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Abstract

The set of real numbers and the set of complex numbers have
the power of continuum. Among these numbers, those which
are “interesting”, which appear “naturally”, which deserve our
attention, form a countable set. In a seminal paper with the
title “Periods” published in 2000, M. Kontsevich and D.
Zagier suggest a suitable definition for that set, by introducing
the definition of “periods”. They propose one conjecture, two
principles and five problems. The goal of this talk is to address
the question : what is known on the transcendence of periods ?



Periods : Maxime Kontsevich and Don Zagier
A period is a
complex number with
real and imaginary parts
given by absolutely
convergent integrals
of rational fractions
with rational coefficients
on domains of Rn

defined by (in)equalities
involving polynomials
with rational coefficients

Periods, Mathematics unlimited—2001 and beyond, Springer
2001, 771–808.
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The number π

Basic example of a period :

ez+2iπ = ez

2iπ =

∫
|z|=1

dz

z
·
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The exponential function

d

dz
ez = ez, ez1+z2 = ez1ez2

exp : C → C×

z 7→ ez

ker exp = 2iπZ.

The function z 7→ ez is the exponential map of the
multiplicative group Gm.
The exponential map of the additive group Ga is

C → C
z 7→ z

The only period is 0.
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Elliptic curves and elliptic functions
Elliptic curves :

E =
{

(t : x : y) ; y2t = 4x3 − g2xt
2 − g3t

3
}
⊂ P2(C).

Elliptic functions

℘′2 = 4℘3 − g2℘− g3,

℘(z1 + z2) = R
(
℘(z1), ℘(z2)

)
expE : C → E(C)

z 7→
(
1, ℘(z), ℘′(z)

)
ker expE = Zω1 + Zω2.
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Weierstraß elliptic function

Ω = Zω1 + Zω2 ⊂ R2

℘(z) =
1

z2
+

∑
ω∈Ω\{0}

(
1

(z − ω)2
− 1

ω2

)
.

℘′(z) =
∑
ω∈Ω

−2

(z − ω)3
·
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Weierstraß and Jacobi models

Weierstraß :

The function ℘

Jacobi :

The functions sn and cn



Periods of an elliptic function

The set of periods of an elliptic function is a lattice :

Ω = {ω ∈ C ; ℘(z + ω) = ℘(z)} = Zω1 + Zω2.

A pair of fundamental periods (ω1, ω2) is given by

ωi =

∫ ∞
ei

dt√
4t3 − g2t− g3

, (i = 1, 2)

where

4t3 − g2t− g3 = 4(t− e1)(t− e2)(t− e3).



Examples

Example 1 : g2 = 4, g3 = 0, j = 1728

A pair of fundamental periods of the elliptic curve

y2t = 4x3 − 4xt2.

is given by

ω1 =

∫ ∞
1

dt√
t3 − t

=
1

2
B(1/4, 1/2) =

Γ(1/4)2

23/2π1/2
= 2.6220575542 . . .

and
ω2 = iω1.
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Examples (continued)

Example 2 : g2 = 0, g3 = 4, j = 0

A pair of fundamental periods of the elliptic curve

y2t = 4x3 − 4t3.

is

ω1 =

∫ ∞
1

dt√
t3 − 1

=
1

3
B(1/6, 1/2) =

Γ(1/3)3

24/3π
= 2.428650648 . . .

and
ω2 = %ω1

where % = e2iπ/3.
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Euler Gamma and Beta functions

Γ(z) =

∫ ∞
0

e−ttz · dt
t

= e−γzz−1

∞∏
n=1

(
1 +

z

n

)−1

ez/n.

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

=

∫ 1

0

xa−1(1− x)b−1dx.
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Chowla–Selberg Formula

∑
(m,n)∈Z2\{(0,0)}

(m+ ni)−4 =
Γ(1/4)8

26 · 3 · 5 · π2

and ∑
(m,n)∈Z2\{(0,0)}

(m+ n%)−6 =
Γ(1/3)18

28π6

Formula of Chowla and Selberg (1966) : the periods of
elliptic curves with complex multiplication are products of
values of the Gamma function.
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Elliptic integrals and ellipses
An ellipse with radii a and b has equation

x2

a2
+
y2

b2
= 1

and the length of its perimeter is

2

∫ b

−b

√
1 +

a2x2

b4 − b2x2
dx.

