcendental.

3. Transcendence

When K is a field and k a subfield, we denote by trdegk K the transcendence
degree of the extension K/k. In the case k = Q we write simply trdegK (see [La9,
Chap. VIII, §1]).

3.1. Schanuel’s Conjecture. We concentrate here on problems related to tran-
scendental number theory. To start with, we consider the classical exponential
function ez = exp(z). A recent reference on this topic is [W6].

Schanuel’s Conjecture is a simple but far-reaching statement —see the historical
note to Chap. III of [La1].

Conjecture 3.1 (Schanuel). Let x1, . . . , xn be Q-linearly independent complex
numbers. Then the transcendence degree over Q of the field Q

(
x1, . . . , xn, e

x1 , . . .

. . . , exn
)

is at least n.

According to S. Lang ([La1, p. 31]): “From this statement, one would obtain
most statements about algebraic independence of values of et and log t which one
feels to be true”. See also [La2, p. 638–639] and [Ri2, §10.7.G]. For instance the
following statements [Ge1] are consequences of Conjecture 3.1.

Question. Let β1, . . . , βn be Q-linearly independent algebraic numbers and let
logα1, . . . , logαm be Q-linearly independent logarithms of algebraic numbers. Then
the numbers

eβ1 , . . . , eβn , logα1, . . . , logαm

are algebraically independent over Q.

Question. Let β1, . . . , βn be algebraic numbers with β1 6= 0 and let logα1, . . .
. . . , logαm be logarithms of algebraic numbers with logα1 6= 0 and logα2 6= 0.
Then the numbers

eβ1eβ2e
..

.βn−1eβn

and α
α

..
.αm

2
1

are transcendental, and there is no nontrivial algebraic relation between such num-
bers.

A quantitative refinement of Conjecture 3.1 is suggested in [W4, Conjecture 1.4].
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A quite interesting approach to Schanuel’s Conjecture is given in [Ro5] where
D. Roy states the next conjecture which he shows to be equivalent to Schanuel’s
one. Let D denote the derivation

D =
∂

∂X0
+X1

∂

∂X1

over the ring C[X0, X1]. The height of a polynomial P ∈ C[X0, X1] is defined as
the maximum of the absolute values of its coefficients.

Conjecture 3.2 (Roy). Let k be a positive integer, y1, . . . , yk complex numbers
which are linearly independent over Q, α1, . . . , αk non-zero complex numbers and
s0, s1, t0, t1, u positive real numbers satisfying

max{1, t0, 2t1} < min{s0, 2s1} and max{s0, s1 + t1} < u <
1
2
(1 + t0 + t1).

Assume that, for any sufficiently large positive integer N , there exists a non-zero
polynomial PN ∈ Z[X0, X1] with partial degree ≤ N t0 in X0, partial degree ≤ N t1

in X1 and height ≤ eN which satisfies∣∣∣∣∣(DkPN )

(
k∑

j=1

mjyj ,

k∏
j=1

α
mj

j

)∣∣∣∣∣ ≤ exp(−Nu)

for any non-negative integers k, m1, . . . , mk with k≤Ns0 and max{m1, . . . , mk} ≤
Ns1 . Then

trdeg Q(y1, . . . , yk, α1, . . . , αk) ≥ k.

This work of Roy’s also provides an interesting connexion with other open prob-
lems related to the Schwarz Lemma for complex functions of several variables (see
[Ro8, Conjectures 6.1 and 6.3]).

The most important special case of Schanuel’s Conjecture is the Conjecture of
algebraic independence of logarithms of algebraic numbers.

Conjecture 3.3 (Algebraic Independence of Logarithms of Algebraic Numbers).
Let λ1, . . . , λn be Q-linearly independent complex numbers. Assume that the num-
bers eλ1 , . . . , eλn are algebraic. Then the numbers λ1, . . . , λn are algebraically
independent over Q.

An interesting reformulation of Conjecture 3.3 is due to D. Roy [Ro4]. Denote
by L the set of complex numbers λ for which eλ is algebraic. Hence L is a Q-vector
subspace of C. Roy’s statement is:

Conjecture. For any algebraic subvariety V of Cn defined over the field Q of
algebraic numbers, the set V ∩ Ln is the union of the sets E ∩ Ln, where E ranges
over the set of vector subspaces of Cn which are contained in V .

Such a statement is reminiscent of several of Lang’s conjectures in Diophantine
geometry (e. g., [La8, Chap. I, §6, Conjectures 6.1 and 6.3]).

Not much is known about the algebraic independence of logarithms of algebraic
numbers, apart from the work of D. Roy on the rank of matrices whose entries
are either logarithms of algebraic numbers, or more generally linear combinations
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of logarithms of algebraic numbers. We refer to [W6] for a detailed study of this
question as well as related ones.

Conjecture 3.3 has many consequences. The next three ones are suggested by the
work of D. Roy ([Ro1] and [Ro2]) on matrices whose entries are linear combinations
of logarithms of algebraic numbers (see also [W6, Conjecture 11.17, §12.4.3 and
Exercise 12.12]).

Consider the Q-vector space L̃ spanned by 1 and L. In other words L̃ is the set
of complex numbers which can be written

β0 + β1 logα1 + · · ·+ βn logαn,

where β0, β1, . . . , βn are algebraic numbers, α1, . . . , αn are non-zero algebraic
numbers, and finally logα1, . . . , logαn are logarithms of α1, . . . , αn respectively.

Conjecture 3.4 (Strong Four Exponentials Conjecture). Let x1, x2 be two Q-
linearly independent complex numbers and y1, y2 be also two Q-linearly independent
complex numbers. Then at least one of the four numbers x1y1, x1y2, x2y1, x2y2
does not belong to L̃.

The following special case is also open.

Conjecture 3.5 (Strong Five Exponentials Conjecture). Let x1, x2 be two Q-
linearly independent complex numbers, and y1, y2 be also two Q-linearly independent
complex numbers. Further, let βij (i = 1, 2, j = 1, 2), γ1 and γ2 be six algebraic
numbers with γ1 6= 0. Assume that the five numbers

ex1y1−β11 , ex1y2−β12 , ex2y1−β21 , ex2y2−β22 , e(γ1x1/x2)−γ2

are algebraic. Then all five exponents vanish,

xiyj = βij (i = 1, 2, j = 1, 2) and γ1x1 = γ2x2.

A consequence of Conjecture 3.5 is the solution of the open problem of the
transcendence of the number eπ2

, and more generally of αlog α = eλ2
when α is a

non-zero algebraic number and λ = logα a non-zero logarithm of α.
The next conjecture is proposed in [Ro4].

Conjecture 3.6 (Roy). For any 4× 4 skew-symmetric matrix M with entries in L
and rank ≤ 2, either the rows of M are linearly dependent over Q, or the column
space of M contains a non-zero element of Q4.

Finally, a special case of Conjecture 3.6 is the well known Four Exponentials
Conjecture due to Schneider ([Schn, Chap. V, end of §4, Problem 1]), S. Lang
([La1, Chap. II, §1], [La2, p. 638]) and K. Ramachandra ([R, II, §4]).

Conjecture 3.7 (Four Exponentials Conjecture). Let x1, x2 be two Q-linearly
independent complex numbers and y1, y2 also be two Q-linearly independent complex
numbers. Then at least one of the four numbers

exp(xiyj) (i = 1, 2, j = 1, 2)

is transcendental.
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The four exponentials Conjecture can be stated as follows: consider a 2 × 2
matrix whose entries are logarithms of algebraic numbers,

M =
(

logα11 logα12

logα21 logα22

)
;

assume that the two rows of this matrix are linearly independent over Q (in C2),
and also that the two columns are linearly independent over Q; then the rank of this
matrix is 2.

We refer to [W6] for a detailed discussion of this topic, including the notion of
structural rank of a matrix and the result, due to D. Roy, that Conjecture 3.3 is
equivalent to a conjecture on the rank of matrices whose entries are logarithms of
algebraic numbers.

A classical problem on algebraic independence of algebraic powers of algebraic
numbers has been raised by A. O. Gelfond [Ge2] and Th. Schneider [Schn, Chap. V,
end of §4, Problem 7]. The data are an irrational algebraic number β of degree d,
and a non-zero algebraic number α with a non-zero logarithm logα. We write αz

in place of exp{z logα}. Gelfond’s problem is

Conjecture 3.8 (Gelfond). The two numbers

logα and αβ

are algebraically independent over Q.

Schneider’s question is

Conjecture 3.9 (Schneider). The d− 1 numbers

αβ , αβ2
, . . . , αβd−1

are algebraically independent over Q.

The first partial results towards a proof of Conjecture 3.9 are due to A. O. Gel-
fond [Ge3]. For the more recent ones, see [NP, Chap. 13 and 14].

Combining both questions 3.8 and 3.9 yields a stronger conjecture.

Conjecture 3.10 (Gelfond–Schneider). The d numbers

logα, αβ , αβ2
, . . . , αβd−1

are algebraically independent over Q.

Partial results are known. They deal, more generally, with the values of the
usual exponential function at products xiyj , when x1, . . . , xd and y1, . . . , y` are
Q-linearly independent complex (or p-adic) numbers. The six exponentials Theorem
states that, in these circumstances, the d` numbers exiyj (1 ≤ i ≤ d, 1 ≤ j ≤ `)
cannot all be algebraic if d` > d + `. Assuming stronger conditions on d and `,
namely d` ≥ 2(d+ `), one deduces that two at least of these d` numbers exiyj are
algebraically independent over Q. Other results are available involving, in addition
to exiyj , either the numbers x1, . . . , xd themselves, or y1, . . . , y`, or both. But an
interesting point is that, if we wish to obtain a higher transcendence degree, say to
obtain that three at least of the numbers exiyj are algebraically independent over Q,
one needs a further assumption, which is a measure of linear independence over Q
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for the tuple x1, . . . , xd as well as for the tuple y1, . . . , y`. To remove this so-called
technical hypothesis does not seem to be an easy challenge (see [NP, Chap. 14, §2.2
and §2.3]).

