November 9 - 19, 2021.

Limbe (Cameroun)

Number Theory I : Linear Recurrent Sequences African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Quizz 1 12/11/2021 – Solution

Let a and b be two nonzero complex numbers. Set s = a + b, p = ab. Let E be the complex vector space of sequences $(u_n)_{n\geq 0}$ satisfying

$$u_{n+2} = su_{n+1} - pu_n.$$

(1). Assume $a \neq b$. Show that the two sequences $(a^n)_{n\geq 0}$ and $(b^n)_{n\geq 0}$ give a basis for E.

(2). Assume a = b. Show that the two sequences $(a^n)_{n \ge 0}$ and $(na^n)_{n \ge 0}$ give a basis for E.

Solution

Recall that two element $(u_n)_{n\geq 0}$ and $(v_n)_{n\geq 0}$ in E are linearly independent if and only the determinant of the 2×2 matrix $\begin{pmatrix} u_0 & u_1 \\ v_0 & v_1 \end{pmatrix}$, namely $u_0v_1 - u_1v_0$, is not 0.

(1) The two roots of $X^2 - sX + p$ are a and b :

$$X^{2} - sX + p = (X - a)(X - b).$$

Hence $a^2 = sa - p$, $b^2 = sb - p$. Multiplying by a^n and b^n respectively yields

$$a^{n+2} = sa^{n+1} - pa^n$$
, $b^{n+2} = sb^{n+1} - pb^n$,

from which one deduces that two sequences $(a^n)_{n\geq 0}$ and $(b^n)_{n\geq 0}$ belong to E. These two sequences are linearly independent since $a^n = (1, a, ...), b^n =$

(1, b, ...) and $a \neq b$, so the determinant of the 2×2 matrix $\begin{pmatrix} 1 & a \\ 1 & b \end{pmatrix}$ is not 0. (2). When a = b we have s = 2a, $p = a^2$. The polynomial $X^2 - sX + p$ has a double root at X = a:

$$X^{2} - sX + p = X^{2} - 2aX + a^{2} = (X - a)^{2}.$$

As in (1), we have $a^{n+2} = 2a^{n+2} - a^{n+2} = sa^{n+1} - pa^n$. Also for $u_n = na^n$ we have

$$u_{n+2} = (n+2)a^{n+2} = 2(n+1)a^{n+2} - na^{n+2} = 2au_{n+1} - a^2u_n$$

Hence the two sequences $(a^n)_{n\geq 0}$ and $(u_n)_{n\geq 0} = (na^n)_{n\geq 0}$ belong to E.

The two sequences $(a^n)_{n\geq 0}$ and $(na^n)_{n\geq 0}$ are linearly independent since $a^n = (1, a, ...)$ and $na^n = (0, a, ...)$ with $a \neq 0$, so the determinant of the 2×2 matrix $\begin{pmatrix} 1 & a \\ 0 & a \end{pmatrix}$ is not 0. .