In the same way, the perimeter of a lemniscate

(x2 + y2)2 = 2a2(x2 − y2)

is given by an elliptic integral

4a

∫ 1

0

(1− t4)−1/2 dx.
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Hypergeometry and elliptic integrals

Gauss Hypergeometric series

2F1

(
a, b ; c

∣∣ z) =
∞∑
n=0

(a)n(b)n
(c)n

· z
n

n!

with (Pochhammer rising
factorial power)
(a)n = a(a+ 1) · · · (a+ n− 1)

=
Γ(a+ n)

Γ(a)
·

K(z) =

∫ 1

0

dx√
(1− x2)(1− z2x2)

=
π

2
· 2F1

(
1/2, 1/2 ; 1

∣∣ z2
)
.



Elliptic integrals of the second kind

Quasi–periods of elliptic functions

Let Ω = Zω1 + Zω2 be a lattice in C. The canonical product
of Weierstraß associated with Ω is the sigma function σΩ

defined by

σΩ(z) = z
∏

ω∈Ω\{0}

(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)

This function has a simple zero at each point of Ω.



Hadamard canonical products

For N = {0, 1, 2, . . .} :

e−γz

Γ(−z)
= z

∏
n≥1

(
1− z

n

)
e−z/n.

For Z :
sin πz

π
= z

∏
n≥1

(
1− z2

n2

)
.
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Wallis formula for π

John Wallis (Arithmetica
Infinitorum 1655)

π

2
=
∏
n≥1

(
4n2

4n2 − 1

)

=
2 · 2 · 4 · 4 · 6 · 6 · 8 · 8 · · ·
1 · 3 · 3 · 5 · 5 · 7 · 7 · 9 · · ·

·



Weierstraß sigma function

For Z + Zi :

σZ[i](z) = z
∏

ω∈Z[i]\{0}

(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)
·

σZ[i](1/2) = 25/4π1/2eπ/8Γ(1/4)−2 = 0.4749493799 . . .

For α ∈ Q(i), the number σZ[i](α) is algebraic over

Q
(
π, eπ, Γ(1/4)

)
.
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Weierstraß zeta function

The logarithmic derivative of the Weierstraß sigma function is
the Weierstraß zeta function

σ′

σ
= ζ

and the derivative of ζ is −℘. The minus sign is selected so
that

℘(z) =
1

z2
+ a function analytic at 0.

The fonction ζ is therefore quasi–periodic : for any ω ∈ Ω
there exists η = η(ω) such that

ζ(z + ω) = ζ(z) + η.
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Elliptic integrals of the third kind

Quasi–periodicity of the sigma
Weierstraß function :

σ(z + ωi) = −σ(z)eηi(z+ωi/2) (i = 1, 2).

J-P.Serre (1979) :
the function

Fu(z) =
σ(z + u)

σ(z)σ(u)
e−zζ(u)

satisfies

Fu(z + ωi) = Fu(z)eηiu−ωiζ(u).



Legendre relation

The numbers η(ω) are the
quasi–periods of the elliptic
curve.

When (ω1, ω2) is a pair of
fundamental periods, we set
η1 = η(ω1) and η2 = η(ω2).

Legendre relation :

ω2η1 − ω1η2 = 2iπ.
this is not Adrien Marie but
Louis Legendre



Legendre and Fourier

Peter Duren, Changing Faces : The Mistaken Portrait of
Legendre.
Notices of American Mathematical Society, December 2009.



Examples

For the curve y2t = 4x3 − 4xt2 the quasi–periods associated
to the previous fundamental periods are

η1 =
π

ω1

=
(2π)3/2

Γ(1/4)2
, η2 = −iη1,

while for the curve y2t = 4x3 − 4t3 they are

η1 =
2π√
3ω1

=
27/3π2

31/2Γ(1/3)3
, η2 = %2η1.



Higher dimensions : abelian varieties

Abelian varieties,
abelian integrals,
theta functions.
Jacobian of an
algebraic curve.

Periods of the jacobian of a Fermat curve : values of Euler
Beta function.
The Fermat curve xn + yn = zn has genus (n− 1)(n− 2)/2.
For n = 1 and n = 2 the genus is 0.
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Fermat curve xn + yn = zn

For n = 3 the genus is 1 —
elliptic curve with complex
multiplication by the cubic
roots of unity : Γ(1/3).

For n = 4 the genus is 3 —
product of three elliptic curves
with complex multiplication
by the fourth roots of unity
Q(i) : Γ(1/4).

For n = 5 the genus is 6 — product of three simple abelian
surfaces with CM having as field of endomorphisms the field of
fifth roots of unity : Γ(1/5).