The need for such a technical hypothesis seems to be connected with the fact
that the actual transcendence methods produce not only a qualititative statement
(lower bound for the transcendence degree), but also quantitative statements (tran-
scendence measures and measures of algebraic independence).

Several complex results have not yet been established in the ultrametric situation.
Two noticeable instances are

Conjecture 3.11 (p-adic analogue of Lindemann–Weierstrass’s Theorem). Let
β1, . . . , βn be p-adic algebraic numbers in the domain of convergence of the p-
adic exponential function expp. Then the n numbers expp β1, . . . , expp βn are al-
gebraically independent over Q.

Conjecture 3.12 (p-adic analogue of an algebraic independence result of Gelfond).
Let α be a non-zero algebraic number in the domain of convergence of the p-adic
logarithm logp, and let β be a p-adic cubic algebraic number, such that β logp α is
in the domain of convergence of the p-adic exponential function expp. Then

αβ = expp(β logp α) and αβ2
= expp(β

2 logp α)

are algebraically independent over Q.

The p-adic analogue of Conjecture 3.3 would solve Leopoldt’s Conjecture on the
p-adic rank of the units of an algebraic number field [Le] (see also [N2] and [Gra]),
by proving the nonvanishing of the p-adic regulator.

Algebraic independence results for the values of the exponential function (or
more generally for analytic subgroups of algebraic groups) in several variables have
already been established, but they are not yet satisfactory. The conjectures stated
in [W2, p. 292–293] as well as those of [NP, Chap. 14, §2] are not yet proved.
One of the main obstacles is the above-mentioned open problem with the technical
hypothesis.

The problem of extending the Lindemann–Weierstrass Theorem to commutative
algebraic groups is not yet completely solved (see conjectures by P. Philippon in
[P1]).

Algebraic independence proofs use elimination theory. Several methods are avail-
able; one of them, developed by Masser, Wüstholz and Brownawell, relies on the
Hilbert Nulstellensatz. In this context we quote the following conjecture of Blum,
Cucker, Shub and Smale (see [Sm] and [NP, Chap. 16, §6.2]), related to the open
problem “P = NP ?” [J].

Conjecture 3.13 (Blum, Cucker, Shub and Smale). Given an absolute constant c
and polynomials P1, . . . , Pm with a total of N coefficients and no common complex
zeros, there is no program to find, in at most N c step, the coefficients of polynomials
Ai satisfying Bézout’s relation,

A1P1 + · · ·+AmPm = 1.
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In connexion with complexity in theoretical computer science, W. D. Brownawell
suggests investigating Diophantine approximation from a new point of view in [NP,
Chap. 16, §6.3].

Complexity theory may be related to a question raised by M. Kontsevich and
D. Zagier in [KZ]. They defined a period as a complex number whose real and
imaginary part are values of absolutely convergent integrals of rational functions
with rational coefficients over domains of Rn given by polynomial (in)equalities with
rational coefficients. Problem 3 in [KZ] is to produce at least one number which is
not a period. This is the analogue for periods of Liouville’s Theorem for algebraic
numbers. A more difficult question is to prove that specific numbers like

e, 1/π, γ

(where γ is Euler’s constant) are not periods. Since every algebraic number is a
period, a number which is not a period is transcendental.

Another important tool missing for transcendence proofs in higher dimension is
a Schwarz Lemma in several variables. The following conjecture is suggested in
[W1, §5]. For a finite subset Σ of Cn and a positive integer t, denote by ωt(Σ) the
least total degree of a non-zero polynomial P in C[z1, . . . , zn] which vanishes on Σ
with multiplicity at least t,(

∂

∂z1

)τ1

· · ·
(

∂

∂zn

)τn

P (z) = 0,

for any z ∈ Σ and τ = (τ1, . . . , τn) ∈ Nn with τ1 + · · · + τn < t. Further, when
f is an analytic function in an open neighborhood of a closed polydisc |zi| ≤ r
(1 ≤ i ≤ n) in Cn, denote by Θf (r) the average mass of the set of zeroes of f in
that polydisc (see [BL]).

Conjecture 3.14. Let Σ be a finite subset of Cn, and ε be a positive number.
There exists a positive number r0(Σ, ε) such that, for any positive integer t and
any entire function f in Cn which vanishes on Σ with multiplicity ≥ t,

Θf (r) ≥ ωt(Σ)− tε for r ≥ r0(Σ, ε).

The next question is to compute r0(Σ, ε). One may expect that for Σ a chunk
of a finitely generated subgroup of Cn, say

Σ =
{
s1y1 + · · ·+ s`y` : (s1, . . . , s`) ∈ Z`, |sj | ≤ S (1 ≤ j ≤ `)

}
⊂ Cn,

an admissible value for the number r0(Σ, ε) will depend only on ε, y1, . . . , y`, but
not on S. This would have interesting applications, especially in the special case
` = n+ 1.

Finally we refer to [Chu] for a connexion between the numbers ωt(S) and Na-
gata’s work on Hilbert’s 14th Problem.

3.2. Multiple Zeta Values. Many recent papers (see for instance [C]) are de-
voted to the study of algebraic relations among “multiple zeta values”,∑

n1>···>nk≥1

n−s1
1 · · ·n−sk

k ,
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where (s1, . . . , sk) is a k-tuple of positive integers with s1 ≥ 2. The main Diophan-
tine conjecture, suggested by the work of D. Zagier, A. B. Goncharov, M. Kontse-
vich, M. Petitot, Minh Hoang Ngoc, K. Ihara, M. Kaneko and others (see [Z], [C]
and [Zu]), is that all such relations can be deduced from the linear and quadratic
ones arising in the shuffle and stuffle products (including the relations arising from
the study of divergent series — see [W7] for instance). For p ≥ 2, let Zp denote the
Q-vector subspace of R spanned by the real numbers ζ(s) satisfying s = (s1, . . . , sk)
and s1 + · · ·+ sk = p. Set Z0 = Q and Z1 = {0}. Then the Q-subspace Z spanned
by all Zp, p ≥ 0, is a subalgebra of R, and part of the Diophantine conjecture states

Conjecture 3.15 (Goncharov). As a Q-algebra, Z is the direct sum of Zp for p ≥ 0.

In other terms, all algebraic relations should be consequences of homogeneous
ones, involving values ζ(s) with different s but with the same weight s1 + · · ·+ sk.

Assuming conjecture 3.15, the question of algebraic independence of the num-
bers ζ(s) is reduced to the question of linear independence of the same numbers.
The conjectural situation is described by the next conjecture of Zagier [Z] on the
dimension dp of the Q-vector space Zp.

Conjecture 3.16 (Zagier). For p ≥ 3,

dp = dp−2 + dp−3,

with d0 = 1, d1 = 0, d2 = 1.

That the actual dimensions of the spaces Zp are bounded above by the integers
which are defined inductively in Conjecture 3.16 has been proved by T. Terasoma
in [T], who expresses multiple zeta values as periods of relative cohomologies and
uses mixed Tate Hodge structures (see also the work of A. G. Goncharov referred
to in [T]). Further work on Conjectures 3.15 and 3.16 is due to J. Écalle. In case
k = 1 (values of the Riemann zeta function) the conjecture is

Conjecture 3.17. The numbers π, ζ(3), ζ(5), . . . , ζ(2n+ 1), . . . are algebraically
independent over Q.

So far the only known results on this topic [Fis] are:

• ζ(2n) is transcendental for n≥1 (because π is transcendental and ζ(2n)π−2n∈Q),

• ζ(3) is irrational (Apéry, 1978),

and

• For any ε > 0 the Q-vector space spanned by the n + 1 numbers 1, ζ(3),
ζ(5), . . . , ζ(2n+ 1) has dimension

≥ 1− ε

1 + log 2
log n

for n ≥ n0(ε) (see [Riv] and [BR]). For instance infinitely many of these numbers
ζ(2n+ 1) (n ≥ 1) are irrational. W. Zudilin proved that at least one of the four
numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational.
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Further, more recent results are due to T. Rivoal and W. Zudilin. For instance,
in a joint paper they have proved that infinitely many numbers among∑

n≥1

(−1)n

(2n+ 1)2s
(s ∈ Z, s ≥ 1)

are irrational, but, as pointed out earlier, the irrationality of Catalan’s constant
G— see (2.13) — is still an open problem.

It may turn out to be more efficient to work with a larger set of numbers,
including special values of multiple polylogarithms,∑

n1>···>nk≥1

zn1
1 · · · znk

k

ns1
1 · · ·nsk

k

.

An interesting set of points z = (z1, . . . , zk) to consider is the set of k-tuples
consisting of roots of unity. The function of a single variable,

Lis(z) =
∑

n1>···>nk≥1

zn1

ns1
1 · · ·nsk

k

,

is worth of study from a Diophantine point of view. For instance, Catalan’s constant
mentioned above is the imaginary part of Li2(i),

Li2(i) =
∑
n≥1

in

n2
= −1

8
ζ(2) + iG.

Also no proof for the irrationality of the numbers

ζ(4, 2) =
∑

n>k≥1

1
n4k2

= ζ(3)2 − 4π6

2835
,

Li2(1/2) =
∑
n≥1

1
n22n

=
π2

12
− 1

2
(log 2)2

and

Li2,1(1/2) =
∑

n≥k≥1

1
2nn2k

= ζ(3)− 1
12
π2 log 2,(Ramanujan)

is known so far.
According to P. Bundschuh [Bun], the transcendence of the numbers

∞∑
n=2

1
ns − 1

for even s ≥ 4 is a consequence of Schanuel’s Conjecture 3.1. For s = 2 the sum
is 3/4, and for s = 4 the value is (7/8) − (π/4) cothπ, which is a transcendental
number since π and eπ are algebraically independent over Q (Yu. V. Nesterenko
[NP]).

Nothing is known about the arithmetic nature of the values of the Riemann zeta
function at rational or algebraic points which are not integers.
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3.3. Gamma, Elliptic, Modular, G and E-Functions. On the one hand, the
transcendence problem of the values of the Euler beta function at rational points
was solved as early as 1940, by Th. Schneider. For any rational numbers a and b
which are not integers and such that a+ b is not an integer, the number

В(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

is transcendental. On the other hand, transcendence results for the values of the
gamma function itself are not so precise: apart from G. V. Chudnovsky’s results,
which imply the transcendence of Γ(1/3) and Γ(1/4) (and Lindemann’s result on
the transcendence of π which implies that Γ(1/2) =

√
π is also transcendental),

not much is known. For instance, as we said earlier, there is no proof so far that
Γ(1/5) is transcendental. This is because the Fermat curve of exponent 5, viz.
x5 + y5 = 1, has genus 2. Its Jacobian is an Abelian surface, and the algebraic
independence results known for elliptic curves like x3 + y3 = 1 and x4 + y4 = 1
which were sufficient for dealing with Γ(1/3) and Γ(1/4), are not yet known for
Abelian varieties (see [Grin]).

One might expect that Nesterenko’s results (see [NP, Chap. 3]) on the algebraic
independence of π, Γ(1/4), eπ and of π, Γ(1/3), eπ

√
3 should be extended as follows.

Conjecture 3.18. At least three of the four numbers

π, Γ(1/5), Γ(2/5), eπ
√

5

are algebraically independent over Q.

So the challenge is to extend Nesterenko’s results on modular functions in one
variable (and elliptic curves) to several variables (and Abelian varieties).

This may be one of the easiest questions to answer on this topic (but it is still
open). But one may ask for a general statement which would produce all algebraic
relations between gamma values at rational points. Here is a conjecture of Rohrlich
[La4]. Define

G(z) =
1√
2π

Γ(z).

According to the multiplication theorem of Gauss and Legendre [WW, §12.15], for
each positive integer N and for each complex number x such that Nx 6≡ 0 (mod Z),

N−1∏
i=0

G

(
x+

i

N

)
= N (1/2)−NxG(Nx).

The gamma function has no zero and defines a map from C \Z to C×. We restrict
that function to Q \ Z and we compose it with the canonical map C× → C×/Q×

which amounts to considering its values modulo the algebraic numbers. The com-
posite map has period 1, and the resulting mapping,

G :
Q
Z
\ {0} → C×

Q× ,
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is an odd distribution on (Q/Z) \ {0},
N−1∏
i=0

G

(
x+

i

N

)
= G(Nx) for x ∈ Q

Z
\ {0} and G(−x) = G(x)−1.

Rohrlich’s Conjecture ([La4], [La6, Chap. II, Appendix, p. 66]) asserts that

Conjecture 3.19 (Rohrlich). G is a universal odd distribution with values in
groups where multiplication by 2 is invertible.

In other terms, any multiplicative relation between gamma values at rational
points

πb/2
∏
a∈Q

Γ(a)ma ∈ Q

with b and ma in Z can be derived for the standard relations satisfied by the gamma
function. This leads to the question whether the distribution relations, the oddness
relation and the functional equations of the gamma function generate the ideal over
Q of all algebraic relations among the values of G(x) for x ∈ Q.

In [NP] (Chap. 3, §1, Conjecture 1.11) Yu. V. Nesterenko proposed another
conjectural extension of his algebraic independence result on Eisenstein series of
weight 2, 4 and 6:

P (q) = 1− 24
∞∑

n=1

nqn

1− qn
= 1− 24

∞∑
n=1

σ1(n)qn,

Q(q) = 1 + 240
∞∑

n=1

n3qn

1− qn
= 1 + 240

∞∑
n=1

σ3(n)qn,

R(q) = 1− 504
∞∑

n=1

n5qn

1− qn
= 1− 504

∞∑
n=1

σ5(n)qn.

Conjecture 3.20 (Nesterenko). Let τ ∈ C have positive imaginary part. Assume
that τ is not quadratic. Set q = e2iπτ . Then at least 4 of the 5 numbers

τ, q, P (q), Q(q), R(q)

are algebraically independent.

Finally we remark that essentially nothing is known about the arithmetic nature
of the values of either the beta or the gamma function at algebraic irrational points.

A wide range of open problems in transcendental number theory, including not
only Schanuel’s Conjecture 3.1 and Rohrlich’s Conjecture 3.19 on the values of
the gamma function, but also a conjecture of Grothendieck on the periods of an
algebraic variety (see [La1, Chap. IV, Historical Note], [La2, p. 650], [A1, p. 6]
and [Ch, §3]), are special cases of very general conjectures due to Y. André [A2],
which deal with periods of mixed motives. A discussion of André’s conjectures for
certain 1-motives related to the products of elliptic curves and their connexions
with elliptic and modular functions is given in [Ber]. Here is a special case of the
elliptico-toric Conjecture in [Ber].
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Conjecture 3.21 (Bertolin). Let E1, . . . , En be pairwise non isogeneous elliptic
curves with modular invariants j(Eh). For h = 1, . . . , n, let ω1h, ω2h be a pair
of fundamental periods of ℘h where η1h, η2h are the associated quasi-periods, Pih

points on Eh(C) and pih (resp. dih) elliptic integrals of the first (resp. second) kind
associated to Pih. Define κh = [kh : Q] and let dh be the dimension of the kh-
subspace of C/(khω1h + khω2h) spanned by p1h, . . . , prhh. Then the transcendence
degree of the field

Q
({
j(Eh), ω1h, ω2h, η1h, η2h, Pih, pih, dih

}
1≤i≤rh
1≤h≤n

)
is at least

2
n∑

h=1

dh + 4
n∑

h=1

κ−1
h − n+ 1.

A new approach to Grothendieck’s Conjecture via Siegel’s G-functions was in-
troduced in [A1, Chap. IX]. A development of this method led Y. André to his
conjecture on the special points on Shimura varieties [A1, Chap. X, §4], which gave
rise to the André–Oort Conjecture [O] (for a discussion of this topic, including a
precise definition of “Hodge type”, together with relevant references, see [Co]).

Conjecture 3.22 (André–Oort). Let Ag(C) denote the moduli space of principally
polarized complex Abelian varieties of dimension g. Let Z be an irreducible algebraic
subvariety of Ag(C) such that the complex multiplication points on Z are dense for
the Zariski topology. Then Z is a subvariety of Ag(C) of Hodge type.

Conjecture 3.22 is a far-reaching generalization of Schneider’s Theorem on the
transcendence of j(τ), where j is the modular invariant and τ an algebraic point in
the Poincaré upper half plane H, which is not imaginary quadratic ([Schn, Chap. II,
§4, Th. 17]). We also mention a related conjecture of D. Bertrand (see [NP, Chap. 1,
§4, Conjecture 4.3]) which may be viewed as a nonholomorphic analogue of Schnei-
der’s result and which would answer the following question raised by N. Katz.

Question. Assume that a lattice L = Zω1 + Zω2 in C has algebraic invariants
g2(L) and g3(L) and no complex multiplication. Does this implies that the number

G∗2(L) = lim
s→0

∑
ω∈L\{0}

ω−2|ω|−s

is transcendental?

Many open transcendence problems dealing with elliptic functions are conse-
quences of André’s conjectures (see [Ber]), most of which are likely to be very hard.
The next one, which is still open, may be easier, since a number of partial results
are already known, as a result of the work of G. V. Chudnovsky and others (see
[Grin]).

Conjecture 3.23. Given an elliptic curve with Weierstrass equation y2 = 4x3 −
g2x−g3, a non-zero period ω, the associated quasi-period η of the zeta function and
a complex number u which is not a pole of ℘,

trdeg Q
(
g2, g3, π/ω, ℘(u), ζ(u)− (η/ω)u

)
≥ 2.



278 M. WALDSCHMIDT

Given a lattice L = Zω1 + Zω2 in C with invariants g2(L) and g3(L), denote by
ηi = ζL(z + ωi) − ζL(z) (i = 1, 2) the corresponding fundamental quasi-periods
of the Weierstrass zeta function. Conjecture 3.23 implies that the transcendence
degree over Q of the field Q

(
g2(L), g3(L), ω1, ω2, η1, η2

)
is at least 2.This would

be optimal in the CM case, while in the non CM case, we expect it to be ≥ 4.
These lower bounds are given by the period conjecture of Grothendieck applied to
an elliptic curve.

According to [Di2, Conjectures 1 and 2, p. 187], the following special case of
Conjecture 3.23 can be stated in two equivalent ways: either in terms of values of
elliptic functions, or in terms of values of Eisenstein series E2, E4 and E6 (which
are P , Q and R in Ramanujan’s notation).

Conjecture. For any lattice L in C without complex multiplication and for any
non-zero period ω of L,

trdeg Q
(
g2(L), g3(L), ω/

√
π, η/

√
π
)
≥ 2.

Conjecture. For any τ ∈ H which is not imaginary quadratic,

trdeg Q
(
πE2(τ), π2E4(τ), π3E6(τ)

)
≥ 2.

Moreover, each of these two statements implies the following one, which is stronger
than one of Lang’s conjectures ([La2, p. 652]).

Conjecture. For any τ ∈ H which is not imaginary quadratic,

trdeg Q
(
j(τ), j′(τ), j′′(τ)

)
≥ 2.

Further related open problems are proposed by G. Diaz in [Di1] and [Di2], in
connexion with conjectures due to D. Bertrand on the values of the modular function
J(q), where j(τ) = J(e2iπτ ) (see [Bert2] as well as [NP, Chap. 1, §4 and Chap. 2,
§4]).

Conjecture 3.24 (Bertrand). Let q1, . . . , qn be non-zero algebraic numbers in the
unit open disc such that the 3n numbers

J(qi), DJ(qi), D2J(qi) (i = 1, . . . , n)

are algebraically dependent over Q. Then there exist two indices i 6= j (1 ≤ i ≤ n,
1 ≤ j ≤ n) such that qi and qj are multiplicatively dependent.