Higher dimensions : commutative algebraic groups

Extensions of abelian varieties by the additive group (abelian
integrals of the second kind) and by the multiplicative group
(abelian integrals of the third kind).

Lie groups – exponential map, periods.



Further examples of periods

√
2 =

∫
2x2≤1

dx

and all algebraic numbers.

log 2 =

∫
1<x<2

dx

x

and all logarithms of algebraic numbers :

logα =

∫
1<x<α, xy<1, y≥0

dxdy.



Further examples of periods

√
2 =

∫
2x2≤1

dx

and all algebraic numbers.

log 2 =

∫
1<x<2

dx

x

and all logarithms of algebraic numbers :

logα =

∫
1<x<α, xy<1, y≥0

dxdy.



Further examples of periods

√
2 =

∫
2x2≤1

dx

and all algebraic numbers.

log 2 =

∫
1<x<2

dx

x

and all logarithms of algebraic numbers :

logα =

∫
1<x<α, xy<1, y≥0

dxdy.



Further examples of periods

√
2 =

∫
2x2≤1

dx

and all algebraic numbers.

log 2 =

∫
1<x<2

dx

x

and all logarithms of algebraic numbers :

logα =

∫
1<x<α, xy<1, y≥0

dxdy.



Further examples of periods

π =

∫
x2+y2≤1

dxdy,

π2

6
= ζ(2) =

∑
n≥1

1

n2
=

∫
1>t1>t2>0

dt1
t1
· dt2

1− t2
·
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ζ(2) is a period
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1

n
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ζ(s) is a period

For s an integer ≥ 2,

ζ(s) =

∫
1>t1>t2···>ts>0

dt1
t1
· · · dts−1

ts−1

· dts
1− ts

·

Induction :∫
t1>t2···>ts>0

dt2
t2
· · · dts−1

ts−1

· dts
1− ts

=
∑
n≥1

tn−1
1

ns−1
·
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Numbers which are not periods

Problem (Kontsevich–Zagier) : To produce an explicit example
of a number which is not a period.

Several levels :

1 analog of Cantor : the set of periods is countable.
Hence there are real and complex numbers which are not
periods (“most” of them).
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Numbers which are not periods
2 analog of Liouville

Find a property which should be satisfied by all periods, and
construct a number which does not satisfies that property.

Masahiko Yoshinaga, Periods and elementary real numbers
arXiv:0805.0349

Compares the periods with hierarchy of real numbers induced
from computational complexities.
In particular, he proves that periods can be effectively
approximated by elementary rational Cauchy sequences.

As an application, he exhibits a computable real number which
is not a period.

http://arxiv.org/abs/0805.0349
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Numbers which are not periods

3 analog of Hermite
Prove that given numbers are not periods

Candidates : 1/π, e, Euler constant.

M. Kontsevich : exponential periods

“The last chapter, which is at a more advanced level and also more

speculative than the rest of the text, is by the first author only.”
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Relations among periods

1 Additivity∫ b

a

(
f(x) + g(x)

)
dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx

and ∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

2 Change of variables∫ ϕ(b)

ϕ(a)

f(t)dt =

∫ b

a

f
(
ϕ(u)

)
ϕ′(u)du.



Relations among periods

3 Newton–Leibniz–Stokes∫ b

a

f ′(t)dt = f(b)− f(a).



Conjecture of Kontsevich and Zagier

Periods,
Mathematics unlimited—
2001 and beyond,
Springer 2001, 771–808.

Conjecture (Kontsevich–Zagier). If a period has two integral
representations, then one can pass from one formula to
another using only rules 1 , 2 and 3 in which all functions
and domains of integration are algebraic with algebraic
coefficients.



Examples

π =

∫
x2+y2≤1

dxdy = 2

∫ 1

−1

√
1− x2 dx

=

∫ 1

−1

dx√
1− x2

=

∫ ∞
−∞

dx

1 + x2

=
22

7
−
∫ 1

0

x4(1− x4)dx

1 + x2
= 4

∫ 1

0

dx

1 + x2
·

Dramatic consequences :
There is no new algebraic dependence relation among

classical constants from analysis.
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Degree of a period, following Janming Wan

If p is a real period, Janming Wan defines the degree deg(p)
of p as the minimal dimension of a domain Σ such that

p =

∫
Σ

1,

where Σ is a domain in the Euclidean space given by
polynomial inequalities with algebraic coefficients.

For any complex period p = p1 + ip2, he defines

deg(p) = max{deg(p1), deg(p2)}.

A complex number which is not a period has infinite degree.