Conjecture 3.25 (Bertrand). Let q1 and q2 be two non-zero algebraic numbers in
the unit open disc. Suppose that there is an irreducible element P ∈ Q[X, Y ] such
that

P
(
J(q1), J(q2)

)
= 0.

Then there exist a constant c and a positive integer s such that P = cΦs, where
Φs is the modular polynomial of level s. Moreover q1 and q2 are multiplicatively
dependent.

Among Siegel’s G-functions are the algebraic functions. Transcendence methods
produce some information, in particular in connexion with Hilbert’s Irreducibility
Theorem. Let f ∈ Z[X, Y ] be a polynomial which is irreducible in Q(X)[Y ]. Ac-
cording to Hilbert’s Irreducibility Theorem, the set of positive integers n such that
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P (n, Y ) is irreducible in Q[Y ] is infinite. Effective upper bounds for an admissible
value for n have been studied (especially by M. Fried, P. Dèbes and U. Zannier),
but do not yet answer the next question.

Question 3.26. Is there such a bound depending polynomially on the degree and
height of P?

Such questions are also related to the Galois inverse Problem [Se].
Also the polylogarithms

Lis(z) =
∑
n≥1

zm

ns
,

where s is a positive integer, are G-functions; unfortunately no way has yet been
found to use the Siegel–Shidlovskii method to prove the irrationality of the values
of the Riemann zeta function ([FN, Chap. 5, §7, p. 247]).

With G-functions, the other class of analytic functions introduced by C. L. Siegel
in 1929 is the class of E-functions, which includes the hypergeometric ones. One
main open question is the arithmetic nature of the values at algebraic points of
hypergeometric functions with algebraic parameters,

2F1

(
α, β
γ

∣∣∣z) =
∑
n≥0

(α)n(β)n

(γ)n
· z

n

n!
,

defined for |z| < 1 and γ 6∈ {0, −1, −2, . . . }.
In 1949, C. L. Siegel ([Si2, Chap. 2, §9, p. 54 and 58]; see also [FS, p. 62] and

[FN, Chap. 5, §1.2]) asked whether any E-function satisfying a linear differential
equation with coefficients in C(z) can be expressed as a polynomial in z and a finite
number of hypergeometric E-functions or functions obtained from them by a change
of variables of the form z 7→ γz with algebraic γ’s?

Finally, we quote from [W4]: a folklore conjecture is that the zeroes of the
Riemann zeta function (say their imaginary parts, assuming it > 0) are algebraically
independent. As suggested by J-P. Serre, one might also be tempted to consider
• The eigenvalues of the zeroes of the hyperbolic Laplacian in the upper half plane

modulo SL2(Z) (i. e., to study the algebraic independence of the zeroes of the
Selberg zeta function).

• The eigenvalues of the Hecke operators acting on the corresponding eigenfunc-
tions (Maass forms).

3.4. Fibonacci and Miscellanea. Many further open problems arise in tran-
scendental number theory. An intriguing question is to study the arithmetic nature
of real numbers given in terms of power series involving the Fibonacci sequence

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1.

Several results are due to P. Erdős, R. André-Jeannin, C. Badea, J. Sándor, P. Bund-
schuh, A. Pethő, P. G. Becker, T. Töpfer, D. Duverney, Ku. et Ke. Nishioka, I. Sh-
iokawa and T. Tanaka. It is known that the number

∞∑
n=1

1
FnFn+2

= 1
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is rational, while
∞∑

n=0

1
F2n

=
7−

√
5

2
,

∞∑
n=1

(−1)n

FnFn+1
=

1−
√

5
2

and
∞∑

n=1

1
F2n−1 + 1

=
√

5
2

are irrational algebraic numbers. Each of the numbers
∞∑

n=1

1
Fn

,
∞∑

n=1

1
Fn + Fn+2

and
∑
n≥1

1
F1F2 · · ·Fn

is irrational, but it is not known whether they are algebraic or transcendental. The
numbers

∞∑
n=1

1
F2n−1

,
∞∑

n=1

1
F 2

n

,
∞∑

n=1

(−1)n

F 2
n

,

∞∑
n=1

n

F2n
,

∞∑
n=1

1
F2n−1 + F2n+1

and
∞∑

n=1

1
F2n+1

are all transcendental (further results of algebraic independence are known). The
first challenge here is to formulate a conjectural statement which would give a
satisfactory description of the situation.

There is a similar situation for infinite sums
∑

n f(n) where f is a rational
function [Ti4]. While

∞∑
n=1

1
n(n+ 1)

= 1

and
∞∑

n=0

(
1

4n+ 1
− 3

4n+ 2
+

1
4n+ 3

+
1

4n+ 4

)
= 0

are rational numbers, the sums
∞∑

n=0

1
(2n+ 1)(2n+ 2)

= log 2,
∞∑

n=0

1
(n+ 1)(2n+ 1)(4n+ 1)

=
π

3
,

∞∑
n=1

1
n2

=
π2

6
,

∞∑
n=0

1
n2 + 1

=
1
2

+
π

2
· e

π + e−π

eπ − e−π
,

∞∑
n=0

(−1)n

n2 + 1
=

2π
eπ − e−π

and
∞∑

n=0

1
(6n+ 1)(6n+ 2)(6n+ 3)(6n+ 4)(6n+ 5)(6n+ 6)

=
1

4320
(192 log 2− 81 log 3− 7π

√
3)

are transcendental. The simplest example of the Euler sums
∑

n n
−s (see Sec-

tion 3.2) illustrates the difficulty of the question. Here again, even a sufficiently
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general conjecture is missing. One may remark that there is no known algebraic
irrational number of the form ∑

n≥0
Q(n) 6=0

P (n)
Q(n)

,

where P and Q are non-zero polynomials having rational coefficients and degQ ≥
2 + degP .

The arithmetic study of the values of power series suggests many open problems.
We shall only mention a few of them.

The next question is due to K. Mahler [M3].

Question 3.27 (Mahler). Are there entire transcendental functions f(z) such that
if x is a Liouville number then so is f(x)?

The study of integral valued entire functions gives rise to several open problems;
we quote only one of them which arose in the work of D. W. Masser and F. Gramain
on entire functions f of one complex variable which map the ring of Gaussian
integers Z[i] into itself. The initial question (namely to derive an analogue of
Pólya’s Theorem in this setting) has been solved by F. Gramain in [Gr] (following
previous work of Fukasawa, Gelfond, Gruman and Masser). If f is not a polynomial,
then

lim sup
r→∞

1
r2

log |f |r ≥
π

2e
·

Here,

|f |r = max
|z|=r

|f(z)|.

Preliminary works on this estimate gave rise to the following problem, which is still
unsolved. For each integer k ≥ 2, let Ak be the minimal area of a closed disk in R2

containing at least k points of Z2, and for n ≥ 2 define

δn = − log n+
n∑

k=2

1
Ak

.

The limit δ = limn→∞ δn exists (it is an analogue in dimension 2 of the Euler
constant), and the best known estimates for it are [GW]

1.811. . . < δ < 1.897. . .

(see also [Fi]). F. Gramain conjectures that

δ = 1 +
4
π

(
γL(1) + L′(1)

)
,

where γ is Euler’s constant and

L(s) =
∑
n≥0

(−1)n(2n+ 1)−s
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is the L function of the quadratic field Q(i) (Dirichlet beta function). Since

L(1) =
π

4
and

L′(1) =
∑
n≥0

(−1)n+1 · log(2n+ 1)
2n+ 1

=
π

4
(
3 log π + 2 log 2 + γ − 4 log Γ(1/4)

)
,

Gramain’s conjecture is equivalent to

δ = 1 + 3 log π + 2 log 2 + 2γ − 4 log Γ(1/4) = 1.822825. . .

Other problems related to the lattice Z[i] are described in the section “On the
borders of geometry and arithmetic” of [Sie1].

4. Heights

For a non-zero polynomial f ∈ C[X] of degree d,

f(X) = a0X
d + a1X

d−1 + · · ·+ ad−1X + ad = a0

d∏
i=1

(X − αi),

define its usual height by

H(f) = max{|a0|, . . . , |ad|}
and its Mahler’s measure by

M(f) = |a0|
d∏

i=1

max{1, |αi|} = exp
(∫ 1

0

log |f(e2iπt)| dt
)
.

The equality between these two formulae follows from Jensen’s formula (see [M2,
Chap. I, §7], as well as [W6, Chap. 3] and [S]; the latter includes an extension to
several variables).

When α is an algebraic number with minimal polynomial f ∈ Z[X], define its
Mahler’s measure by M(α) = M(f) and its usual height by H(α) = H(f). Further,
if α has degree d, define its logarithmic height as

h(α) =
1
d

logM(α).

Furthermore, if α1, . . . , αd are the complex roots of f (also called the complex
conjugates of α), then the house of α is

α = max{|α1|, . . . , |αd|}.
The height of an algebraic number is the prototype of a whole collection of

height, like the height of projective point (1 : α1 : · · · : αn) ∈ Pn which is denoted
by h(1 : α1 : · · · : αn) (see for instance [W6, §3.2]) and the height of a subvariety
ĥ(V ) (see for instance [D1] and [D2]).

Further, if α = (α1, . . . , αn) is a n-tuple of multiplicatively independent al-
gebraic numbers, ω(α) denotes the minimum degree of a non-zero polynomial in
Q[X1, . . . , Xn] which vanishes at α.

A side remark is that Mahler’s measure of a polynomial in a single variable with
algebraic coefficients is an algebraic number. The situation is much more intricate
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for polynomials in several variables and suggests to further very interesting open
problems [Boy1], [Boy2].

4.1. Lehmer’s Problem. The smallest known value for dh(α), which was found
in 1933 by D. H. Lehmer, is logα0 = 0.162357. . . , where α0 = 1.176280. . . is the
real root5 of the degree 10 polynomial

X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1.

D. H. Lehmer asked whether it is true that for every positive ε there exists an
algebraic integer α for which 1 < M(α) < 1 + ε?

Conjecture 4.1 (Lehmer’s Problem). There exists a positive absolute constant c
such that, for any non-zero algebraic number α which is not a root of unity,

M(α) ≥ 1 + c.

Equivalently, there exists a positive absolute constant c such that, for any non-zero
algebraic number α of degree at most d which is not a root of unity,

h(α) ≥ c

d
.

Since h(α) ≤ log α , the following statement [SZ] is a weaker assertion than
Conjecture 4.1.

Conjecture 4.2 (Schinzel–Zassenhaus). There exists an absolute constant c > 0
such that, for any non-zero algebraic integer of degree d which is not a root of unity,

α ≥ 1 +
c

d
.

Lehmer’s Problem is related to the multiplicative group Gm. Generalizations to
Gn

m have been considered by many authors (see for instance [Bert1] and [Sch2]). In
[AD1, Conjecture 1.4], F. Amoroso and S. David extend Lehmer’s Problem 4.1 to
simultaneous approximation.

Conjecture 4.3 (Amoroso–David). For each positive integer n ≥ 1 there exists a
positive number c(n) having the following property. Let α1, . . . , αn be multiplica-
tively independent algebraic numbers. Define D = [Q(α1, . . . , αn) : Q]. Then

n∏
i=1

h(αi) ≥
c(n)
D

.

The next statement ([AD1, Conjecture 1.3] and [AD2, Conjecture 1.3]) is
stronger.

Conjecture 4.4 (Amoroso–David). For each positive integer n ≥ 1 there exists a
positive number c(n) such that, if α = (α1, . . . , αn) is a n-tuple of multiplicatively
independent algebraic numbers, then

h(1 : α1 : · · · : αn) ≥ c(n)
ω(α)

.

5Further properties of this smallest known Salem number are described by D. Zagier in his paper
Special values and functional equations of polylogarithms, Appendix A of “Structural properties
of polylogarithms”, ed. L. Lewin, Mathematical Surveys and Monographs, vol. 37, Amer. Math.

Soc. 1991, pp. 377–400.
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Many open questions are related to the height of subvarieties [D1], [D2]. The
next one, dealing with the height of subvarieties of Gn

m and proposed by F. Amoroso
and S. David in [AD2, Conjecture 1.4] (see also Conjecture 1.5 of [AD2], which is
due to S. David and P. Philippon [DP]), is more general than Conjecture 4.4.

Conjecture 4.5 (Amoroso–David). For each integer n ≥ 1 there exists a positive
constant c(n) such that, for any algebraic subvariety V of Gn

m which is defined
over Q, which is Q-irreducible, and which is not a union of translates of algebraic
subgroups by torsion points,

ĥ(V ) ≥ c(n) deg(V )(s−dim V−1)/(s−dim V ),

where s is the dimension of the smallest algebraic subgroup of Gn
m containing V .

Let V be an open subset of C. The Lehmer–Langevin constant of V is defined
as

L(V ) = infM(α)1/[Q(α):Q],

where α ranges over the set of non-zero and non-cyclotomic algebraic numbers, α,
lying with all their conjugates outside of V . It was proved by M. Langevin in 1985
that L(V ) > 1 as soon as V contains a point on the unit circle |z| = 1.

Problem 4.6. For θ ∈ (0, π), define

Vθ = {reit : r > 0, |t| > θ}.
Compute L(Vθ) in terms of θ.

The solution is only known for a very few values of θ. In 1995 G. Rhin and
C. Smyth [RS] computed L(Vθ) for nine values of θ, including

L(Vπ/2) = 1.12. . .

In a different direction, an analogue of Lehmer’s Problem has been proposed for
elliptic curves, and more generally for Abelian varieties. Here is Conjecture 1.4 of
[DH]. Let A be an Abelian variety defined over a number field K and equipped
with a symmetric ample line bundle L. For any P ∈ A(Q), define

δ(Q) = min deg(V )1/ codim(V ),

where V ranges over the proper subvarieties of A, defined over K, K-irreducible
and containing Q, while deg(V ) is the degree of V with respect to L. Also denote
by ĥL the Néron–Tate canonical height on A(Q) associated to L.

Conjecture 4.7 (David–Hindry). There exists a positive constant c depending
only on A and L, such that for any P ∈ A(Q) which has infinite order modulo any
Abelian subvariety,

ĥL(P ) ≥ cδ(P )−1.

An extension of Conjecture 4.7 to linearly independent tuples is also stated in
[DH, Conjecture 1.6].

The dependence on A of these “constants” also suggests interesting questions.
Take an elliptic curve E and consider the Néron–Tate height ĥ(P ) of a nontorsion
rational point on a number fieldK. Several invariants are related to E: the modular
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invariant jE , the discriminant ∆E and Faltings height h(E). S. Lang conjectured
that

ĥ(P ) ≥ c(K) max{1, h(E)},
while S. Lang ([La5, p. 92]) and J. Silverman ([Sil, Chap. VIII, §10, Conjecture
9.9]) conjecture that

ĥ(P ) ≥ c(K)max{log |NK/Q(∆E)|, h(jE)}.

Partial results are known (J. Silverman, M. Hindry and J. Silverman, S. David),
but the conjecture is not yet proved.

There is another Abelian question related to Mahler’s measure. According to
D. A. Lind, Lehmer’s Problem is known to be equivalent to the existence of a contin-
uous endomorphism of the infinite torus (R/Z)Z with finite entropy. A similar ques-
tion has been asked by P. D’Ambros, G. Everest, R. Miles and T. Ward [AEMW]
for elliptic curves, and it can be extended to Abelian varieties, and more generally
to commutative algebraic groups.

4.2. Wirsing–Schmidt Conjecture. According to Dirichlet’s box principle, for
any irrational, real number θ there is an infinite set of rational numbers p/q with
q > 0 such that ∣∣∣∣θ − p

q

∣∣∣∣ ≤ 1
q2
. (4.8)

There are several extensions of this result. For the first one, we write (4.8) as
|qθ − p| < 1/q and we replace qθ − p by P (θ) for some polynomial P .

Lemma 4.9. Let θ be a real number, d and H be positive integers. There exists a
non-zero polynomial P ∈ Z[X], of degree less than or equal to d and usual height
less than or equal to H such that

|P (θ)| ≤ cH−d,

where c = 1 + |θ|+ · · ·+ |θ|d.

There is no assumption on θ, but if θ is algebraic of degree ≤ d, then there is a
trivial solution!

A similar result applies to complex numbers, and more generally when θ is
replaced by a m-tuple (θ1, . . . , θm) ∈ Cm (see for instance [W6] Lemma 15.11).
For simplicity, we only deal here with the easiest case.

Another extension of (4.8) that is interesting to consider is where p/q is replaced
by an algebraic number of degree ≤ d. If the polynomial P given by (4.9) has a
single simple root γ close to θ, then

|θ − γ| ≤ c′H−d

where c′ depends only on θ and d. However, the root of P which is nearest γ may
be a multiple root, and may be not unique. This occurs precisely when the first
derivative P ′ of P has a small absolute value at θ. Dirichlet’s box principle does
not allow us to construct a polynomial P as in (4.8) with a lower bound for |P ′(θ)|.
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However E. Wirsing [Wi] succeeded in proving the following theorem.

Theorem 4.10. There exist two positive absolute constants, c and κ, such that,
for any transcendental real number θ and any positive integer n, there are infinitely
many algebraic numbers γ of degree ≤ n for which

|θ − γ| ≤ cH(γ)−κn.

Wirsing himself obtained his estimate in 1960 with c replaced by c(n, εn, θ) and
κn by (n/2) + 2− εn, where εn → 0 as n→∞. He conjectured that the exponent
κn can be replaced by n+1− ε [Wi]. For n = 2, H. Davenport and W. M. Schmidt
in 1967 reached the exponent 3 without ε. For any transcendental real number θ,
there exists a positive real number c(θ) such that the inequality

|θ − γ| ≤ c(θ)H(γ)−3

has infinitely many solutions γ with [Q(γ) : Q] ≤ 2. A conjecture of Schmidt ([Sch1,
Chap. VIII, §3]; see also [Bu1] and [Bu2]) asserts that (4.10) is valid when κn is
replaced by n+ 1.

Conjecture 4.11 (Wirsing and Schmidt). For any positive integer n and any real
number θ which is either transcendental or else is algebraic of degree greater than n,
there exists a positive constant c = c(n, θ) with the following property : there exist
infinitely many algebraic numbers γ of degree ≤ n for which

0 < |θ − γ| < cH(γ)−n−1.

A third extension of (4.8) is the study of the simultaneous rational approximation
of successive powers of a real number. Let n ≥ 2 be an integer; denote by En the
set of real numbers which are not algebraic of degree ≤ n. For ξ ∈ En, let αn(ξ) be
the infimum of the set of real numbers α such that, for any sufficiently large real
number X, there exists (x0, x1, . . . , xn) ∈ Zn satisfying

0 < x0 ≤ X and max
1≤j≤n

|x0ξ
j − xj | ≤ X−1/α.

From Dirichlet’s box principle one deduces αn(ξ) ≤ n for any ξ ∈ En and any
n ≥ 2. Moreover, for any n ≥ 2, the set of ξ ∈ En for which αn(ξ) < n has
Lebesgue measure zero. H. Davenport and W. M. Schmidt proved in [DS] that
α2(ξ) ≥ γ for any ξ ∈ E2, where γ = (1 +

√
5)/2 = 1.618. . . It was expected that

α2(ξ) would be equal to 2 for any ξ ∈ E2, but D. Roy [Ro9] has produced a ξ ∈ E2

for which α2(ξ) = γ, showing that the result of Davenport and Schmidt is optimal.
This raises a number of open problems and suggests that we study the set

An = {αn(ξ) : ξ ∈ En}.
Recent results concerning the set A2, by Y. Bugeaud and M. Laurent, S. Fischler,
indicate a structure like the Markoff spectrum. For further references on this topic,
see [Bu3].