Jianming Wan, arXiv:1102.2273 Degrees of periods

http://arxiv.org/abs/1102.2273


Degree of a period, following Janming Wan

Jianming Wan, arXiv:1102.2273 Degrees of periods

Theorem. Let p be a period with deg(p) ≤ 2. Then the real
and imaginary parts of p have the forms

a arctan ξ + b log η + c,

where a, b, c, ξ, η are algebraic numbers.

Theorem. Let p1, p2 be two complex numbers. If
deg(p1) 6= deg(p2), then p1 and p2 are linearly independent
over the field of algebraic numbers.

http://arxiv.org/abs/1102.2273


Rational approximation of real periods

Liouville (1844) : for any
algebraic irrational number α,
there exist two constants c
and d such that, for any
rational number p/q, we have∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qd
·



Liouville numbers

A Liouville number is a number x ∈ R such that, for all
κ > 0, there exists p/q ∈ Q with q ≥ 2 satisfying

0 <

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qκ
·

As a consequence, a Liouville number is transcendental.
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Rational approximation of periods

In dynamical systems theory, a Liouville number is a real
number which does not satisfy a Diophantine condition.

Question. Let θ be a real irrational period ; does there exist
c(θ) > 0 such that, for any rational number p/q with q ≥ 2,
the lower bound ∣∣∣∣θ − p

q

∣∣∣∣ > 1

qc(θ)

holds ?

In other words, it is expected that no period is a Liouville
number (i.e. : no Liouville number is a period !).
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Lebesgue measure

A more ambitious goal would
be to prove that real or
complex periods behave, from
the Diophantine
approximation point of view,
as almost all numbers for
Lebesgue measure.



Diophantine approximation of periods

Question. Given a transcendental period θ ∈ C, does there
exist a constant κ(θ) such that, for any nonzero polynomial
P ∈ Z[X], we have

|P (θ)| ≥ H−κ(θ)d,

where H ≥ 2 is an upper bound for the usual height of P
(maximum of the absolute values of the coefficients) and d the
degree of P ?



Hermite and Lindemann Theorems

Hermite (1873) :
transcendence of e.

Lindemann (1882) :
transcendence of π.

Theorem of Hermite–Lindemann
For any nonzero complex number z, at least one of the two
numbers z, ez is transcendental.

Corollaries : transcendence of logα and eβ for α and β
nonzero algebraic numbers with logα 6= 0.
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Hilbert seventh problem

For α and β algebraic numbers
with α 6= 0 and β 6∈ Q
and for any choice of logα 6= 0,
prove that the number

αβ = exp(β logα)

is transcendental.
Examples : 2

√
2, eπ.

http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Hilbert.html

http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Hilbert.html


Solution of Hilbert seventh problem

A.O. Gel’fond and Th. Schneider (1934).
Solution of Hilbert seventh problem :
transcendence of αβ

The two algebraically independent functions
ez and eβz cannot take algebraic values
at the same point logα.



Transcendence of (logα1)/(logα2) and eπ
√
d

Equivalent form of Gel’fond-Schneider Theorem :

Let logα1, logα2 be two nonzero logarithms of algebraic
numbers. Assume that the quotient (logα1)/(logα2) is
irrational. Then this quotient is transcendental.

From the Theorem of Gel’fond-Schneider one deduces the
transcendence of 2

√
2, eπ, log 2/ log 3 and eπ

√
d when d is a

positive integer.
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eπ = (−1)−i

Example :

eπ
√

163 = 262 537 412 640 768 743.999 999 999 999 250 7 . . .

Martin Gardner,
Scientific American,

April 1, 1975.

Imaginary quadratic fields Q(
√
−m) with class number 1 :

m = 1, 2, 3, 7, 11, 19, 43, 67, 163.

For

τ =
1 + i

√
163

2
, q = e2iπτ = −e−π

√
163

we have j(τ) = −640 3203 and∣∣∣∣j(τ)− 1

q
− 744

∣∣∣∣ < 10−12.
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Baker’s Theorem

A. Baker, (1968). Let
logα1, . . . , logαn be
Q–linearly independent
logarithms of algebraic
numbers. Then the numbers
1, logα1, . . . , logαn are
linearly independent over the
field Q of algebraic numbers.



Consequences of Baker’s Theorem

Let α1, . . . , αn, β1, . . . , βn be nonzero algebraic numbers and
for 1 ≤ i ≤ n, let logαi be a complex logarithms of αi. Then
the number

β1 logα1 + · · ·+ βn logαn

is either zero or else transcendental.