In Section 3 we considered problems of algebraic independence. In Section 2
we discussed questions related to measures of linear independence of logarithms
of algebraic numbers. In Section 4 we introduced a notion of height. Connexions
between these three topics arise from the study of simultaneous approximation of
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complex numbers by algebraic numbers (see for instance [W6, Chap. 15]). For a
m-tuple γ = (γ1, . . . , γm) of algebraic numbers, we define

µ(γ) = [Q(γ) : Q] max
1≤j≤m

h(γj),

so that for m = 1 and γ ∈ Q, µ(γ) = logM(γ).
So far, relations between simultaneous approximation and algebraic indepen-

dence have only been established for small transcendence degrees. The missing link
for large transcendence degrees is given by the next statement (see [W6, Conjecture
15.31], [Lau1, §4.2, Conjecture 5], [Lau2, Conjecture 1], [W5, Conjecture 2], as well
as [Ro6, Conjectures 1 and 2]).

Conjecture 4.12. Let θ = (θ1, . . . , θm) be a m-tuple of complex numbers. Define

t = trdeg Q(θ)

and assume t ≥ 1. There exist positive constants c1 and c2 with the following
property. Let (Dν)ν≥0 and (µν)ν≥0 be sequences of real numbers satisfying

c1 ≤ Dν ≤ µν , Dν ≤ Dν+1 ≤ 2Dν , µν ≤ µν+1 ≤ 2µν (ν ≥ 0).

Assume also that the sequence (µν)ν≥0 is unbounded. Then for infinitely many ν
there exists a m-tuple (γ1, . . . , γm) of algebraic numbers satisfying

[Q(γ) : Q] ≤ Dν , µ(γ) ≤ µν

and
max

1≤i≤m
|θi − γi| ≤ exp{−c2D1/t

ν µν}.

There are two different, but related quantitative refinements to a transcendence
result: for a transcendental number θ, either one proves a transcendence measure,
which is a lower bound for |P (θ)| when P is a non-zero polynomial with integer
coefficients, or else one proves a measure of algebraic approximation for θ, which is
a lower bound for |θ−γ| when γ is an algebraic number. In both cases such a lower
bound will usually depend on the degree (of the polynomial P , or on the algebraic
number γ), and on the height of the same.

Next, given several transcendental numbers θ1, . . . , θn, one may consider either
a measure of simultaneous approximation by algebraic numbers, namely a lower
bound for

max{|θi − γi|}
when γ1, . . . , γn are algebraic numbers, or a measure of algebraic independence,
which is a lower bound for

|P (θ1, . . . , θn)|
when P is a non-zero polynomial with integer coefficients. The first estimate deals
with algebraic points (algebraic sets of zero dimension), the second with hypersur-
faces (algebraic sets of codimension 1). There is a set of intermediate possibilities
which have been studied by Yu. V. Nesterenko and P. Philippon, and are closely
connected.

For instance, Conjecture 4.12 deals with simultaneous approximation by alge-
braic points; M. Laurent and D. Roy asked general questions about the approxi-
mation by algebraic subsets of Cm, defined over Q. For instance Conjecture 2 in
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[Lau2] as well as the conjecture in §9 of [Ro7] deal with the more general prob-
lem of approximation of points in Cn by points located on Q-varieties of a given
dimension.

For an algebraic subset Z of Cm, defined over Q, denote by t(Z) the size of a
Chow form of Z.

Conjecture 4.13 (Laurent–Roy). Let θ ∈ Cm. There is a positive constant c,
depending only on θ and m, with the following property. Let k be an integer with
0 ≤ k ≤ m. For infinitely many integers T ≥ 1, there exists an algebraic set
Z ⊂ Cm, defined over Q, of dimension k, and a point α ∈ Z, such that

t(Z) ≤ Tm−k and |θ − α| ≤ exp{−cTm+1}.

Further far-reaching, open problems in this direction have been proposed by
P. Philippon as Problèmes 7, 8 and 10 in [P2, §5].

4.3. Logarithms of Algebraic Numbers. We have already suggested several
questions related to linear independence measures over the field of rational numbers
for logarithms of rational numbers (see Conjectures 2.4, 2.5 and 2.14). Now that
we have a notion of height for algebraic numbers at our disposal, we can extend
our study to linear independence measures over the field of algebraic numbers for
the logarithms of algebraic numbers.

The next statement is Conjecture 14.25 of [W6].

Conjecture 4.14. There exist two positive absolute constants c1 and c2 with the
following property. Let λ1, . . . , λm be logarithms of algebraic numbers with αi = eλi

(1 ≤ i ≤ m), let β0, . . . , βm be algebraic numbers, D the degree of the number field

Q(α1, . . . , αm, β0, . . . , βm),

and, finally, let h ≥ 1/D satisfy

h ≥ max
1≤i≤m

h(αi), h ≥ 1
D

max
1≤i≤m

|λi| and h ≥ max
0≤j≤m

h(βj).

(1) Assume that the number

Λ = β0 + β1λ1 + · · ·+ βmλm

is non-zero. Then
|Λ| ≥ exp

{
−c1mD2h

}
.

(2) Assume that λ1, . . . , λm are linearly independent over Q. Then
m∑

i=1

|λi − βi| ≥ exp
{
−c2mD1+(1/m)h

}
.

Assuming both Conjecture 4.12 and part 2 of Conjecture 4.14, one deduces
not only Conjecture 3.3, but also further special cases of Conjecture 3.1 (these
connexions are described in [W5] as well as [W6, Chap. 15]).

As far as part 1 of Conjecture 4.14 is concerned, weaker estimates are available
(see [W6, §10.4]). Here is a much weaker (but still open) statement than either
Conjecture 2.5 or part 1 of Conjecture 4.14.
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Conjecture 4.15. There exists a positive absolute constant C with the following
property. Let α1, . . . , αn be non-zero algebraic numbers and logα1, . . . , logαn log-
arithms of α1, . . . , αn respectively. Assume that the numbers logα1, . . . , logαn are
Q-linearly independent. Let β0, β1, . . . , βn be algebraic numbers, not all of which
are zero. Denote by D the degree of the number field

Q(α1, . . . , αn, β0, β1, . . . , βn)

over Q. Further, let A1, . . . , An and B be positive real numbers, each ≥ e, such
that

logAj ≥ max
{
h(αj),

| logαj |
D

,
1
D

}
(1 ≤ j ≤ n),

B ≥ max
1≤j≤n−1

h(βj).

Then the number
Λ = β0 + β1 logα1 + · · ·+ βn logαn

satisfies

|Λ| > exp{−CnDn+2(logA1) · · · (logAn)(logB + logD)(logD)}.

One is rather close to such an estimate (see [W8, §5 and §6], as well as [Matv]).
The result is proved now in the so-called rational case, where

β0 = 0 and βi ∈ Q for 1 ≤ i ≤ n.

In the general case, one needs a further condition, namely

B ≥ max
1≤i≤n

logAi.

Removing this extra condition would enable one to prove that numbers like eπ or
2
√

2 are not Liouville numbers.
These questions are the first and simplest ones concerning transcendence mea-

sures,measures of Diophantine approximation, measures of linear independence and
measures of algebraic independence. One may ask many further questions on this
topic, including an effective version of Schanuel’s conjecture. It is interesting to no-
tice that in this case a “technical condition” cannot be omitted ([W4, Conjecture
1.4]).

Recall that the rank of a prime ideal P ⊂ Q[T1, . . . , Tm] is the largest integer
r ≥ 0 such that there exists an increasing chain of prime ideals

(0) = P0 ⊂ P1 ⊂ · · · ⊂ Pr = P.

The rank of an ideal I ⊂ Q[T1, . . . , Tm] is the minimum rank of a prime ideal
containing I.

Conjecture 4.16 (Quantitative Refinement of Schanuel’s Conjecture). Let x1, . . .
. . . , xn be Q-linearly independent complex numbers. Assume that for any ε >
0, there exists a positive number H0 such that, for any H ≥ H0 and n-tuple
(h1, . . . , hn) of rational integers satisfying 0 < max{|h1|, . . . , |hn|} ≤ H, the in-
equality

|h1x1 + · · ·+ hnxn| ≥ exp
{
−Hε

}
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is valid. Let d be a positive integer. Then there exists a positive number C =
C(x1, . . . , xn, d) with the following property : for any integer H ≥ 2 and any n+ 1
tuple P1, . . . , Pn+1 of polynomials in Z[X1, . . . , Xn, Y1, . . . , Yn] with degrees ≤ d
and usual heights ≤ H, which generate an ideal of Q[X1, . . . , Xn, Y1, . . . , Yn] of
rank n+ 1,

n+1∑
j=1

∣∣Pj(x1, . . . , xn, e
x1 , . . . , exn)

∣∣ ≥ H−C .

A consequence of Conjecture 4.16 is a quantitative refinement to Conjecture 3.3
on the algebraic independence of logarithms of algebraic numbers [W4].

Conjecture. If logα1, . . . , logαn are Q-linearly independent logarithms of alge-
braic numbers and d a positive integer, there exists a constant C > 0 such that, for
any non-zero polynomial P ∈ Z[X1, . . . , Xn] of degree ≤ d and height ≤ H, with
H ≥ 2,

|P (logα1, . . . , logαn)| ≥ H−C .

4.4. Density: Mazur’s Problem. Let K be a number field with a given real
embedding. Let V be a smooth variety over K. Denote by Z the closure, for the
real topology, of V (K) in V (R). In his paper [Maz1] on the topology of rational
points, Mazur asks,

Question 4.17 (Mazur). Assume that K = Q and that V (Q) is Zariski dense; is
Z a union of connected components of V (R)?

An interesting fact is that Mazur asks this question in connexion with the rational
version of Hilbert’s tenth Problem (see [Maz2] and [Maz3]).