Famous example (considered by Siegel in 1949) : from Baker’s
Theorem, one deduces the transcendence of the number∫ 1

0

dt

1 + t3
=

1

3

(
log 2 +

π√
3

)
·



Consequences of Baker’s Theorem

Let α1, . . . , αn, β1, . . . , βn be nonzero algebraic numbers and
for 1 ≤ i ≤ n, let logαi be a complex logarithms of αi. Then
the number

β1 logα1 + · · ·+ βn logαn

is either zero or else transcendental.

Famous example (considered by Siegel in 1949) : from Baker’s
Theorem, one deduces the transcendence of the number∫ 1

0

dt

1 + t3
=

1

3

(
log 2 +

π√
3

)
·



Genus zero

Corollary. Let P and Q be polynomials with algebraic
coefficients satisfying degP < degQ and let γ be either a
closed path, or else a path with limit points either algebraic
numbers or infinity. If the integral∫

γ

P (z)

Q(z)
dz

exists, then its value is either rational or transcendental.

Proof.
Decompose the rational fraction P (z)/Q(z) into simple
elements.
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Van der Poorten

A. J. Van der Poorten.
On the arithmetic nature of
definite integrals of rational
functions.
Proc. Amer. Math. Soc. 29
451–456 (1971).



Periods in genus zero

As a matter of fact, the corollary is equivalent to Baker’s
Theorem : write the logarithm of an algebraic number as a
period. For instance, for the principal value of the logarithm,
when α is not a real negative number, we have

logα =

∫ ∞
0

(α− 1)dt

(t+ 1)(αt+ 1)
,

while

iπ = 2i

∫ ∞
0

dt

1 + t2
·

The corresponding integrals are not Liouville numbers -
explicit transcendence measures are also available.
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Transcendence of periods of elliptic integrals

Elliptic analog of Lindemann’s Theorem on the transcendence
of π.

Theorem (Siegel, 1932) : If the invariants g2 and g3 of ℘ are
algebraic, then at least one of the two numbers ω1, ω2 is
transcendental.

As a consequence, in the CM case, any nonzero period of ℘ is
transcendental.



A. Thue, C.L. Siegel

Dirichlet’s box
principle

Thue-Siegel
Lemma



Siegel’s results on Gamma and Beta values

Consequence of Siegel’s 1932 result :
both numbers

Γ(1/4)4/π and Γ(1/3)3/π

are transcendental.
Ellipse :

2

∫ b

−b

√
1 +

a2x2

b4 − b2x2
dx

Transcendence of the perimeter of the lemniscate

(x2 + y2)2 = 2a2(x2 − y2)



Elliptic integrals of the first kind

1934 : solution of Hilbert’s seventh problem by A.O. Gel’fond
and Th. Schneider.

Schneider (1934) : If the invariants g2 and g3 of ℘ are
algebraic, then any nonzero period ω is a transcendental
number
i.e. : a nonzero period of an elliptic integral of the first kind is
transcendental.
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Transcendence of quasi–periods

Elliptic integrals of the second kind.
Pólya, Popken, Mahler (1935)

Schneider (1934) : If the invariants g2 and g3 of ℘ are
algebraic, then each of the numbers η(ω) with ω 6= 0 is
transcendental.

Examples : the numbers

Γ(1/4)4/π3 and Γ(1/3)3/π2

are transcendental.
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Periods of elliptic integrals of the third kind

Theorem (1979). Assume g2, g3, ℘(u1), ℘(u2), β are
algebraic and Zu1 ∩ Ω = {0}. Then the number

σ(u1 + u2)

σ(u1)σ(u2)
e

(
β−ζ(u1)

)
u2

is transcendental.

Corollary. Transcendence of periods of elliptic integrals of the
third kind :

eωζ(u)−ηu+βω.



Higher dimensions, several variables

Schneider (1937) : If the invariants g2 and g3 of ℘ are
algebraic and if α and β are nonzero algebraic numbers, then
each of the numbers

2iπ/ω1, η1/ω1, αω1 + βη1

is transcendental.

Schneider (1948) : for a and b in Q with a, b and a+ b not in
Z, the number

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

is transcendental.

The proof involves abelian integrals in higher genus, arising
from the Jacobian of the Fermat curve.
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Baker’s method

A. Baker (1969) :
transcendence of linear
combinations with algebraic
coefficients in

ω1, ω2, η1 and η2.



Baker’s method

J. Coates (1971) :
transcendence of linear
combinations with algebraic
coefficients in

ω1, ω2, η1, η2 and 2iπ.