The answer to question 4.17 is negative. An example is given in [CSS] by
J.-L. Colliot-Thélène, A. N. Skorobogatov and P. Swinnerton-Dyer of a smooth
surface V over Q, whose Q-rational points are Zariski-dense, but such that the
closure Z in V (R) of the set of Q-points is not a union of connected components.

However for the special case of Abelian varieties, there are good reasons to
believe that the answer to question 4.17 is positive. Indeed for this special case a
reformulation of question 4.17 is the following.

Conjecture. Let A be a simple Abelian variety over Q. Assume that the Mordell–
Weil group A(Q) has rank ≥ 1. Then A(Q)∩A(R)0 is dense in the neutral compo-
nent, A(R)0 of A(R).

This statement is equivalent to the next one.

Conjecture 4.18. Let A be a simple Abelian variety over Q, expA : Rg → A(R)0

the exponential map of the Lie group A(R)0, and Ω = Zω1 + · · · + Zωg its kernel.
Let u = u1ω1 + · · · + ugωg ∈ Rg satisfy expA(u) ∈ A(Q). Then 1, u1, . . . , ug are
linearly independent over Q.

The following quantitative refinement of Conjecture 4.18 is suggested in [W3,
Conjecture 1.1].
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For ζ = (ζ0 : · · · : ζN ) and ξ = (ξ0 : · · · : ξN ) in PN (R), write

dist(ζ, ξ) =
max

0≤i,j≤N
|ζiξj − ζjξi|

max
0≤i≤N

|ζi| · max
0≤j≤N

|ξj |
.

Conjecture 4.19. Let A be a simple Abelian variety of dimension g over a number
field K embedded in R. Denote by ` the rank over Z of the Mordell–Weil group
A(K). For any ε > 0, there exists h0 > 0 (which depends only on the Abelian
variety A, the real number field K and ε) such that, for any h ≥ h0 and any
ζ ∈ A(R)0, there is a point γ ∈ A(K) with Néron–Tate height ≤ h such that

dist(ζ, γ) ≤ h−(`/2g)+ε.

Similar problems arise for commutative algebraic groups. Let us consider the eas-
iest case, a torus Gn

m over the field of real algebraic numbers. We replace the simple
Abelian variety A of dimension g by the torus Gn

m of dimension n, the Mordell–
Weil group A(K) by a finitely generated multiplicative subgroup of (Q×)n, and the
connected component A(R)0 of the origin in A(R) by (R×

+)n. The corresponding
problem is then, given positive algebraic numbers γij (1 ≤ i ≤ n, 1 ≤ j ≤ m), to
consider the approximation of a tuple (ζ1, . . . , ζn) ∈ (R×

+)n by tuples of algebraic
numbers of the form (

γs1
11 · · · γ

sm
1m, . . . , γ

s1
n1 · · · γsm

nm

)
with s = (s1, . . . , sm) ∈ Zm.

Recently D. Prasad [Pr] studied this question in terms of toric varieties.
The qualitative density question is solved by the following statement, which is a

consequence of Conjecture 3.3.

Conjecture 4.20. Let m, n, k be positive integers and aijκ rational integers
(1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ κ ≤ k). For x = (x1, . . . , xk) ∈ (R×

+)k denote
by Γ(x) the following finitely generated subgroup of (R×

+)n,

Γ(x) =

{(
m∏

j=1

k∏
κ=1

x
aijκsj

k

)
1≤i≤n

: s = (s1, . . . , sm) ∈ Zm

}
.

Assume that there exists x ∈ (R×
+)k such that Γ(x) is dense in (R×

+)n. Then for
any γ = (γ1, . . . , γk) in (R×

+)k with γ1, . . . , γk algebraic and multiplicatively inde-
pendent, the subgroup Γ(γ) is dense in (R×

+)n.

If there is a x in (R×
+)k such that Γ(x) is dense in (R×

+)n, then the set of such
x is dense in (R×

+)k. Hence again, loosely speaking, Conjecture 4.20 means that
logarithms of algebraic numbers should behave like almost all numbers (see also
[La8, Chap. IX, §7, p. 235]).

Conjecture 4.20 would provide an effective solution to the question raised by
J.-L. Colliot-Thélène and J.-J. Sansuc and solved by D. Roy (see [Ro3]).

Theorem. Let k be a number field of degree d = r1 + 2r2, where r1 is the number
of real embeddings and r2 the number of pairwise non-conjugate embeddings of k.
Then there exists a finitely generated subgroup Γ of k×, with rank r1 +r2 +1, whose
image in Rr1 × Cr2 is dense.
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The existence of Γ is known, but the proof by D. Roy does not yield an explicit
example.

Density questions are closely related to transcendence questions. For instance
the multiplicative subgroup of R×

+ generated by e and π is dense if and only if log π
is irrational (which is an open question).

The simplest case of Conjecture 4.20 is obtained with n = 2 and m = 3. It reads
as follows.

Conjecture. Let α1, α2, α3, β1, β2, β3 be non-zero positive algebraic numbers.
Assume that for any (a, b) ∈ Z2 \ {(0, 0)}, two at least of the three numbers

αa
1β

b
1, α

a
2β

b
2, α

a
3β

b
3

are multiplicatively independent. Then the subgroup

Γ =
{(
αs1

1 α
s2
2 α

s3
3 , α

s1
1 α

s2
2 α

s3
3

)
: (s1, s2, s3) ∈ Z3

}
of (R×

+)2 is dense.

It is easy to deduce this statement from the four exponentials Conjecture 3.7.
The next question is to consider a quantitative refinement. Let Γ be a finitely

generated subgroup of (Q ∩ R×
+)n which is dense in (R×

+)n. Fix a set of generators
γ

1
, . . . , γ

m
of Γ. For s = (s1, . . . , sm) ∈ Zm and 1 ≤ i ≤ n define

γi(s) =
m∏

j=1

γ
sj

ij ∈ Q×.

The density assumption means that for any ζ = (ζ1, . . . , ζn) ∈ (R×
+)n and any

ε > 0, there exists s ∈ Zm such that

max
1≤i≤n

|γi(s)− ζi| ≤ ε.

We wish to bound |s| = max1≤j≤m |sj | in terms of ε.
We fix a compact neighborhood K of the origin (1, . . . , 1) in (R×

+)n. For instance

K = {ζ ∈ (R×
+)n : 1/2 ≤ |ζi| ≤ 2 (1 ≤ i ≤ n)}

would do.

Conjecture 4.21. For any ε > 0 there exists S0 > 0 (depending on ε, γ1, . . . , γm

and K) such that, for any S ≥ S0 and any ζ ∈ K, there exists s ∈ Zm with |s| ≤ S
and

max
1≤i≤n

|γi(s)− ζi| ≤ S−1−(1/n)+ε.

These questions suggest a new kind of Diophantine approximation problem.

5. Further Topics

5.1. Metric Problems. Among the motivations for studying metric problems
in Diophantine analysis (not to mention secular perturbations in astronomy and
the statistical mechanics of a gas —see [Ha]), one would like to be able to guess
the behavior of certain classes of numbers (such as algebraic numbers, logarithms
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of algebraic numbers, and numbers given as values of classical functions, suitably
normalized [La2, p. 658 and 664]).

A first example is related to the Wirsing–Schmidt Conjecture. V. G. Sprindzuk
showed in 1965 that the conjecture 4.11 is true for almost all θ (for Lebesgue
measure).

A second example is the question of refining Roth’s Theorem. Conjecture 2.12
is motivated by Khinchine’s Theorem ([Sp, Chap. I, §1, Th. 1, p. 1]) which answers
the question of rational Diophantine approximation for almost all real numbers.
In 1926 A. Khinchine himself extended his result to the simultaneous Diophantine
rational approximation

max
1≤i≤n

|qαi − pi|

([Sp, Chap. I, §4, Th. 8, p. 28]), and in 1938 A. V. Groshev proved the first very
general theorem of Khinchine type for systems of linear forms,

max
1≤i≤n

|q1αi1 + · · ·+ qmαim − pi|

([Sp, Chap. I, §5, Th. 12, p. 33]). Using the same heuristic arguments, one may ex-
tend Conjecture 2.12 to the context of simultaneous linear combinations of algebraic
numbers.

In Conjecture 2.12 (as well as in Khinchine’s result for almost all real numbers)
the function qψ(q) is assumed to be non-increasing. A conjecture of Duffin and
Schaeffer (see [Sp, Chap. 1, §2, p. 17] and [Ha]) would enable one to work without
such a restriction. Denote by ϕ(n) Euler’s function

ϕ(n) =
∑

1≤k≤n
gcd(k,n)=1

1.

Conjecture 5.1 (Duffin and Schaeffer). Let ψ be a positive real valued function.
Then, for almost all θ ∈ R, inequality (2.11) has an infinite number of solutions in
integers p and q with q > 0 and gcd(p, q) = 1 if and only if the series

∞∑
q=1

1
q
ψ(q)ϕ(q)

diverges.

The Khinchine–Goshev Theorem has been extended to certain manifolds (see
[Sp], [BD], as well as more recent papers by V. Bernick, M. Dodson, D Kleinbock
and G. Margulis). Further, connexions between the metrical theory of Diophantine
approximation on one hand, hyperbolic geometry, ergodic theory and dynamics
of flows on homogeneous spaces of Lie groups on the other, have been studied
by several mathematicians, including D. Sullivan, S. J. Dani, G. Margulis and
D. Kleinbock. Also S. Hersonsky and F. Paulin [HP] have recently studied the
Diophantine approximation properties of geodesic lines on the Heisenberg group,
which suggests new, open questions, for instance to study

max
1≤i≤n

|qαi − pi|κi

when κ1, . . . , κn are positive real numbers.
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The set of real numbers with bounded partial quotients is countable. This is the
set of real numbers which are badly approximable by rational numbers. Y. Bugeaud
asks a similar question for numbers which are badly approximable by algebraic
numbers of bounded degree.