Further, in the non–CM case, the three numbers

ω1, ω2 and 2iπ

are Q-linearly independent.



Masser’s work

D.W. Masser (1975) : the six
numbers

1, ω1, ω2, η1, η2 2iπ

span a Q-vector space of
dimension 6 in the CM case, 4
in the non–CM case :

dimQ{1, ω1, ω2, η1, η2, 2iπ} = 2 + 2 dimQ{ω1, ω2}.

Further : linear independence measures.



Elliptic analog of Baker’s Theorem

Linear independence over the field of algebraic numbers of
elliptic logarithms :

Masser (1974) in
the CM case.

Bertrand-Masser
(1980) in the
general case.



Bertrand–Masser

New proof of Baker’s Theorem using functions of several
variables in the case of Cartesian products.

The proof rests on Schneider’s Criterion (1949), before the
solution by Bombieri of a conjecture by Nagata 1970.

Let ℘ be a Weierstraß elliptic function with algebraic
invariants g2, g3. Let u1, . . . , un be End(E)–linearly
independent complex numbers. Assume that for 1 ≤ i ≤ n,
either ui ∈ Ω or else ℘(ui) ∈ Q. Then the numbers
1, u1, . . . , un are Q–linearly independent.



Wüstholz’s Theorem

G. Wüstholz (1987) –
extension of the results by
Schneider, Lang, Baker,
Coates, Masser, Bertrand to
abelian varieties and abelian
integrals.

General result of linear independence on commutative
algebraic groups (including the result of Baker corresponding
to the special case of a product of multiplicative groups).



Wolfart and Wüstholz

Consequences (J. Wolfart and G. Wüstholz) dealing with the
values of Euler Beta and Gamma functions : linear
independence over the field of algebraic numbers of the values
of Euler Beta function at rational points (a, b).

Transcendence of values at algebraic points of hypergeometric
functions with rational parameters.
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Elliptic functions and algebraic independence

1976, G.V. Chudnovsky :

The numbers π and Γ(1/4)
are algebraically independent.

Proof :
involves elliptic functions.
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Proof :
involves elliptic functions.



Modular functions

1996, Yu. V. Nesterenko :

The three numbers
π, eπ and Γ(1/4)
are algebraically independent.

Proof :
involves modular functions.

Open problem :
Show that e and π are algebraically independent.



Irrationality measure for π

1953 : K. Mahler : π is not
a Liouville number

1967 : K. Mahler :∣∣∣∣π − p

q

∣∣∣∣ > 1

q42
for q ≥ 2.

1974 : M. Mignotte :
exponent 20.6 for q ≥ 2

1984 : D. and G. Chudnovsky : 14.65 for sufficiently large q.

1992 : M. Hata : 8.0161 for sufficiently large q.

2008 : V.Kh. Salikhov (best known estimate so far)∣∣∣∣π − p

q

∣∣∣∣ > 1

q7.606
for sufficiently large q.
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Irrationality measure for eπ

It is not yet known that eπ is not a Liouville number :∣∣∣∣eπ − p
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Best known : ∣∣∣∣eπ − p
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(Baker’s method)
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Irrationality measure for Γ(1/4)

1999, P. Philippon and
S. Bruiltet : The number
Γ(1/4) is not a Liouville
number∣∣∣∣Γ(1/4)− p

q

∣∣∣∣ > 1

q10330

for sufficiently large q.

(Chudnovsky’s method)



Further open problems
Algebraic independence of the three numbers

π, Γ(1/3), Γ(1/4).

Algebraic independence of at least three numbers among

π, Γ(1/5), Γ(2/5), eπ
√

5.

Faustin Adiceam : consequence of Nestenreko’s Theorem using
the Formula of Chowla and Selberg.
Algebraic independence of the three numbers π, eπ

√
5 and θ

where
θ = Γ(1/5) Γ(7/20) Γ(9/20).

Same result with

θ =
Γ(1/20) Γ(3/20)

Γ(1/5)
·
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Standard relations among Beta values

(Translation) :

Γ(a+ 1) = aΓ(a)

(Reflection) :

Γ(a)Γ(1− a) =
π

sin(πa)

(Multiplication) : for any positive number n,

n−1∏
k=0

Γ

(
a+

k

n

)
= (2π)(n−1)/2n−na+(1/2)Γ(na).



Conjectures of Rohrlich and Lang

Conjecture (D. Rohrlich) Any multiplicative relation

πb/2
∏
a∈Q

Γ(a)ma ∈ Q

with b and ma in Z is in the ideal generated by the standard
relations.

Conjecture (S. Lang) Any algebraic dependence relation
among (2π)−1/2Γ(a) with a ∈ Q is in the ideal generated by
the standard relations (universal odd distribution).
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Riemann zeta function

ζ(s)=
∑
n≥1

1

ns

=
∏
p

1

1− p−s

Euler : s ∈ R. Riemann : s ∈ C.



Special values of the Riemann zeta function

s ∈ Z :
Jacques Bernoulli

(1654–1705),
Leonard Euler (1739).

π−2kζ(2k) ∈ Q for k ≥ 1 (Bernoulli numbers).



Jacques Bernoulli (1654–1705)



Values of Riemann zeta function at the positive

integers

Even positive integers

ζ(2n) = (−1)n−122n−1 B2n

(2n)!
π2n (n ≥ 1).

Odd positive integers : ζ(2n+ 1), n ≥ 1 ?

Question : for n ≥ 1, is the number

ζ(2n+ 1)

π2n+1

rational ?
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Diophantine question

Determine all algebraic relations among the numbers

ζ(2), ζ(3), ζ(5), ζ(7), . . .

Conjecture. there is no algebraic relation : the numbers

ζ(2), ζ(3), ζ(5), ζ(7), . . .

are algebraically independent.

As a consequence, one expects the numbers ζ(2n+ 1) and
ζ(2n+ 1)/π2n+1 for n ≥ 1 to be transcendental.
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Values of ζ at the even positive integers

• F. Lindemann : π is a
transcendental number, hence ζ(2k) also
for k ≥ 1.



Values of ζ at the odd positive integers

• Apéry (1978) : The number

ζ(3) =
∑
n≥1

1

n3
= 1, 202 056 903 159 594 285 399 738 161 511 . . .

is irrational.

• Rivoal (2000) + Ball, Zudilin, Fischler,. . . Infinitely many
numbers among ζ(2k + 1) are irrational + lower bound for the
dimension of the Q-space they span.
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Tanguy Rivoal

Let ε > 0. For any sufficiently large odd integer a,
the dimension of the Q–space spanned by the numbers
1, ζ(3), ζ(5), · · · , ζ(a) is at least

1− ε
1 + log 2

log a.



Wadim Zudilin

• At least one of the four numbers
ζ(5), ζ(7), ζ(9), ζ(11)

is irrational.

• There exists an odd number j
in the interval [5, 69] such that
the three numbers

1, ζ(3), ζ(j)
are Q–linearly independent.
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Linearization of the problem (Euler)

The product of two special values of the Riemann zeta
function is a linear combination of multizeta values.

∑
n1≥1

n−s11

∑
n2≥1

n2
−s2=

∑
n1>n2≥1

n−s11 n2
−s2

+
∑

n2>n1≥1

n−s22 n1
−s1 +

∑
n≥1

n−s1−s2



Multizeta values

One deduces, for s1 ≥ 2 and s2 ≥ 2,

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)

with
ζ(s1, s2) =

∑
n1>n2≥1

n−s11 n2
−s2 .



ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)

ζ(2)ζ(3)= ζ(2, 3) + ζ(3, 2) + ζ(5)

ζ(2)2= 2ζ(2, 2) + ζ(4)

Relation among divergent series

ζ(1)ζ(2) = ζ(1, 2) + ζ(2, 1) + ζ(3).

ζ(1) and ζ(1, 2) are divergent series

ζ(1) =
∑
n≥1

1

n
and ζ(1, 2) =

∑
n1>n2≥1

1

n1n2
2

·
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Multizeta values

For k, s1, . . . , sk positive integers satisfying s1 ≥ 2, one sets
s = (s1, . . . , sk) and

ζ(s) =
∑

n1>n2>···>nk≥1

1

ns11 · · ·n
sk
k

·

For k = 1 one recovers the values of Riemann ζ function.

k is the depth and p = s1 + · · ·+ sk the weight.
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The algebra of multizeta

The product of two multizeta values is a multizeta value.

The Q–space spanned by the ζ(s) is also a Q–algebra.

The problem of algebraic independence is reduced to a
problem of linear independence.

Question : which are the linear relations among these
numbers ?

Answer : there are plenty of linear relations !
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ζ(2, 2, . . . , 2)

For k ≥ 1, set {2}k = (2, 2, . . . , 2) (with k terms). We have

ζ({2}k) =
π2k

(2k + 1)!
·

Hence ζ({2}k)/ζ(2k) ∈ Q.