Question 5.2 (Bugeaud). Let n ≥ 2. Denote by Æn the set of real numbers ξ with
the following property: there exists c1(ξ) > 0 and c2(ξ) > 0 such that for algebraic
number α of degree ≤ n,

|ξ − α| ≥ c2(ξ)H(α)−n−1,

and such that there are infinitely many algebraic numbers α of degree ≤ n with

|ξ − α| ≤ c1(ξ)H(α)−n−1,

Does the set Æn strictly contain the set of algebraic numbers of degree n+ 1?

In connexion with the algebraic independence problems of Section 3.1, one would
like to understand better the behavior of real (or complex) numbers with respect
to Diophantine approximation by algebraic numbers of large degree (see Conjec-
ture 4.12). A natural question is to consider this question from a metrical point of
view. Roughly speaking, what is expected is that for almost all real numbers ξ, the
quality of approximation by algebraic numbers of degree ≤ d and measure ≤ t be
e−dt. This is the precise suggestion of Y. Bugeaud [Bu2].

For a real number κ > 0, denote by Fκ the set of real numbers ξ with the
following property: for any κ′ with 0 < κ′ < κ and any d0 ≥ 1, there exists a real
number h0 ≥ 1 such that, for any d ≥ d0 and any t ≥ h0d, the inequality

|ξ − γ| ≤ e−κ′dt

has a solution γ ∈ Q where [Q(γ) : Q] ≤ d and µ(γ) ≤ t.
Also, denote by F ′

κ the set of real numbers ξ with the following property: for
any κ′ > κ there exist d0 ≥ 1 and h0 ≥ 1 such that, for any d ≥ d0 and any t ≥ h0d,
the inequality

|ξ − γ| ≤ e−κ′dt

has no solution γ ∈ Q where [Q(γ) : Q] ≤ d and µ(γ) ≤ t.
These definition are given more concisely in [Bu2]: for t ≥ d ≥ 1 denote by

Q(d, t) the set of real algebraic numbers γ of degree ≤ d and measure ≤ t. Then

Fκ =
⋂

κ′<κ

⋂
d0≥1

⋃
h0≥1

⋂
d≥d0

⋂
t≥h0d

⋃
γ∈Q(d,t)∩R

]γ − e−κ′dt, γ + e−κ′dt[,

F ′
κ =

⋂
κ′>κ

⋃
d0≥1

⋃
h0≥1

⋂
d≥d0

⋂
t≥h0d

⋂
γ∈Q(d,t)∩R

]γ − e−κ′dt, γ + e−κ′dt[c

where ]a, b[c denotes the complement of the intervall ]a, b[. According to Theorem 4
of [Bu2], there exist two positive constants κ̃ and κ̃′ such that, for almost all ξ ∈ R,

max{κ > 0: ξ ∈ Fκ} = κ̃ and min{κ > 0: ξ ∈ F ′
κ} = κ̃′.

Further,
1

850
≤ κ̃ ≤ κ̃′ ≤ 1.
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Bugeaud’s conjecture is κ̃ = κ̃′ = 1.
It is an important open question to study the simultaneous approximation of

almost all tuples in Rn by algebraic tuples γ = (γ1, . . . , γn) in terms of the degree
[Q(γ) : Q] and the measure µ(γ). Most authors have devoted much attention to
the dependence on the height, but now it is necessary to study more thoroughly
the behavior of the approximation for large degree.

Further problems which we considered in the previous sections deserve to be
studied from the metrical point of view. Our next example is a strong quantitative
form of Schanuel’s Conjecture for almost all tuples ([W5, Conjecture 4]).

Conjecture 5.3. Let n be a positive integer. For almost all n-tuples (x1, . . . , xn),
there are positive constants c and D0 (depending on n, x1, . . . , xn and ε), with
the following property. For any integer D ≥ D0, any real number µ ≥ D and any
2n-tuple α1, . . . , αn, β1, . . . , βn of algebraic numbers satisfying

[Q(α1, . . . , αn, β1, . . . , βn) : Q] ≤ D

and

[Q(α1, . . . , αn, β1, . . . , βn) : Q]max {h(αi), h(βi) : 1 ≤ i ≤ n} ≤ µ,

max {|xi − βi|, |exi − αi| : 1 ≤ i ≤ n} ≥ exp{−cD1/(2n)µ}.

One may also expect that c does not depend on x1, . . . , xn.
An open metrical problem of uniform distribution was suggested by P. Erdős to

R. C. Baker in 1973 (see [Ha] Chap. 5, p. 163). It is a counterpart to the conjecture
of Khinchine which was disproved by J. M. Marstrand in 1970.

Question. Let f be a bounded measurable function with period 1. Is it true that

lim
N→∞

1
logN

N∑
n=1

1
n
f(nα) =

∫ 1

0

f(x) dx

for almost all α ∈ R?

5.2. Function Fields. Let K be a field and C = K((T−1)) be the field of Laurent
series on K. The field C has similar properties to the real number field, when Z is
replaced by K[T ] and Q by K(T ). An absolute value on C is defined by selecting
|T | > 1. We set |α| = |T |k if α =

∑
n∈Z anT

−n is a non-zero element of C, where
k = deg(α) denotes the least index such that ak 6= 0. Hence C is the completion of
K(T ) for this absolute value.

A theory of Diophantine approximation has been developed on C in analogy to
the classical one. If K has zero characteristic, the results are very similar to the
classical ones. But if K has finite characteristic, the situation is completely different
(see [dML] and [Sch3]). It is not yet even clear how to describe the situation from a
conjectural point of view. A conjectural description of the set of algebraic numbers
for which a Roth type inequality is valid is still missing. Some algebraic elements
satisfy a Roth type inequality, while for some others, Liouville’s estimate is optimal.
However, from a certain point of view, much more is known about the function
field case, since the exact approximation exponent is known for several classes of
algebraic numbers.
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There is also a transcendence theory over function fields. The starting point
is a paper by Carlitz in the 40’s. He defines functions on C which behave like
analogues of the exponential function (Carlitz module). A generalization is due to
V. G. Drinfeld (Drinfeld modules), and a number of results on the transcendence of
numbers related to these objects are known, going much further than their classical
(complex) counterpart. For example, the number∏

p

(1− p−1)−1

(in a suitable extension of a finite field), where p runs over the monic irreducible
polynomials over the given finite field, is known to be transcendental (over the field
of rational functions on the finite field) [AT]; it may be considered to be an analogue
of Euler’s constant γ since

γ = lim
s→1

(
ζ(s)− 1

s− 1

)
.

However the theory is far from being complete. An analogue of Schanuel’s Conjec-
ture for Drinfeld modules was proposed by W. D. Brownawell in [Brow], together
with many further related problems, including large transcendence degree, Diophan-
tine geometry, values of Carlitz–Bessel functions and values of gamma functions.

For the study of Diophantine approximation, an important tool (which is not
available in the classical number theoretic case) is the derivation d/dT . In the
transcendence theory this suggests new questions which started to be studied by
L. Denis. Also in the function field case, interesting new questions are suggested
by considering several characteristics. So Diophantine analysis for function fields
involve different aspects, some which are reminiscent of the classical theory, and
some which have no counterpart.

For the related transcendence theory involving automata theory, we refer to the
paper by D. Thakur [Th] (especially on p. 389–390) and to [AS] for the state of the
art concerning the following open problem,

Conjecture 5.4 (Loxton and van der Poorten). Let (ni)i≥0 be an increasing se-
quence of positive integers. Assume that there is a prime number p such that the
power series ∑

i≥0

zni ∈ Fp[[z]]

is algebraic over Fp(z) and irrational (i. e., does not belong to Fp(z)). Then the
real number ∑

i≥0

10−ni

is transcendental.

Acknowledgements. This survey grew out of lectures given in several places in-
cluding India (October 2000 and September 2002), Ivory Coast (February 2001),
Italy (April 2001), Canada (May 2001), Lebanon (November 2002) and France.
The author is grateful to all the colleagues who gave him the opportunity to speak
on this topic, and also to all those who contributed by relevant remarks and sug-
gestions.



OPEN DIOPHANTINE PROBLEMS 297

References

[AS] J.-P. Allouche and J. Shallit, Automatic sequences, Cambridge University Press, Cam-

bridge, 2003. MR 1 997 038

[AEMW] P. D’Ambros, G. Everest, R. Miles, and T. Ward, Dynamical systems arising from
elliptic curves, Colloq. Math. 84/85 (2000), no. 1, 95–107. MR 2001m:11093

[AD1] F. Amoroso and S. David, Le problème de Lehmer en dimension supérieure, J. Reine
Angew. Math. 513 (1999), 145–179. MR 2001a:11116

[AD2] F. Amoroso and S. David, Minoration de la hauteur normalisée des hypersurfaces, Acta

Arith. 92 (2000), no. 4, 339–366. MR 2001f:11102
[AT] G. W. Anderson and D. S. Thakur, Tensor powers of the Carlitz module and zeta values,

Ann. of Math. (2) 132 (1990), no. 1, 159–191. MR 91h:11046
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1999, pp. 281–305. MR 2001f:03081. See also http://logic.pdmi.ras.ru/Hilbert10.

[Matv] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in

logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6,
125–180 (Russian). MR 2002e:11091. English translation in: Izv. Math. 64 (2000),

no. 6, 1217–1269.
[Mau] R. D. Mauldin, A generalization of Fermat’s last theorem: the Beal conjecture and

prize problem, Notices Amer. Math. Soc. 44 (1997), no. 11, 1436–1437. MR 98j:11020

[Maz1] B. Mazur, The topology of rational points, Experiment. Math. 1 (1992), no. 1, 35–45.

MR 93j:14020
[Maz2] B. Mazur, Questions of decidability and undecidability in number theory, J. Symbolic

Logic 59 (1994), no. 2, 353–371. MR 96c:03091
[Maz3] B. Mazur, Speculations about the topology of rational points: an update, Columbia

University Number Theory Seminar (New York, 1992), Astérisque (1995), no. 228 (4),
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