Examples.

ζ(2) =
π2

6
, ζ(2, 2) =

π4

120
, ζ(2, 2, 2) =

π6

5 040
·

Proof :

sin(πz)

πz
=
∏
n≥1

(
1− z2

n2

)
=
∑
k≥0

ζ
(
{2}k

)
(−z2)k.
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The multizeta values are periods

ζ(2, 1) =

∫
1>t1>t2>t3>0

dt1
t1
· dt2

1− t2
· dt3

1− t3
·

Proof.
We have∫ t2

0

dt3
1− t3

=
∑
n≥1

tn−1
2

n
, then

∫ t1

0

tn−1
2 dt2
t2 − 1

=
∑
m>n

tm1
m

,

and ∫ 1

0

tm−1
1 dt1 =

1

m
,

hence∫
1>t1>t2>t3>0

dt1
t1
· dt2

1− t2
· dt3

1− t3
=
∑

m>n≥1

1

m2n
= ζ(2, 1)
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Conjecture of Zagier

Let Zp be the Q-subspace of
R spanned by the numbers
ζ(s) where s has weight s1 + · · ·+ sk = p,
with Z0 = Q and Z1 = {0}.
Let dp be the dimension of Zp.

Conjecture (Zagier). For p ≥ 3, we have

dp = dp−2 + dp−3.

(d0, d1, d2, . . .) = (1, 0, 1, 1, 1, 2, 2, . . .).
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Conjecture of Hoffman

Zagier’s conjecture can be stated as∑
p≥0

dpX
p =

1

1−X2 −X3
·

Conjecture of M. Hoffman : a basis of Zp as a Q–vector space
is given by ζ(s1, . . . , sk), s1 + · · ·+ sk = p, where each si is
either 2 or 3.

M. Kaneko, M. Noro and K. Tsurumaki. – On a conjecture
for the dimension of the space of the multiple zeta values,
Software for Algebraic Geometry, IMA 148 (2008), 47–58.

It is not yet proved that there exists p with dp ≥ 2.



Conjecture of Hoffman

Zagier’s conjecture can be stated as∑
p≥0

dpX
p =

1

1−X2 −X3
·

Conjecture of M. Hoffman : a basis of Zp as a Q–vector space
is given by ζ(s1, . . . , sk), s1 + · · ·+ sk = p, where each si is
either 2 or 3.

M. Kaneko, M. Noro and K. Tsurumaki. – On a conjecture
for the dimension of the space of the multiple zeta values,
Software for Algebraic Geometry, IMA 148 (2008), 47–58.

It is not yet proved that there exists p with dp ≥ 2.



Conjecture of Hoffman

Zagier’s conjecture can be stated as∑
p≥0

dpX
p =

1

1−X2 −X3
·

Conjecture of M. Hoffman : a basis of Zp as a Q–vector space
is given by ζ(s1, . . . , sk), s1 + · · ·+ sk = p, where each si is
either 2 or 3.

M. Kaneko, M. Noro and K. Tsurumaki. – On a conjecture
for the dimension of the space of the multiple zeta values,
Software for Algebraic Geometry, IMA 148 (2008), 47–58.

It is not yet proved that there exists p with dp ≥ 2.



Upper bound for the dimension

A.B. Goncharov – Multiple ζ-values, Galois groups and
Geometry of Modular Varieties. Birkhäuser. Prog. Math. 201,
361-392 (2001).
T. Terasoma – Mixed Tate motives and Multiple Zeta Values.
Invent. Math. 149, No. 2, 339-369 (2002).

Theorem. The numbers given by Zagier’s Conjecture
dp = dp−2 + dp−3 with initial conditions d0 = 1, d1 = 0 are
actually upper bounds for the dimension of Zp.
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Francis Brown

arXiv:1102.1310 On the decomposition of motivic multiple
zeta values
We review motivic aspects of multiple zeta values, and as an
application, we give an exact-numerical algorithm to
decompose any (motivic) multiple zeta value of given weight
into a chosen basis up to that weight.

arXiv:1102.1312 Mixed Tate motives over Z
We prove that the category of mixed Tate motives over Z is
spanned by the motivic fundamental group of Pro1 minus
three points. We prove a conjecture by M. Hoffman which
states that every multiple zeta value is a Q-linear combination
of ζ(n1, . . . , nr) where ni ∈ {2, 3}.

http://arxiv.org/abs/1102.1310
http://arxiv.org/abs/1102.1312
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